7,266 research outputs found

    On Using a Support Vector Machine in Learning Feed-Forward Control

    Get PDF
    For mechatronic motion systems, the performance increases significantly if, besides feedback control, also feed-forward control is used. This feed-forward part should contain the (stable part of the) inverse of the plant. This inverse is difficult to obtain if non-linear dynamics are present. To overcome this problem, learning feed-forward control can be applied. The properties of the learning mechanism are of importance in this setting. In the paper, a support vector machine is proposed as the learning mechanism. It is shown that this mechanism has several advantages over other learning techniques when applied to learning feed-forward control. The method is tested with simulation

    Artificial intelligent based friction modelling and compensation in motion control system

    Get PDF
    The interest in the study of friction in control engineering has been driven by the need for 10 precise motion control in most of industrial applications such as machine tools, robot 11 systems, semiconductor manufacturing systems and Mechatronics systems. Friction has 12 been experimentally shown to be a major factor in performance degradation in various 13 control tasks. Among the prominent effects of friction in motion control are: steady state 14 error to a reference command, slow response, periodic process of sticking and sliding (stick-15 slip) motion, as well as periodic oscillations about a reference point known as hunting when 16 an integral control is employed in the control scheme. Table 1 shows the effects and type of 17 friction as highlighted by Armstrong et. al.(1994). It is observed that, each of task is 18 dominated by at least one friction effect ranging from stiction, or/and kinetic to negative 19 friction (Stribeck). Hence, the need for accurate compensation of friction has become 20 important in high precision motion control. Several techniques to alleviate the effects of 21 friction have been reported in the literature (Dupont and Armstrong, 1993; Wahyudi, 2003; 22 Tjahjowidodo, 2004; Canudas, et. al., 1986). 23 One of the successful methods is the well-known model-based friction compensation 24 (Armstrong et al., 1994; Canudas de Wit et al., 1995 and Wen-Fang, 2007). In this method, 25 the effect of the friction is cancelled by applying additional control signal which generates a 26 torque/force. The generated torque/force has the same value (or approximately the same) 27 with the friction torque/force but in opposite direction

    Modelling and identification of a six axes industrial robot

    Get PDF
    This paper deals with the modelling and identification of a six axes industrial St ĀØaubli RX90 robot. A non-linear finite element method is used to generate the dynamic equations of motion in a form suitable for both simulation and identification. The latter requires that the equations of motion are linear in the inertia parameters. Joint friction is described by a friction model that describes the friction behaviour in the full velocity range necessary for identification. Experimental parameter identification by means of linear least squares techniques showed to be very suited for identification of the unknown parameters, provided that the problem is properly scaled and that the influence of disturbances is sufficiently analysed and managed. An analysis of the least squares problem by means of a singular value decomposition is preferred as it not only solves the problem of rank deficiency, but it also can correctly deal with measurement noise and unmodelled dynamics

    Cooperative Object Manipulation with Force Tracking on the da Vinci Research Kit

    Get PDF
    The da Vinci Surgical System is one of the most established robot-assisted surgery device commended for its dexterity and ergonomics in minimally invasive surgery. Conversely, it inherits disadvantages which are lack of autonomy and haptic feedback. In order to address these issues, this work proposes an industry-inspired solution to the field of force control in medical robotics. This approach contributes to shared autonomy by developing a controller for cooperative object manipulation with force tracking utilizing available manipulators and force feedback. To achieve simultaneous position and force tracking of the object, master and slave manipulators were assigned then controlled with Cartesian position control and impedance control respectively. Because impedance control requires a model-based feedforward compensation, we identified the lumped base parameters of mass, inertias, and frictions of a three degree-of-freedom double four-bar linkage mechanism with least squares and weighted least squares regression methods. Additionally, semidefinite programming was used to constrain the parameters to a feasible physical solution in standard parameter space. Robust stick-slip static friction compensation was applied where linear Viscous and Coulomb friction was inadequate in modeling the prismatic third joint. The Robot Operating System based controller was tested in RViz to check the cooperative kinematics of up to three manipulators. Additionally, simulation with the dynamic engine Gazebo verified the cooperative controller applying a constant tension force on a massless spring-damper virtual object. With adequate model feedback linearization, the cooperative impedance controller tested on the da Vinci Research Kit yielded stable tension force tracking while simultaneously moving in Cartesian space. The maximum force tracking error was +/- 0.5 N for both a compliant and stiff manipulated object

    Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation

    Get PDF
    A generic computer simulation for manipulator systems (ROBSIM) was implemented and the specific technologies necessary to increase the role of automation in various missions were developed. The specific items developed are: (1) capability for definition of a manipulator system consisting of multiple arms, load objects, and an environment; (2) capability for kinematic analysis, requirements analysis, and response simulation of manipulator motion; (3) postprocessing options such as graphic replay of simulated motion and manipulator parameter plotting; (4) investigation and simulation of various control methods including manual force/torque and active compliances control; (5) evaluation and implementation of three obstacle avoidance methods; (6) video simulation and edge detection; and (7) software simulation validation

    Control strategies for robotic manipulators

    Get PDF
    This survey is aimed at presenting the major robust control strategies for rigid robot manipulators. The techniques discussed are feedback linearization/Computed torque control, Variable structure compensator, Passivity based approach and Disturbance observer based control. The first one is based on complete dynamic model of a robot. It results in simple linear control which offers guaranteed stability. Variable structure compensator uses a switching/relay action to overcome dynamic uncertainties and disturbances. Passivity based controller make use of passive structure of a robot. If passivity of a feedback system is proved, nonlinearities and uncertainties will not affect the stability. Disturbance observer based controllers estimate disturbances, which can be cancelled out to achieve a nominal model, for which a simple controller can then be designed. This paper, after explaining each control strategy in detail, finally compares these strategies for their pros and cons. Possible solutions to cope with the drawbacks have also been presented in tabular form. Ā© 2012 IEEE

    Stepwise Model Reconstruction of Robotic Manipulator Based on Data-Driven Method

    Full text link
    Research on dynamics of robotic manipulators provides promising support for model-based control. In general, rigorous first-principles-based dynamics modeling and accurate identification of mechanism parameters are critical to achieving high precision in model-based control, while data-driven model reconstruction provides alternative approaches of the above process. Taking the level of activation of data as an indicator, this paper classifies the collected robotic manipulator data by means of K-means clustering algorithm. With the fundamental prior knowledge, we find the corresponding dynamical properties behind the classified data separately. Afterwards, the sparse identification of nonlinear dynamics (SINDy) method is used to reconstruct the dynamics model of the robotic manipulator step by step according to the activation level of the classified data. The simulation results show that the proposed method not only reduces the complexity of the basis function library, enabling the application of SINDy method to multi-degree-of-freedom robotic manipulators, but also decreases the influence of data noise on the regression results. Finally, the dynamic control based on the reconfigured model is deployed on the experimental platform, and the experimental results prove the effectiveness of the proposed method.Comment: 8 pages, 11 figure
    • ā€¦
    corecore