24 research outputs found

    Laser-plasma interactions with a Fourier-Bessel Particle-in-Cell method

    Full text link
    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods that are commonly used in PIC, the developed method does not produce numerical dispersion, and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.Comment: submitted to Phys. Plasma

    Diagnosing numerical Cherenkov instabilities in relativistic plasma simulations based on general meshes

    Full text link
    Numerical Cherenkov radiation (NCR) or instability is a detrimental effect frequently found in electromagnetic particle-in-cell (EM-PIC) simulations involving relativistic plasma beams. NCR is caused by spurious coupling between electromagnetic-field modes and multiple beam resonances. This coupling may result from the slow down of poorly-resolved waves due to numerical (grid) dispersion and from aliasing mechanisms. NCR has been studied in the past for finite-difference-based EM-PIC algorithms on regular (structured) meshes with rectangular elements. In this work, we extend the analysis of NCR to finite-element-based EM-PIC algorithms implemented on unstructured meshes. The influence of different mesh element shapes and mesh layouts on NCR is studied. Analytic predictions are compared against results from finite-element-based EM-PIC simulations of relativistic plasma beams on various mesh types.Comment: 31 pages, 20 figure
    corecore