444 research outputs found

    Collaborative video searching on a tabletop

    Get PDF
    Almost all system and application design for multimedia systems is based around a single user working in isolation to perform some task yet much of the work for which we use computers to help us, is based on working collaboratively with colleagues. Groupware systems do support user collaboration but typically this is supported through software and users still physically work independently. Tabletop systems, such as the DiamondTouch from MERL, are interface devices which support direct user collaboration on a tabletop. When a tabletop is used as the interface for a multimedia system, such as a video search system, then this kind of direct collaboration raises many questions for system design. In this paper we present a tabletop system for supporting a pair of users in a video search task and we evaluate the system not only in terms of search performance but also in terms of user–user interaction and how different user personalities within each pair of searchers impacts search performance and user interaction. Incorporating the user into the system evaluation as we have done here reveals several interesting results and has important ramifications for the design of a multimedia search system

    Establishing the design knowledge for emerging interaction platforms

    Get PDF
    While awaiting a variety of innovative interactive products and services to appear in the market in the near future such as interactive tabletops, interactive TVs, public multi-touch walls, and other embedded appliances, this paper calls for preparation for the arrival of such interactive platforms based on their interactivity. We advocate studying, understanding and establishing the foundation for interaction characteristics and affordances and design implications for these platforms which we know will soon emerge and penetrate our everyday lives. We review some of the archetypal interaction platform categories of the future and highlight the current status of the design knowledge-base accumulated to date and the current rate of growth for each of these. We use example designs illustrating design issues and considerations based on the authors’ 12-year experience in pioneering novel applications in various forms and styles

    When the fingers do the talking: A study of group participation for different kinds of shareable surfaces

    Get PDF
    and other research outputs When the fingers do the talking: A study of group par-ticipation for different kinds of shareable surface

    Space for Two to Think: Large, High-Resolution Displays for Co-located Collaborative Sensemaking

    Get PDF
    Large, high-resolution displays carry the potential to enhance single display groupware collaborative sensemaking for intelligence analysis tasks by providing space for common ground to develop, but it is up to the visual analytics tools to utilize this space effectively. In an exploratory study, we compared two tools (Jigsaw and a document viewer), which were adapted to support multiple input devices, to observe how the large display space was used in establishing and maintaining common ground during an intelligence analysis scenario using 50 textual documents. We discuss the spatial strategies employed by the pairs of participants, which were largely dependent on tool type (data-centric or function-centric), as well as how different visual analytics tools used collaboratively on large, high-resolution displays impact common ground in both process and solution. Using these findings, we suggest design considerations to enable future co-located collaborative sensemaking tools to take advantage of the benefits of collaborating on large, high-resolution displays

    FĂ­schlĂĄr-DiamondTouch: collaborative video searching on a table

    Get PDF
    In this paper we present the system we have developed for our participation in the annual TRECVid benchmarking activity, specically the system we have developed, FĂ­schlĂĄr-DT, for participation in the interactive search task of TRECVid 2005. Our back-end search engine uses a combination of a text search which operates over the automatic speech recognised text, and an image search which uses low-level image features matched against video keyframes. The two novel aspects of our work are the fact that we are evaluating collaborative, team-based search among groups of users working together, and that we are using a novel touch-sensitive tabletop interface and interaction device known as the DiamondTouch to support this collaborative search. The paper summarises the backend search systems as well as presenting the interface we have developed, in detail

    Performance of grassed swale as stormwater quantity control in lowland area

    Get PDF
    Grassed swale is a vegetated open channel designed to attenuate stormwater through infiltration and conveying runoff into nearby water bodies, thus reduces peak flows and minimizes the causes of flood. UTHM is a flood-prone area due to located in lowland area, has high groundwater level and low infiltration rates. The aim of this study is to assess the performance of grassed swale as a stormwater quantity control in UTHM. Flow depths and velocities of swales were measured according to Six-Tenths Depth Method shortly after a rainfall event. Flow discharges of swales (Qswale) were evaluated by Mean- Section Method to determine the variations of Manning’s roughness coefficients (ncalculate) that results between 0.075 – 0.122 due to tall grass and irregularity of channels. Based on the values of Qswale between sections of swales, the percentages of flow attenuation are up to 54%. As for the flow conveyance of swales, Qswale were determined by Manning’s equation that divided into Qcalculate, evaluated using ncalculate, and Qdesign, evaluated using roughness coefficient recommended by MSMA (ndesign), to compare with flow discharges of drainage areas (Qpeak), evaluated by Rational Method with 10-year ARI. Each site of study has shown Qdesign is greater than Qpeak up to 59%. However, Qcalculate is greater than Qpeak only at a certain site of study up to 14%. The values of Qdesign also greater than Qcalculate up to 52% where it shows that the roughness coefficients as considered in MSMA are providing a better performance of swale. This study also found that the characteristics of the studied swales are comparable to the design consideration by MSMA. Based on these findings, grassed swale has the potential in collecting, attenuating, and conveying stormwater, which suitable to be applied as one of the best management practices in preventing flash flood at UTHM campus

    Combining relevance information in a synchronous collaborative information retrieval environment

    Get PDF
    Traditionally information retrieval (IR) research has focussed on a single user interaction modality, where a user searches to satisfy an information need. Recent advances in both web technologies, such as the sociable web of Web 2.0, and computer hardware, such as tabletop interface devices, have enabled multiple users to collaborate on many computer-related tasks. Due to these advances there is an increasing need to support two or more users searching together at the same time, in order to satisfy a shared information need, which we refer to as Synchronous Collaborative Information Retrieval. Synchronous Collaborative Information Retrieval (SCIR) represents a significant paradigmatic shift from traditional IR systems. In order to support an effective SCIR search, new techniques are required to coordinate users' activities. In this chapter we explore the effectiveness of a sharing of knowledge policy on a collaborating group. Sharing of knowledge refers to the process of passing relevance information across users, if one user finds items of relevance to the search task then the group should benefit in the form of improved ranked lists returned to each searcher. In order to evaluate the proposed techniques we simulate two users searching together through an incremental feedback system. The simulation assumes that users decide on an initial query with which to begin the collaborative search and proceed through the search by providing relevance judgments to the system and receiving a new ranked list. In order to populate these simulations we extract data from the interaction logs of various experimental IR systems from previous Text REtrieval Conference (TREC) workshops

    Using natural user interfaces to support synchronous distributed collaborative work

    Get PDF
    Synchronous Distributed Collaborative Work (SDCW) occurs when group members work together at the same time from different places together to achieve a common goal. Effective SDCW requires good communication, continuous coordination and shared information among group members. SDCW is possible because of groupware, a class of computer software systems that supports group work. Shared-workspace groupware systems are systems that provide a common workspace that aims to replicate aspects of a physical workspace that is shared among group members in a co-located environment. Shared-workspace groupware systems have failed to provide the same degree of coordination and awareness among distributed group members that exists in co-located groups owing to unintuitive interaction techniques that these systems have incorporated. Natural User Interfaces (NUIs) focus on reusing natural human abilities such as touch, speech, gestures and proximity awareness to allow intuitive human-computer interaction. These interaction techniques could provide solutions to the existing issues of groupware systems by breaking down the barrier between people and technology created by the interaction techniques currently utilised. The aim of this research was to investigate how NUI interaction techniques could be used to effectively support SDCW. An architecture for such a shared-workspace groupware system was proposed and a prototype, called GroupAware, was designed and developed based on this architecture. GroupAware allows multiple users from distributed locations to simultaneously view and annotate text documents, and create graphic designs in a shared workspace. Documents are represented as visual objects that can be manipulated through touch gestures. Group coordination and awareness is maintained through document updates via immediate workspace synchronization, user action tracking via user labels and user availability identification via basic proxemic interaction. Members can effectively communicate via audio and video conferencing. A user study was conducted to evaluate GroupAware and determine whether NUI interaction techniques effectively supported SDCW. Ten groups of three members each participated in the study. High levels of performance, user satisfaction and collaboration demonstrated that GroupAware was an effective groupware system that was easy to learn and use, and effectively supported group work in terms of communication, coordination and information sharing. Participants gave highly positive comments about the system that further supported the results. The successful implementation of GroupAware and the positive results obtained from the user evaluation provides evidence that NUI interaction techniques can effectively support SDCW
    • 

    corecore