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the ultra-relativistic regime in particular, where the numerical Cherenkov instability is the 
strongest without corrective measures.
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1. Introduction

Computer simulations of self-consistent electromagnetics and relativistic particle kinetics are critical to the design and 
understanding of particle accelerators, laser–plasma interaction, fusion or plasma experiments and to the study of space 
plasmas. For such simulations, the most popular algorithm is the Particle-In-Cell (or PIC) technique, which represents elec-
tromagnetic fields on a grid and particles by a sample of macroparticles. In Section 2 of this paper, we review the standard 
methods employed in relativistic electromagnetic PIC codes, as well as novel techniques that were introduced recently in 
the code Warp [1,2]. Recent advances in the analysis and mitigation of the numerical Cherenkov instability are presented in 
Section 3, with comparison between analytical theory and numerical experiments using Warp.

2. Particle-In-Cell main steps

In the electromagnetic Particle-In-Cell method [3], the electromagnetic fields are solved on a grid, usually using Maxwell’s 
equations

∂B

∂t
= −∇ × E (1)

∂E

∂t
= ∇ × B − J (2)

∇ · E = ρ (3)

∇ · B = 0 (4)
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Fig. 1. Layout of field components on the staggered “Yee” grid. Charge density is defined at the nodes, current densities and electric fields on the edges of 
the cells and magnetic fields on the faces.

given here in natural units (ε0 = μ0 = c = 1), where t is time, E and B are the electric and magnetic field components, 
and ρ and J are the charge and current densities. The charged particles are advanced in time using the Newton–Lorentz 
equations of motion

dx

dt
= v (5)

d(γ v)

dt
= q

m
(E + v × B) (6)

where m, q, x, v and γ = 1/
√

1 − v2 are respectively the mass, charge, position, velocity and relativistic factor of the particle 
given in natural units (c = 1). The charge and current densities are interpolated on the grid from the particles’ positions and 
velocities, while the electric and magnetic field components are interpolated from the grid to the particles’ positions for the 
velocity update.

2.1. Field solve

Various methods are available for solving Maxwell’s equations on a grid, based on finite-differences, finite-volume, finite-
element, spectral, or other discretization techniques that apply most commonly on single structured or unstructured meshes 
and less commonly on multiblock multiresolution grid structures. In this paper, we summarize the widespread second order 
Finite-Difference Time-Domain (FDTD) algorithm, its extension to non-standard finite-differences as well as the Pseudo-
Spectral Analytical Time-Domain (PSATD) and Pseudo-Spectral Time-Domain (PSTD) algorithms. Extension to multiresolution 
(or mesh refinement) PIC is described in, e.g. [2,4].

2.1.1. Finite-Difference Time-Domain (FDTD)
The most popular algorithm for electromagnetic PIC codes is the Finite-Difference Time-Domain (or FDTD) solver

DtB = −∇ × E (7)

DtE = ∇ × B − J (8)

[∇ · E = ρ] (9)

[∇ · B = 0] (10)

The differential operator is defined as ∇ = Dxx̂ + D y ŷ + Dz ẑ and the finite difference operators in time and space are 
defined respectively as Dt G|ni, j,k = (G|n+1/2

i, j,k − G|n−1/2
i, j,k )/�t and DxG|ni, j,k = (G|ni+1/2, j,k − G|ni−1/2, j,k)/�x, where �t and �x

are respectively the time step and the grid cell size along x, n is the time index and i, j and k are the spatial indices 
along x, y and z respectively. The difference operators along y and z are obtained by circular permutation. The equations 
in brackets are given for completeness, as they are often not actually solved, thanks to the usage of a so-called charge 
conserving algorithm, as explained below. As shown in Fig. 1, the quantities are given on a staggered (or “Yee”) grid [5], 
where the electric field components are located between nodes and the magnetic field components are located in the center 
of the cell faces.

2.1.2. Non-Standard Finite-Difference Time-Domain (NSFDTD)
In [6,7], Cole introduced an implementation of the source-free Maxwell’s wave equations for narrow-band applications 

based on Non-Standard Finite-Differences (NSFD). In [8], Karkkainen et al. adapted it for wideband applications. At the 
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Courant limit for the time step and for a given set of parameters, the stencil proposed in [8] has no numerical disper-
sion along the principal axes, provided that the cell size is the same along each dimension (i.e. cubic cells in 3D). The 
“Cole–Karkkainen” (or CK) solver uses the non-standard finite difference formulation (based on extended stencils) of the 
Maxwell–Ampère equation and was implemented in Warp as follows [9]:

DtB = −∇∗ × E (11)

DtE = ∇ × B − J (12)

[∇ · E = ρ] (13)[∇∗ · B = 0
]

(14)

Eqs. (13) and (14) are not being solved explicitly but verified via appropriate initial conditions and current deposition 
procedure. The NSFD differential operator is given by ∇∗ = D∗

x x̂+ D∗
y ŷ+ D∗

z ẑ, where D∗
x = (α+β S1

x +ξ S2
x)Dx with S1

x G|ni, j,k =
G|ni, j+1/2,k + G|ni, j−1/2,k + G|ni, j,k+1/2 + G|ni, j,k−1/2, S2

x G|ni, j,k = G|ni, j+1/2,k+1/2 + G|ni, j−1/2,k+1/2 + G|ni, j+1/2,k−1/2 + G|ni, j−1/2,k−1/2. 
G is a sample vector component, while α, β and ξ are constant scalars satisfying α + 4β + 4ξ = 1. As with the FDTD 
algorithm, the quantities with half-integer are located between the nodes (electric field components) or in the center of the 
cell faces (magnetic field components). The operators along y and z, i.e. D y , Dz , D∗

y , D∗
z , S1

y , S1
z , S2

y , and S2
z , are obtained 

by circular permutation of the indices.
Assuming cubic cells (�x = �y = �z), the coefficients given in [8] (α = 7/12, β = 1/12 and ξ = 1/48) allow for the 

Courant condition to be at �t = �x, which equates to having no numerical dispersion along the principal axes. The algo-
rithm reduces to the FDTD algorithm with α = 1 and β = ξ = 0. An extension to non-cubic cells is provided by Cowan, et 
al. in 3-D in [10] and was given by Pukhov in 2-D in [11]. An alternative NSFDTD implementation is also given in [12].

As mentioned above, a key feature of the algorithms based on NSFDTD is that they enable the time step �t = �x
along one or more axes and no numerical dispersion along those axes. However, as shown in [9], an instability develops at 
the Nyquist wavelength at (or very near) such a timestep. It is also shown in the same paper that removing the Nyquist 
component in all the source terms using a bilinear filter (see description of the filter below) suppresses this instability.

2.1.3. Pseudo Spectral Analytical Time Domain (PSATD)
Maxwell’s equations in Fourier space are given by

∂ Ẽ

∂t
= i k × B̃ − J̃ (15)

∂B̃

∂t
= −i k × Ẽ (16)

[i k · Ẽ = ρ̃] (17)

[i k · B̃ = 0] (18)

where ã is the Fourier transform of the quantity a. As with the real space formulation, provided that the continuity equation 
∂ρ̃/∂t + i k · J̃ = 0 is satisfied, then the last two equations will automatically be satisfied at any time if satisfied initially and 
do not need to be explicitly integrated.

Decomposing the electric field and current between longitudinal and transverse components Ẽ = ẼL + ẼT = k̂(k̂ · Ẽ) − k̂ ×
k̂ × Ẽ and J̃ = J̃L + J̃T = k̂(k̂ · J̃) − k̂ × k̂ × J̃ gives

∂ ẼT

∂t
= i k × B̃ − J̃T (19)

∂ ẼL

∂t
= −J̃L (20)

∂B̃

∂t
= −ik × Ẽ (21)

with k̂ = k/k.
If the sources are assumed to be constant over a time interval �t , the system of equations is solvable analytically and is 

given by (see [13] for the original formulation and [14] for a more detailed derivation):

Ẽn+1
T = C Ẽn

T + i Sk̂ × B̃n − S

k
J̃n+1/2
T (22)

Ẽn+1
L = Ẽn

L − �t J̃n+1/2
L (23)

B̃n+1 = C B̃n − i Sk̂ × Ẽn + i
1 − C

k
k̂ × J̃n+1/2 (24)

with C = cos(k�t) and S = sin(k�t).
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Combining the transverse and longitudinal components, gives

Ẽn+1 = C Ẽn + i Sk̂ × B̃n − S

k
J̃n+1/2 + (1 − C)k̂

(
k̂ · Ẽn)

+ k̂
(
k̂ · J̃n+1/2)( S

k
− �t

)
(25)

B̃n+1 = C B̃n − i Sk̂ × Ẽn + i
1 − C

k
k̂ × J̃n+1/2 (26)

For fields generated by the source terms without the self-consistent dynamics of the charged particles, this algorithm is 
free of numerical dispersion and is not subject to a Courant condition. Furthermore, this solution is exact for any time step 
size subject to the assumption that the current source is constant over that time step.

As shown in [14], by expanding the coefficients Sh and Ch in Taylor series and keeping the leading terms, the PSATD 
formulation reduces to the better known pseudo-spectral time-domain (PSTD) formulation [15,16]:

Ẽn+1 = Ẽn + i�tk × B̃n+1/2 − �t J̃n+1/2 (27)

B̃n+3/2 = B̃n+1/2 − i�tk × Ẽn+1 (28)

The dispersion relation of the PSTD solver is given by sin(ω�t
2 ) = k�t

2 . In contrast to the PSATD solver, the PSTD solver is sub-

ject to numerical dispersion for a finite time step and to a Courant condition that is given by c�t ≤ 2/π
√

1
�x2 + 1

�y2 + 1
�x2 .

The PSATD and PSTD formulations that were just given apply to the field components located at the nodes of the grid. 
As noted in [17], they can also be easily recast on a staggered Yee grid by multiplication of the field components by the 
appropriate phase factors to shift them from the collocated to the staggered locations. The choice between a collocated and 
a staggered formulation is application-dependent.

2.2. Particle push

A centered finite-difference discretization of the Newton–Lorentz equations of motion is given by

xi+1 − xi

�t
= vi+1/2 (29)

γ i+1/2vi+1/2 − γ i−1/2vi−1/2

�t
= q

m

(
Ei + v̄i × Bi) (30)

In order to close the system, v̄i+1/2 must be expressed as a function of the other quantities.

2.2.1. Boris relativistic velocity rotation
The solution proposed by Boris [18] is given by

v̄i = γ i+1/2vi+1/2 + γ i−1/2vi−1/2

2γ̄ i
(31)

The system (30), (31) is solved very efficiently following Boris’ method, where the electric field push is decoupled from 
the magnetic push, avoiding having to solve explicitly for γ̄ i . Setting u = γ v, the velocity is updated using the following 
sequence:

u− = ui−1/2 + (q�t/2m)Ei (32)

u′ = u− + u− × t (33)

u+ = u− + u′ × 2t/
(
1 + t2) (34)

ui+1/2 = u+ + (q�t/2m)Ei (35)

where t = (q�t/2m)Bi/γ i−1/2 = (q�t/2m)Bi/γ i+1/2.

2.2.2. Lorentz-invariant formulation
It was shown in [19] that the Boris formulation is not Lorentz invariant and can lead to significant errors in the treatment 

of relativistic dynamics. A Lorentz invariant formulation is obtained by considering the following velocity average

v̄i = vi+1/2 + vi−1/2

2
(36)

This gives a system that is solvable analytically (see [19] for a detailed derivation), giving the following velocity update:
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u∗ = ui + q�t

m

(
Ei + vi−1/2

2
× Bi

)
(37)

ui+1/2 = [
u∗ + (

u∗ · t
)
t + u∗ × t

]
/
(
1 + t2) (38)

where t = τ/γ i+1/2, τ = (q�t/2m)Bi , γ i+1/2 =
√

σ + √
σ 2 + (τ 2 + w2), w = u∗ ·τ , σ = (γ ′2 −τ 2)/2 and γ ′ = √

1 + u∗2/c2. 
This Lorentz invariant formulation is particularly well suited for the modeling of ultra-relativistic charged particle beams, 
where the accurate account of the cancellation of the self-generated electric and magnetic fields is essential, as demon-
strated in [19].

2.3. Current deposition

The current densities are deposited on the computational grid from the particle position and velocities, employing splines 
of various orders [20].

In most applications, it is essential to prevent the accumulation of errors resulting from the violation of the discretized 
Gauss’ Law. This is accomplished by providing a method for depositing the current from the particles to the grid that 
preserves the discretized Gauss’ Law, or by providing a mechanism for “divergence cleaning” [3,21–24]. For the former, 
schemes which allow a deposition of the current that is exact when combined with the Yee solver is given in [25] for linear 
splines and in [26] for any order splines.

The NSFDTD formulations given above and in [11,10,12] apply to the Maxwell–Faraday equation, while the discretized 
Maxwell–Ampère equation uses the FDTD formulation. Consequently, the charge conserving algorithms developed for cur-
rent deposition [25,26] apply readily to those NSFDTD-based formulations. More details concerning those implementations, 
including the expressions for the numerical dispersion and Courant condition are given in [11,9,10] and [12].

In the case of the pseudospectral solvers, the current deposition algorithm generally does not satisfy the discretized 
continuity equation in Fourier space ρ̃n+1 = ρ̃n − i �tk · J̃n+1/2. In this case, a Boris correction [3] can be applied in k space 
in the form Ẽn+1

c = Ẽn+1 − (k · Ẽn+1 + i ρ̃n+1)k̂/k, where Ẽc is the corrected field. Alternatively, a correction to the current 
can be applied (with some similarity to the current deposition presented by Morse and Nielson in their potential-based 
model in [27]) using J̃n+1/2

c = J̃n+1/2 − [k · J̃n+1/2 − i (ρ̃n+1 − ρ̃n)/�t]k̂/k, where J̃c is the corrected current. In this case, the 
transverse component of the current is left untouched while the longitudinal component is effectively replaced by the one 
obtained from integration of the continuity equation, ensuring that the corrected current satisfies the continuity equation.

2.4. Field gather

In general, the field is gathered from the mesh onto the macroparticles using splines of the same order as for the current 
deposition S = (Sx, S y, Sz). Three variations are considered:

• “momentum conserving”: fields are interpolated from the grid nodes to the macroparticles using S = (Snx, Sny, Snz)

for all field components (if the fields are known at staggered positions, they are first interpolated to the nodes on an 
auxiliary grid),

• “energy conserving (or Galerkin)”: fields are interpolated from the staggered Yee grid to the macroparticles using 
(Snx−1, Sny, Snz) for Ex , (Snx, Sny−1, Snz) for E y , (Snx, Sny, Snz−1) for Ez , (Snx, Sny−1, Snz−1) for Bx , (Snx−1, Sny, Snz−1)

for B y and (Snx−1, Sny−1, Snz) for Bz (if the fields are known at the nodes, they are first interpolated to the staggered 
positions on an auxiliary grid),

• “uniform”: fields are interpolated directly form the Yee grid to the macroparticles using S = (Snx, Sny, Snz) for all field 
components (if the fields are known at the nodes, they are first interpolated to the staggered positions on an auxiliary 
grid).

As shown in [3,28,29], the momentum and energy conserving schemes conserve momentum and energy respectively at the 
limit of infinitesimal time steps and generally offer better conservation of the respective quantities for a finite time step. The 
uniform scheme does not conserve momentum or energy in the sense defined for the others but is given for completeness, 
as it has been shown to offer some interesting properties in the modeling of relativistically drifting plasmas, as explained 
below.

2.5. Filtering

It is common practice to apply digital filtering to the charge or current density in Particle-In-Cell simulations as a 
complement or an alternative to using higher order splines [3]. A commonly used filter in PIC simulations is the three 
points filter φf

j = αφ j + (1 − α)(φ j−1 + φ j+1)/2 where φf is the filtered quantity. This filter is called a bilinear filter when 
α = 0.5. Assuming φ = e jkx and φf = g(α, k)e jkx , the filter gain g is given as a function of the filtering coefficient α and 
the wavenumber k by g(α, k) = α + (1 − α) cos(k�x) ≈ 1 − (1 − α)

(k�x)2 + O (k4). The total attenuation G for n successive 
2
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applications of filters of coefficients α1...αn is given by G = ∏n
i=1 g(αi, k) ≈ 1 − (n −∑n

i=1 αi)
(k�x)2

2 + O (k4). A sharper cutoff 
in k space is provided by using αn = n − ∑n−1

i=1 αi , so that G ≈ 1 + O (k4). Such step is called a “compensation” step [3]. For 
the bilinear filter (α = 1/2), the compensation factor is αc = 2 − 1/2 = 3/2. For a succession of n applications of the bilinear 
factor, it is αc = n/2 + 1.

It is sometimes necessary to filter on a relatively wide band of wavelength, necessitating the application of a large 
number of passes of the bilinear filter or on the use of filters acting on many points. The former can become very intensive 
computationally while the latter is problematic for parallel computations using domain decomposition, as the footprint of 
the filter may eventually surpass the size of subdomains. A workaround is to use a combination of filters of limited footprint. 
A solution based on the combination of three point filters with various strides was proposed in [9] and operates as follows.

The bilinear filter provides complete suppression of the signal at the grid Nyquist wavelength (twice the grid cell size). 
Suppression of the signal at integer multiples of the Nyquist wavelength can be obtained by using a stride s in the filter 
φf

j = αφ j + (1 −α)(φ j−s +φ j+s)/2, for which the gain is given b g(α, k) = α+ (1 −α) cos(sk�x) ≈ 1 − (1 −α)
(sk�x)2

2 + O (k4). 
For a given stride, the gain is given by the gain of the bilinear filter shifted in k space, with the zero g = 0 shifted from the 
wavelength λ = 2/�x to λ = 2s/�x, with additional poles, as given by sk�x = arccos( α

α−1 ) (mod 2π). The resulting filter 
is pass band between the poles, but since the poles are spread at different integer values in k space, a wide band low pass 
filter can be constructed by combining filters using different strides. As shown in [9], the successive application of 4-passes 
+ compensation of filters with strides 1, 2 and 4 has a nearly equivalent fall-off in gain as 80 passes + compensation of 
a bilinear filter. Yet, the strided filter solution needs only 15 passes of a three-point filter, compared to 81 passes for an 
equivalent n-pass bilinear filter, yielding a gain of 5.4 in number of operations in favor of the combination of filters with 
stride. The width of the filter with stride 4 extends only on 9 points, compared to 81 points for a single pass equivalent 
filter, hence giving a gain of 9 in compactness for the stride filters combination in comparison to the single-pass filter with 
large stencil.

3. Numerical stability

The numerical Cherenkov instability [30] is the most serious numerical instability affecting multidimensional PIC simu-
lations of relativistic particle beams and streaming plasmas [9,31,32]. It arises from coupling between possibly numerically 
distorted electromagnetic modes and spurious beam modes, the latter due to the mismatch between the Lagrangian treat-
ment of particles and the Eulerian treatment of fields [33]. In recent papers we derived and solved electromagnetic 
dispersion relations for the numerical Cherenkov instability for both FDTD [34,35] and PSATD [36,37] algorithms, devel-
oped methods for significantly reducing growth rates, and successfully compared results with those of the Warp simulation 
code [1].

For either algorithm the dispersion relation can be written in the high energy limit as

C0 + n
∑
mz

C1 csc

[(
ω − k′

z

)�t

2

]
+ n

∑
mz

C2 csc2
[(

ω − k′
z

)�t

2

]
= 0 (39)

with coefficients C0, C1, C2 defined by Eqs. (29)–(31) of [34] for the FDTD algorithm and by Eqs. (40)–(42) of [36] for the 
PSATD algorithm. Numerical solutions of the complete dispersion relations indicate that Eq. (39) is quantitatively accurate 
for γ as small as 10 and qualitatively useful for γ as small as 3. At still lower beam energies, the well-known electrostatic 
numerical instability [38,39] dominates.

Eq. (39) involves sums over numerical aliases, k′
z = kz + mz 2π/�z, for wave numbers aligned with the direction, z, of 

beam propagation. In the limit of vanishingly small time-steps and cell-sizes, Eq. (39) simplifies to C0 = n, as expected, with 
n the beam density divided by γ (i.e., the density of the beam in its rest frame). Thus, all beam resonances in Eq. (39)
are numerical artifacts, even mz = 0. Fig. 2 depicts these and the vacuum electromagnetic modes (given by the roots of 
C0 = 0) for the FDTD and PSATD algorithms with n = 1, γ = 130, cell size �x = �z = 0.3868, time step v�t/�z = 0.9, and 
kx = π/2�x. The FDTD results are calculated for the Cole–Karkkainnen field solver [6–8], which relaxes the Courant time 
step limit to �t < �z. As already noted, the PSATD algorithm has no Courant limit as usually defined.

Not surprisingly, the numerical Cherenkov instability is fastest growing at resonances between the spurious beam modes 
and electromagnetic modes, such as those traced out in the left plot of Fig. 3 for the FDTD Galerkin cubic interpolation 
algorithm with the parameters from Fig. 2. The right plot shows the corresponding growth rates, computed numerically 
from the full linear dispersion relation, the determinant of the matrix in Eq. (11) of [34]. (The corresponding dispersion 
relation for the PSATD algorithm is given by Eq. (39) of [36].) The resonant instability scales roughly as the cube root of 
n C2/�t , evaluated at ω = k′

z v , and can be destructively fast. The non-resonant instability, on the other hand, scales roughly 
as the square root of n C2, again evaluated at ω = k′

z v . Although slower growing, it also is troublesome, because it can occur 
at smaller wave numbers, as is evident from the plot.

Numerical instability growth rates like those in Fig. 3 are unacceptably large. Growth rates can be reduced by using 
higher order current and field interpolation, by digital filtering (Section 2.5), and by numerical damping of the electro-
magnetic fields (numerical damping is not explored further in this paper, and the reader is referred to [40–42,9] for more 
information). Cubic interpolation, for instance, is effective at suppressing higher order modes of the numerical Cherenkov 
instability and, to a lesser extent, mz = 0, −1 modes. Digital filtering, on the other hand, effectively zeroes fields at large 
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Fig. 2. Normal mode diagrams for FDTD (left) and PSATD (right) algorithms with v�t/�z = 0.9 and γ = 130, showing numerically distorted (FDTD only) 
electromagnetic modes and spurious beam modes, mz = [−2, 2]. In both cases kx = π/2�x = 4.061.

Fig. 3. FDTD algorithm numerical Cherenkov instability resonances (left) and growth rates (right) for Galerkin linear interpolation.

wave numbers, eliminating resonant numerical Cherenkov instabilities there. The left plot in Fig. 4 shows the combined 
effects of cubic interpolation and digital filtering, in this case five passes of a bilinear filter (including one compensation 
step) applied to fields and currents, for both FDTD and PSATD algorithms. Growth rates are reduced by factors of four or 
more relative those in corresponding calculations employing linear interpolation and no filtering. Instability suppression is 
particularly effective for PSATD option (b) and for the reduced growth rate “magic times steps” of v�t/�z = 0.5 for the 
FDTD Uniform interpolation scheme and v�t/�z ≈ 0.69 for the FDTD Galerkin interpolation scheme.

The Galerkin interpolation “magic time step” first was observed in LPA simulations [9,32] and subsequently was explained 
analytically in [34]. It arises from approximate cancellation of the coefficients of Ex and B y in C2 for wave numbers near 
the dominant numerical Cherenkov resonance. The exact location of the “magic time step” depends on details of the field 
solver. In contrast, the Uniform interpolation “magic time step” was discovered analytically. It occurs, because C2 vanishes 
identically at v�t/�z = 0.5 in the high γ limit. One can concoct other, more complicated interpolation schemes with 
“magic time steps”, but the value of doing so seems small. Definitions of the three FDTD interpolation schemes discussed 
here were provided in Section 2.4 and also can be found in [34,35], and of PSATD variants (a) and (b) of the Esirkepov 
current conservation algorithm [43] in [44,36].

The numerical Cherenkov instability can be viewed as the result of numerically induced mismatches between transverse 
fields as seen by the particles or, more or less equivalently, by mismatches between transverse currents and charge density. 
Correcting those mismatches, at least as they occur in coefficient C2 at large γ , can in principle make every value of �t a 
“magic time step”. A plethora of approaches are provided in [36,37], from which PSATD options (b1) and (b2) of the second 
reference are presented here. Option (b1) adjusts the ratio Ex/B y as seen by the particles so that C2 vanishes analytically for 
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Fig. 4. FDTD and PSATD numerical instability maximum growth rates observed in WARP and calculated from dispersion relations for (left) cubic interpolation 
and digital filtering, and for (right) cubic interpolation and adjustments to the C2 dispersion relation term (except “PSATD b2”, as explained in the text).

v = 1. The resulting growth rates, shown as curve “PSATD b1, α = 0.6” in the right plot of Fig. 4, are significantly reduced 
relative to corresponding curves in the left plot, especially for v�t/�z > 1. In fact, the residual growth at v�t/�z > 1
scales roughly as 1/γ , although higher order numerical modes also play a role. Note that the simulations and linear analysis 
producing this curve do not employ bilinear digital filtering but instead a less aggressive sharp cutoff at α min[ π

v �t , 
π
�z ], 

with α = 0.6. This value of α is chosen to minimize the effect of the mz = −1 mode, as well as of a not yet fully understood 
weak instability at small kx and intermediate kz . For completeness, curve “PSATD b2, α = 0.6” also is displayed. It sets to 
zero the C3x coefficient of Eq. (39) in [36].

Implementing these and other schemes in the PSATD algorithm is straightforward, because currents and fields are known 
in k-space. Analogous schemes can be implemented readily in the FDTD algorithm, if one is willing to transform currents 
and fields to k-space. But, one would then be better off to use the PSATD algorithm throughout, because it is more accurate 
and often less unstable. It is, however, possible to set C2 approximately equal to zero (accurate to six significant figures) by 
approximating the desired Ex/B y ratio with a fourth-order rational interpolation function, as described in [35]. Results for 
the three FDTD algorithms also are displayed in Fig. 4 (left). Here, the C2 ≈ 0 scheme is employed along with three passes 
of the bilinear filter (including one compensation step). All five schemes depicted in the right plot of Fig. 4 yield instability 
growth rates so small that they are negligible for most purposes. Software to calculate the rational interpolation coefficients, 
as well as the phase diagrams in Fig. 2 and the resonance curves in the left plot of Fig. 3, are available in Computable Doc-
ument Format [45] at http :/ /hifweb .lbl .gov /public /BLAST /Godfrey/. The extensive analyses involved in deriving and solving 
the dispersion relations discussed in this section were performed with Mathematica [46].

4. Conclusion

Recent algorithmic and numerical analytic advances are expanding the range of applicability of the Particle-In-Cell model-
ing of relativistic particle beams and plasmas. This is especially relevant in the ultra-relativistic regime, where the numerical 
Cherenkov instability is the strongest without corrective measures. The modeling of relativistic plasma has many important 
applications in the areas of beams and plasma sciences that will benefit from the recent advances and the ongoing efforts 
toward further improvements.
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