34 research outputs found

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text

    STED Nanoscopy to Illuminate New Avenues in Cancer Research – From Live Cell Staining and Direct Imaging to Decisive Preclinical Insights for Diagnosis and Therapy

    Get PDF
    Molecular imaging is established as an indispensable tool in various areas of cancer research, ranging from basic cancer biology and preclinical research to clinical trials and medical practice. In particular, the field of fluorescence imaging has experienced exceptional progress during the last three decades with the development of various in vivo technologies. Within this field, fluorescence microscopy is primarily of experimental use since it is especially qualified for addressing the fundamental questions of molecular oncology. As stimulated emission depletion (STED) nanoscopy combines the highest spatial and temporal resolutions with live specimen compatibility, it is best-suited for real-time investigations of the differences in the molecular machineries of malignant and normal cells to eventually translate the acquired knowledge into increased diagnostic and therapeutic efficacy. This thesis presents the application of STED nanoscopy to two acute topics in cancer research of direct or indirect clinical interest. The first project has investigated the structure of telomeres, the ends of the linear eukaryotic chromosomes, in intact human cells at the nanoscale. To protect genome integrity, a telomere can mask the chromosome end by folding back and sequestering its single-stranded 3’-overhang in an upstream part of the double-stranded DNA repeat region. The formed t-loop structure has so far only been visualized by electron microscopy and fluorescence nanoscopy with cross-linked mammalian telomeric DNA after disruption of cell nuclei and spreading. For the first time, this work demonstrates the existence of t-loops within their endogenous nuclear environment in intact human cells. The identification of further telomere conformations has laid the groundwork for distinguishing cancerous cells that use different telomere maintenance mechanisms based on their individual telomere populations by a combined STED nanoscopy and deep learning approach. The population difference was essentially attributed to the promyelocytic leukemia (PML) protein that significantly perturbs the organization of a subpopulation of telomeres towards an open conformation in cancer cells that employ a telomerase-independent, alternative telomere lengthening mechanism. Elucidating the nanoscale topology of telomeres and associated proteins within the nucleus has provided new insight into telomere structure-function relationships relevant for understanding the deregulation of telomere maintenance in cancer cells. After understanding the molecular foundations, this newly gained knowledge can be exploited to develop novel or refined diagnostic and treatment strategies. The second project has characterized the intracellular distribution of recently developed prostate cancer tracers. These novel prostate-specific membrane antigen (PSMA) inhibitors have revolutionized the treatment regimen of prostate cancer by enabling targeted imaging and therapy approaches. However, the exact internalization mechanism and the subcellular fate of these tracers have remained elusive. By combining STED nanoscopy with a newly developed non-standard live cell staining protocol, this work confirmed cell surface clustering of the targeted membrane antigen upon PSMA inhibitor binding, subsequent clathrin-dependent endocytosis and endosomal trafficking of the antigen-inhibitor complex. PSMA inhibitors accumulate in prostate cancer cells at clinically relevant time points, but strikingly and in contrast to the targeted antigen itself, they eventually distribute homogenously in the cytosol. This project has revealed the subcellular fate of PSMA/PSMA inhibitor complexes for the first time and provides crucial knowledge for the future application of these tracers including the development of new strategies in the field of prostate cancer diagnostics and therapeutics. Relying on the photostability and biocompatibility of the applied fluorophores, the performance of live cell STED nanoscopy in the field of cancer research is boosted by the development of improved fluorophores. The third project in this thesis introduces a biocompatible, small molecule near-infrared dye suitable for live cell STED imaging. By the application of a halogen dance rearrangement, a dihalogenated fluorinatable pyridinyl rhodamine could be synthesized at high yield. The option of subsequent radiolabeling combined with excellent optical properties and a non-toxic profile renders this dye an appropriate candidate for medical and bioimaging applications. Providing an intrinsic and highly specific mitochondrial targeting ability, the radiolabeled analogue is suggested as a vehicle for multimodal (positron emission tomography and optical imaging) medical imaging of mitochondria for cancer diagnosis and therapeutic approaches in patients and biopsy tissue. The absence of cytotoxicity is not only a crucial prerequisite for clinically used fluorophores. To guarantee the generation of meaningful data mirroring biological reality, the absence of cytotoxicity is likewise a decisive property of dyes applied in live cell STED nanoscopy. The fourth project in this thesis proposes a universal approach for cytotoxicity testing based on characterizing the influence of the compound of interest on the proliferation behavior of human cell lines using digital holographic cytometry. By applying this approach to recently developed live cell STED compatible dyes, pronounced cytotoxic effects could be excluded. Looking more closely, some of the tested dyes slightly altered cell proliferation, so this project provides guidance on the right choice of dye for the least invasive live cell STED experiments. Ultimately, live cell STED data should be exploited to extract as much biological information as possible. However, some information might be partially hidden by image degradation due the dynamics of living samples and the deliberate choice of rather conservative imaging parameters in order to preserve sample viability. The fifth project in this thesis presents a novel image restoration method in a Bayesian framework that simultaneously performs deconvolution, denoising as well as super-resolution, to restore images suffering from noise with mixed Poisson-Gaussian statistics. Established deconvolution or denoising methods that consider only one type of noise generally do not perform well on images degraded significantly by mixed noise. The newly introduced method was validated with live cell STED telomere data proving that the method can compete with state-of-the-art approaches. Taken together, this thesis demonstrates the value of an integrated approach for STED nanoscopy imaging studies. A coordinated workflow including sample preparation, image acquisition and data analysis provided a reliable platform for deriving meaningful conclusions for current questions in the field of cancer research. Moreover, this thesis emphasizes the strength of iteratively adapting the individual components in the operational chain and it particularly points towards those components that, if further improved, optimize the significance of the final results rendering live cell STED nanoscopy even more powerful

    Image-guidance and computational modeling to develop and characterize microwave thermal therapy platforms

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringPunit PrakashThis dissertation focuses on the development of magnetic resonance imaging (MRI)-guided microwave thermal therapy systems for driving experimental studies in small animals, and to experimentally validate computational models of microwave ablation, which are widely employed for device design and characterization. MRI affords noninvasive monitoring of spatial temperature profiles, thereby providing a means to to quantitatively monitor and verify delivery of prescribed thermal doses in experimental studies and clinical use, as well as a means to validate thermal profiles predicted by computational models of thermal therapy. A contribution of this dissertation is the development and demonstration of a system for delivering mild hyperthermia to small animal targets, thereby providing a platform for driving basic research studies investigating the use of heating as part of cancer treatment strategies. An experimentally validated 3D computational model was employed to design and characterize a non-invasive directional water-cooled microwave hyperthermia applicator for MRI guided delivery of hypethermia in small animals. Following a parametric model-based design approach, a reflector aperture angle of 120°, S-shaped monopole antenna with 0.6 mm displacement, and a coolant flow rate of 150 ml/min were selected as applicator parameters that enable conformal delivery of mild hyperthermia to tumors in experimental animals. The system was integrated with real-time high-field 14.1 T MRI thermometry and feedback control to monitor and maintain target temperature elevations in the range of 4 – 5 °C (hypethermic range). 2 - 4 mm diameter targets positioned 1 – 3 mm from the applicator surface were heated to hyperthermic temperatures, with target coverage ratio ranging between 76 - 93 % and 11 – 26 % of non-targeted tissue heated. Another contribution of this dissertation is using computational models to determine how the fibroids altered ablation profile of a microwave applicator for global endometrial ablation. Uterine fibroids are benign pelvic tumors located within the myometrium or endometrium,and may alter the profile of microwave ablation applicators deployed within the uterus for delivering endometrial ablation. A 3D computational model was employed to investigate the effect of 1 – 3 cm diameter uterine fibroids in different locations around the uterine cavity on endometrial ablation profiles of microwave exposure with a 915 MHz microwave triangular loop antenna. The maximum change in simulated ablation depths due to the presence of fibroids was 1.1 mm. In summary, this simulation study suggests that 1 – 3 cm diameter uterine fibroids can be expected to have minimal impact on the extent of microwave endometrial ablation patterns achieved with the applicator studied in this dissertation. Another contribution of this dissertation is the development of a method for experimental validation of 3D transient temperature profiles predicted by computational models of MWA. An experimental platform was developed integrating custom designed MR-conditional MWA applicators for use within the MR environment. This developed platform was employed to conduct 30 - 50 W, 5 - 10 min MWA experiments in ex vivo tissue. Microwave ablation computational models, mimicking the experimental setting in MRI, were implemented using the finite element method, and incorporated temperature-dependent changes in tissue physical properties. MRI-derived Arrhenius thermal damage maps were compared to Model-predicted ablation zone extents using the Dice similarity coefficient (DSC). Mean absolute error between MR temperature measurements and fiber-optic temperature probes, used to validate the accuracy of MR temperature measurements, during heating was in the range of 0.5 – 2.8 °C. The mean DSC between model-predicted ablation zones and MRI-derived Arrhenius thermal damage maps for 13 experimental set-ups was 0.95. When comparing simulated and experimentally (i.e. using MRI) measured temperatures, the mean absolute error (MAE %) relative to maximum temperature change was in the range 5 % - 8.5 %

    Imaging and radiotherapy in prostate cancer: advances in biomarkers and treatment

    Get PDF

    Optical coherence tomography for the assessment of coronary atherosclerosis and vessel response after stent implantation

    Get PDF
    Optical Coherence Tomography (OCT) is a light-based imaging modality that can provide in vivo high-resolution images of the coronary artery with a level of resolution (axial 10-20 µm) ten times higher than intravascular ultrasound. The technique, uses low-coherent near infrarred light to create high-resolution cross sectional images of the vessel. The technology refinement achieved in the last years has made this imaging modality less procedurally demanding opening its possibilities for clinical use. The present thesis provides im

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery
    corecore