8,005 research outputs found

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    User-Centered CASE Tools for User-Centered Information Systems

    Get PDF
    The goal of this research is to design and evaluate a new generation of CASE tools, capable of clearly supporting all the styles of work adopted by teams of developers and capable of promoting Usability concerns to Informa tion Systems building. Our research approach is based on (a) creating usable and effective models of the developers behavior, and (b) building innovative, unconstrained collaborative prototypes that allow co-authoring of models by all stakeholders involved (programmers, marketers and interaction designers).info:eu-repo/semantics/publishedVersio

    The WOZ Recognizer: A Tool For Understanding User Perceptions of Sketch-Based Interfaces

    Get PDF
    Sketch recognition has the potential to be an important input method for computers in the coming years; however, designing and building an accurate and sophisticated sketch recognition system is a time consuming and daunting task. Since sketch recognition is still at a level where mistakes are common, it is important to understand how users perceive and tolerate recognition errors and other user interface elements with these imperfect systems. A problem in performing this type of research is that we cannot easily control aspects of recognition in order to rigorously study the systems. We performed a study examining user perceptions of three pen-based systems for creating logic gate diagrams: a sketch-based interface, a WIMP-based interface, and a hybrid interface that combined elements of sketching and WIMP. We found that users preferred the sketch-based interface and we identified important criteria for pen-based application design. This work exposed the issue of studying recognition systems without fine-grained control over accuracy, recognition mode, and other recognizer properties. In order to solve this problem, we developed a Wizard of Oz sketch recognition tool, the WOZ Recognizer, that supports controlled symbol and position accuracy and batch and streaming recognition modes for a variety of sketching domains. We present the design of the WOZ Recognizer, modeling recognition domains using graphs, symbol alphabets, and grammars; and discuss the types of recognition errors we included in its design. Further, we discuss how the WOZ Recognizer simulates sketch recognition, controlling the WOZ Recognizer, and how users interact with it. In addition, we present an evaluative user study of the WOZ Recognizer and the lessons we learned. We have used the WOZ Recognizer to perform two user studies examining user perceptions of sketch recognition; both studies focused on mathematical sketching. In the first study, we examined whether users prefer recognition feedback now (real-time recognition) or later (batch recognition) in relation to different recognition accuracies and sketch complexities. We found that participants displayed a preference for real-time recognition in some situations (multiple expressions, low accuracy), but no statistical preference in others. In our second study, we examined whether users displayed a greater tolerance for recognition errors when they used mathematical sketching applications they found interesting or useful compared to applications they found less interesting. Participants felt they had a greater tolerance for the applications they preferred, although our statistical analysis did not positively support this. In addition to the research already performed, we propose several avenues for future research into user perceptions of sketch recognition that we believe will be of value to sketch recognizer researchers and application designers

    The Unsupervised Acquisition of a Lexicon from Continuous Speech

    Get PDF
    We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech stream is modeled using features based on articulatory gestures. We present results on the acquisition of lexicons and language models from raw speech, text, and phonetic transcripts, and demonstrate that our algorithm compares very favorably to other reported results with respect to segmentation performance and statistical efficiency.Comment: 27 page technical repor

    Scones: Towards Conversational Authoring of Sketches

    Full text link
    Iteratively refining and critiquing sketches are crucial steps to developing effective designs. We introduce Scones, a mixed-initiative, machine-learning-driven system that enables users to iteratively author sketches from text instructions. Scones is a novel deep-learning-based system that iteratively generates scenes of sketched objects composed with semantic specifications from natural language. Scones exceeds state-of-the-art performance on a text-based scene modification task, and introduces a mask-conditioned sketching model that can generate sketches with poses specified by high-level scene information. In an exploratory user evaluation of Scones, participants reported enjoying an iterative drawing task with Scones, and suggested additional features for further applications. We believe Scones is an early step towards automated, intelligent systems that support human-in-the-loop applications for communicating ideas through sketching in art and design.Comment: Long Paper, IUI '20: Proceedings of the 25th International Conference on Intelligent User Interface
    corecore