703 research outputs found

    Context-adaptive learning designs by using semantic web services

    Get PDF
    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources - whether data or services - within the learning design is done manually at design-time on the basis of the subjective appraisals of a learning designer. Since the actual learning context is known at runtime only, IMS-LD applications cannot adapt to a specific context or learner. Therefore, the reusability is limited and high development costs have to be taken into account to support a variety of contexts. To overcome these issues, we propose a highly dynamic approach based on Semantic Web Services (SWS) technology. Our aim is moving from the current data- and metadata-based to a context-adaptive service-orientated paradigm We introduce semantic descriptions of a learning process in terms of user objectives (learning goals) to abstract from any specific metadata standards and used learning resources. At runtime, learning goals are accomplished by automatically selecting and invoking the services that fit the actual user needs and process contexts. As a result, we obtain a dynamic adaptation to different contexts at runtime. Semantic mappings from our standard-independent process models will enable the automatic development of versatile, reusable IMS-LD applications as well as the reusability across multiple metadata standards. To illustrate our approach, we describe a prototype application based on our principles

    Content-driven design and architecture of E-learning applications

    Get PDF
    E-learning applications combine content with learning technology systems to support the creation of content and its delivery to the learner. In the future, we can expect the distinction between learning content and its supporting infrastructure to become blurred. Content objects will interact with infrastructure services as independent objects. Our solution to the development of e-learning applications – content-driven design and architecture – is based on content-centric ontological modelling and development of architectures. Knowledge and modelling will play an important role in the development of content and architectures. Our approach integrates content with interaction (in technical and educational terms) and services (the principle organization for a system architecture), based on techniques from different fields, including software engineering, learning design, and knowledge engineering

    Migrating existing multimedia courseware to Moodle

    Get PDF
    Open source course management systems offer increased flexibility for instructors and instructional designers. Communities can influence the development of these systems and on an individual basis, the possibility to modify the system software exists. Migrating existing courseware to these systems can therefore be beneficial, sometimes even required. We report here about our experience in migrating an existing courseware system consisting of multimedia content and interactive, integrated infrastructure functionality to an open source course management system called Moodle. We will assess the difficulties that we have encountered during this process and, discuss the importance of standards in this context, and we aim to provide other instructors or instructional designers with guidelines and assessment support for other migration projects

    Learning objects and learning designs: an integrated system for reusable, adaptive and shareable learning content

    Get PDF
    This paper proposes a system, the Smart Learning Design Framework, designed to support the development of pedagogically sound learning material within an integrated, platform-independent data structure. The system supports sharing, reuse and adaptation of learning material via a metadata-driven philosophy that enables the technicalities of the system to be imperceptible to the author and consumer. The system proposes the use of pedagogically focused metadata to support and guide the author and to adapt and deliver the content to the targeted consumer. A prototype of the proposed system, which provides proof of concept for the novel processes involved, has been developed. The paper describes the Smart Learning Design Framework and places it within the context of alternative learning object models and frameworks to highlight similarities, differences and advantages of the proposed system

    Interoperability Between ELearning Systems

    Get PDF
    Online assessments are an integral part of eLearning systems that enhance both distance and continuous education. Although over two-hundred and fifty eLearning applications exist, most educational institutions are trapped with a particular vendor primarily due to lack of in test-question sharing features. This paper highlights the evolution of eLearning systems whilst detailing the two most prominent objective test question standards, namely, QML and QTI. An analysis conducted amongst software houses which are involved in the development of eLearning systems confirms the fact that most applications make use of proprietary formats and clearly shows a lack of import and export options amongst other features

    Systematic development of courseware systems

    Get PDF
    Various difficulties have been reported in relation to the development of courseware systems. A central problem is to address the needs of not only the learner, but also instructor, developer, and other stakeholders, and to integrate these different needs. Another problem area is courseware architectures, to which much work has been dedicated recently. We present a systematic approach to courseware development – a methodology for courseware engineering – that addresses these problems. This methodology is rooted in the educational domain and is based on methods for software development in this context. We illustrate how this methodology can improve the quality of courseware systems and the development process

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap
    corecore