19,573 research outputs found

    Impact of haptic 'touching' technology on cultural applications

    Get PDF
    No abstract available

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Nature as paradigm for sustainability in the textile and apparel industry

    Get PDF
    Imagine if clothing of the future would adapt, grow, self repair and change appearance. The relationship between wearer and garment would be that of symbiosis enabled by developments in material science that produce textiles able to imitate functionalities of living organisms rather than just the properties of natural fibres. We can expect clothing of the future to host an array of new properties that may interact or integrate with the body, self maintain, reproduce and self assemble to accommodate changes in our activity and environment. Materials and structures in nature already demonstrate these functions and can indicate ways of transferring the technology into clothing. Biomimetics can operate as a platform to accommodate these future requirements and provide a new perspective in the design and assembly of clothing systems

    Tac-tiles: multimodal pie charts for visually impaired users

    Get PDF
    Tac-tiles is an accessible interface that allows visually impaired users to browse graphical information using tactile and audio feedback. The system uses a graphics tablet which is augmented with a tangible overlay tile to guide user exploration. Dynamic feedback is provided by a tactile pin-array at the fingertips, and through speech/non-speech audio cues. In designing the system, we seek to preserve the affordances and metaphors of traditional, low-tech teaching media for the blind, and combine this with the benefits of a digital representation. Traditional tangible media allow rapid, non-sequential access to data, promote easy and unambiguous access to resources such as axes and gridlines, allow the use of external memory, and preserve visual conventions, thus promoting collaboration with sighted colleagues. A prototype system was evaluated with visually impaired users, and recommendations for multimodal design were derived

    Evaluation of behavior in transgenic mouse models to understand human congenital pain conditions

    Full text link
    BACKGROUND: Containing a brain for signal processing and decision making, and a peripheral component for sensation and response, the nervous system provides higher organisms a powerful method of interacting with their environment. The specific neurons involved in pain sensation are known as nociceptors and are the source of normal nociceptive pain signaling to prompt appropriate responses. Though acute hypersensitization can be advantageous by encouraging an organism to allow an injured area to heal, chronic pain conditions can be pathological and can markedly reduce quality of life. While a variety of genes have been associated with congenital pain conditions, two rare cases examined in this study have not had their mutated genes identified. Potassium voltage-gated channel subfamily H member 8, or KCNH8, is involved in regulating action potential production and propagation, and has not been linked with pain processing of any kind to date. Here, a male patient evaluated at Boston Children’s Hospital contains a novel single-base KCNH8 mutation and possesses an extremely low sensitivity to cold temperatures and mechanical pain, but a higher sensitivity to warmer temperatures. A separate protein, intersectin-2, or ITSN2, normally functions in clathrin-mediated endocytosis and exocytosis. A second patient at Boston Children’s Hospital expresses a previously-unseen point mutation in ITSN2 and experiences erythromelalgia, characterized by episodes of intense pain and red, swollen limbs during ambient warm temperatures. Through the use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 genome editing, this study will produce these specific genetic mutations in mouse lines to explore their effects on mammalian behavior. OBJECTIVES: This project employs two transgenic mouse models to study the behavioral phenotypes associated with rare potentially damaging mutations in KCNH8 and ITSN2 exhibited in the human patients. Through these experiments, a greater understanding of neural pain signaling and sensitivity changes can occur. METHODS: The differences in temperature preference of KCNH8 and ITSN2 mutant mice compared to wild type mice lacking these mutations was studied using thermal plates under cold and warm conditions. Direct application of acetone and von Frey filaments to mouse paws was used to study cold and mechanical sensitivity. Further testing of stamina, anxiety, coordination, and strength were also evaluated. RESULTS: A marked decrease in sensitivity to von Frey stimulation (p<0.01) and acetone administration (p<0.05) was observed in KCNH8 mutant mice. Thermal preference testing demonstrated a decreased preference for warmer temperatures as compared to wild type mice. In addition, anxiety levels were also observed to be slightly higher in these mutant KCNH8 mice (p<0.05). The mutant ITSN2 mice spent less time at cooler temperatures, though surprisingly they significantly preferred warmer conditions as compared to their wild type littermates. A full and partial reversal of these temperature preferences was demonstrated in cold and heat thermal conditions respectively after intraperitoneal gabapentin injection, which normalized the mice toward wild type behavior. CONCLUSIONS: Data from the KCNH8 mutant mouse model indicates an aversion to warmer temperatures and a decreased ability to detect cold or mechanical pressure, much like the human patient. The mutant ITSN2 mice were less likely to spend time at cooler temperatures, indicating heightened sensory sensitivity, but their preference for warmer temperatures suggests a possible desensitization of the affected nociceptors. These results often mirror the patient’s phenotype, but the preference for ambient warmer environments appears opposite to the patient. As the ITSN2 mice feel discomfort at cooler temperatures, a proposed desensitization at warmer temperatures would result in a more comfortable environment and could explain the observed preference. The trends toward normal neural firing rates achieved through gabapentin injection suggest that the aberrant responses in mutant ITSN2 mice is due to altered sensitization, but additional examination under these conditions with a larger group of mice is necessary to further unravel these signaling pathways. However, these extremely encouraging data introduce two new molecular targets for acute pain control

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 172

    Get PDF
    This bibliography lists 132 reports, articles, and other documents introduced into the NASA scientific and technical information system in September 1977
    • …
    corecore