5 research outputs found

    A service to automate the task assignment process in YAWL

    Get PDF
    Master of ScienceDepartment of Computing and Information SciencesGurdip SinghDeveloping an optimal working environment and managing the of work load in an efficient manner are the major challenges for most businesses today. So, the importance of the workflow and workflow management in an organization is unquestionable. Many organizations use sophisticated systems to organize the workflows. One such workflow system based on a concise and powerful modeling language called “Yet Another Workflow Language” is YAWL. YAWL handles complex data, transformations, integration with organizational resources and Web Service integration. Workflow comprises of three main perspectives: control-flow, data and the resources. In Yawl, the control-flow and the data-flow are tightly coupled within the workflow enactment engine. But the resource perspective is provided by a discrete custom service called Resource Service. Administrative tools are provided using which the administrator has to manually select the resource (referred as participant) which needs to perform a particular task of the workflow. This project aims at developing a service which can automate the assignment of the tasks to the participants by using the Resource service which provides number of interfaces that expose the full functionality of the service. The application of this project with respect to Healthcare domain is presented. Healthcare domain is the one of the most demanding and yet critical business process. Hospitals face increasing pressure to both improve the quality of the services delivered to patients and to reduce costs .Hence there is significant demand on hospitals in regard to how the organization, execution, and monitoring of work processes is performed. Workflow Management Systems like YAWL offers a potential solution as they support processes by managing the flow of work

    An Optimisation-based Framework for Complex Business Process: Healthcare Application

    Get PDF
    The Irish healthcare system is currently facing major pressures due to rising demand, caused by population growth, ageing and high expectations of service quality. This pressure on the Irish healthcare system creates a need for support from research institutions in dealing with decision areas such as resource allocation and performance measurement. While approaches such as modelling, simulation, multi-criteria decision analysis, performance management, and optimisation can – when applied skilfully – improve healthcare performance, they represent just one part of the solution. Accordingly, to achieve significant and sustainable performance, this research aims to develop a practical, yet effective, optimisation-based framework for managing complex processes in the healthcare domain. Through an extensive review of the literature on the aforementioned solution techniques, limitations of using each technique on its own are identified in order to define a practical integrated approach toward developing the proposed framework. During the framework validation phase, real-time strategies have to be optimised to solve Emergency Department performance issues in a major hospital. Results show a potential of significant reduction in patients average length of stay (i.e. 48% of average patient throughput time) whilst reducing the over-reliance on overstretched nursing resources, that resulted in an increase of staff utilisation between 7% and 10%. Given the high uncertainty in healthcare service demand, using the integrated framework allows decision makers to find optimal staff schedules that improve emergency department performance. The proposed optimum staff schedule reduces the average waiting time of patients by 57% and also contributes to reduce number of patients left without treatment to 8% instead of 17%. The developed framework has been implemented by the hospital partner with a high level of success

    Supporting healthcare processes with YAWL4Healthcare

    No full text
    In healthcare, processes concerning the diagnosis and treatment of patients can be best characterized as weakly-connected inter-acting light-weight work ows where tasks reside at different levels of granularity. Moreover, in hospitals many workitems are linked with appointments. To date, Work ow Management Systems (WfMSs) fall short in supporting healthcare processes as no scheduling support and inter-work ow support is offered. To address these problems, we present the YAWL4Healthcare WfMS which supports the seamless integration of unscheduled (flow) and scheduled (schedule) tasks and which allows for dividing complex entangled processes into simple autonomous fragments that may cope with different levels of granularity. Note that our system has been realized by adding significant extensions to the open-source YAWL WfMS
    corecore