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Chapter Number  1 

Artificial Intelligent Based Friction Modelling 2 

and Compensation in Motion Control System  3 

Tijani Ismaila B., Rini Akmeliawati and Momoh Jimoh E. Salami 4 
Intelligent Mechatronics Systems Research Unit, 5 

 Department of Mechatronics Engineering, 6 
International Islamic University Malaysia 7 

Kuala Lumpur, Malaysia 8 

1. Introduction   9 

The interest in the study of friction in control engineering has been driven by the need for 10 
precise motion control in most of  industrial applications such as machine tools, robot 11 
systems, semiconductor manufacturing systems and Mechatronics systems.  Friction has 12 
been experimentally shown to be a major factor in performance degradation in various 13 
control tasks. Among the prominent effects of friction in motion control are: steady state 14 
error to a reference command, slow response, periodic process of sticking and sliding (stick-15 
slip) motion, as well as  periodic oscillations about a reference point known as hunting when 16 
an integral control is employed in the control scheme.  Table 1 shows the effects and type of 17 
friction as highlighted by Armstrong et. al. (1994) .  It is observed that, each of  task is 18 
dominated by at least one friction effect ranging from stiction, or/and kinetic to negative 19 
friction (Stribeck).  Hence, the need for accurate compensation of friction has become 20 
important in high precision motion control.   Several techniques to alleviate the effects of 21 
friction have been reported in the literature (Dupont and Armstrong, 1993; Wahyudi, 2003; 22 
Tjahjowidodo, 2004; Canudas, et.al., 1986).  23 
One of  the successful methods is the well-known model-based friction compensation 24 
(Armstrong et al., 1994; Canudas de Wit et al., 1995 and Wen-Fang, 2007).  In this method, 25 
the effect of the friction is cancelled by applying additional control signal which generates a 26 
torque/force.  The generated torque/force has the same value (or approximately the same) 27 
with the friction torque/force but in opposite direction.  This method requires a precise 28 
modeling of the characteristics of the friction to provide a good performance.  Hence, in the 29 
context of model-based friction compensation, identification of the friction is one of the 30 
important issues to achieve high performance motion control. 31 
However, as discussed  in the literatures, several types of friction models have been 32 
identified (Armstrong et al., 1994; Canudas et. al., 1995; Makkar et. al., 2005) and classified  33 
as static or dynamic friction models. Among the static models are  Coulomb friction model, 34 
Tustin model, Leuven model, Karnop model, Lorentzian model. Meanwhile Dahl model, 35 
Lugre model, Seven parameters model, and the most recent Generalized Maxwell-Slip 36 
(GMS) model, are among the dynamic friction models (Tjahjowidodo, 2004).    The static 37 
friction model is simple and easy in the identification process, however using such model 38 
for friction compensation usually lead to poor performance especially at very low velocity 39 
control. 40 
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Tasks Friction Effects Dominant Friction 

Regulator (pointing/position 
control) 

Steady-state error, hunting Stiction 

Tracking  with velocity reversal 
Standstill, and lost of 

motion 
Stiction 

Tracking at low velocity Stick-slip 
Stribeck friction, 

stiction 

Tracking at high velocity Large tracking error 
Viscous behavior of 

lubricant 

Table 1. Control tasks and associated friction effects  1 

On the other hand, the accuracy of the dynamic friction model is anchored on the 2 
dependency of friction on immeasurable internal states such as velocity and position.  Since 3 
friction model selection is an essential factor in the model-based friction compensation, it is 4 
important to find an appropriate friction model that will effectively alleviate the frictional 5 
effects in  motion control applications.  This has been the basis for the continuous search for 6 
more efficient and simple model for friction identification and compensation in motion 7 
control system.  8 
The recent development in Artificial Intelligent (AI)  makes it adaptable for system 9 
modeling base on the data training and expert knowledge.  It has been shown that the major 10 
AI paradigms (Neural Network, Fuzzy Logic, Support vector machine etc.) have the 11 
capability of approximating any nonlinear functions to a reasonable degree of accuracy; and 12 
hence, have been identified and proposed as appropriate alternatives for friction model and 13 
compensation in motion control systems, ( Bi et.al.,2004; Kemal and Masayoshi, 2007;  14 
Wahyudi and Ismaila, 2008). In addition, the use of artificial intelligence based friction 15 
model may also reduce both the complexity and time consumed in the friction modeling 16 
and identification.   17 
This chapter first presents an overview of model-based friction techniques which have been 18 
used in friction modeling and compensation in motion control systems. Then the application 19 
of artificial intelligent based methods in this area is reviewed. The development, 20 
implementation and performance comparison of Adaptive Neuro-Fuzzy inference system 21 
(ANFIS) and Support Vector Regression (SVR) for non-linear friction estimation in a motion 22 
control system so as to achieve high precision performance are described. These two AI 23 
techniques are selected based on their unique characterstics over others as discussed latter in 24 
this paper.  A comparative study on the performance of these two AI techniques in terms of 25 
modeling accuracy, compensation efficiency, and computational time is examined.  The 26 
chapter is concluded with highligths of summary of the results of the study and  future 27 
directions of research in this area. 28 

2. Review of friction modelling techniques in motion control system 29 

The study of friction is dated back to the work of Leonardo da Vinci (1452-1519)  who 30 
investigated the nature of friction and proposed the basis for the theory of classical friction.  31 
According to da Vinci (1452-1519) theory of friction, and latter work of Amontons (1699), 32 
and Charles (1785) friction is proportional to load, opposed motion, and is independent of 33 
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contact area.  With the birth of tribology and its recent advancement, details about the 1 
topography of contact between bodies especially at atomic level have been more detailed 2 
and investigated by Armstrong (1991)  and recently revisited by Farid (2008).  3 
Two main regimes have been identified for friction, namely: pre-sliding and sliding.  Pre-4 
sliding regime defines friction at very low velocity prior to sliding motion and is a function 5 
of displacement, while sliding regime covers the period  when the body is sliding/in motion 6 
and during this period friction is a function of velocity of motion.  Some of  the challenges in 7 
friction model  includes the  merging of friction  model in both regimes in order to offer a 8 
smooth transition from pre-sliding to sliding regime whichtakes into consideration frictional 9 
effects such as: Stribeck, stick-slip, hysteresis, break-away force, nonlocal memory, and 10 
friction lag. For motion control applications, friction study is been carried out to compesate 11 
its negative effects on control performances.  12 
Several methods have been adopted for friction compensation  in the research domain and 13 
industry.  Detailed review was given by Armstrong (1994).  Non-model-based compensation 14 
includes the use of stiff proportional-derivative (PD) control, integral control with 15 
deadband, dither, impulsive control and joint torque control and nonlinear controllers. Stiff 16 
PD approach involves the use of either high derivative (velocity) feedback or high 17 
proportional position feedback.  This has been  shown to be effective for stable tracking and 18 
for system designed for high rigidity. 19 
The use of integral control to eliminate the steady state error due to friction is confronted 20 
with the problem of limit cycles.  This necessitates the introduction of deadband at the input 21 
of the integrator control block, thereby limiting the attainable steady state accuracy (Shen 22 
and Wang, 1964).   23 
Dither isa  high frequency signal added to the control signal to eliminate the effects of the 24 
nonlinearities which include friction in the system.  The application of dither in aerospace 25 
control was reported by Oppelt (1976). The challenges in application of dither lies in its 26 
mode of generation and application. 27 
Others form of non-model based techniques include impulsive control, joint torque 28 
(Armstrong,1992; Hashimoto et.al., 1992). 29 
The use of nonlinear controllers has also been reported by many researchers.  PD controller 30 
plus a discontinuous nonlinear proportional feedback (DNPF) was proposed by Southward 31 
et.al.,(1991), while PD plus smooth robust nonlinear feedback (SRNF) was investigated  by 32 
Cai and Song (1993).  A compensation scheme using nominal characteristic trajectory 33 
following (NCTF) was presented by Wahyudi et al., (2005) and this has been  reported to 34 
outperform both the DNPF and SRNF techniques. 35 
The concept of model-based friction compensation is depicted in Figure 1, where the friction 36 
signal ˆ

fu is approximately equal to the actual plant friction fu , that is ˆ
f fu u= ; 37 

cu is  control signal generated by the linear controller cG ; inu is actual input control signal 38 
into the plant; rθ is reference position signal; outθ is output position response of the system; 39 
θɺ is velocity signal; cG is  a linear controller designed with nominal plant model;  1G is sub-40 
system model 1 and 2G is  sub-system model 2. 41 
Though very simple, the effectiveness of the technique is anchored on the precision of the 42 
friction model and the velocity estimation.  It is implemented as either feedforward model-43 
based when the desired reference velocity is taken as the input to the model, or feedback 44 
model-based when the input velocity is estimated from the sensed output.  Both methods  of 45 
implementation have been adopted by different authors as reported  by Armstrong (1994). 46 
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 1 
Fig. 1. Block diagram of basic model-based friction compensation** 2 

2.1 Parametric based friction models 3 
Coulomb friction is the earliest physical model of friction based on the work of Da Vinci 4 
(1519), Amontons (1699) and Coulomb (1785).  It is described as a constant opposing force 5 
independent of velocity of motion and is mathematically given by   6 

 sgn( )f cF F= θɺ   (1) 7 

and illustrated by  Figure by Figure 2a 8 
The viscous friction was developed by Reynold (1866) followed the birth of the theory of 9 
hydrodynamics.  Viscous friction is proportional to velocity, and it is zero when velocity 10 
goes to zero   11 

 
θfF F= θɺ ɺ   (2) 12 

This led to the well known combine Coulomb plus viscous static model shown in Figure 2 13 
(b), and represented by 14 

 
θ

sgn( )f cF F F= θ + θɺɺ ɺ  (3) 15 

This model has been widely applied in control system due to its simplicity.  It has been 16 
experimentally proven to be efficient for application above certain minimum velocity 17 
(Armstrong, 1991).  Canudas et al. (1986) employed Coulomb and viscous model in an 18 
adaptive model-based friction compensation and has reported an improved performance in 19 
terms of positioning accuracy. Based on its historical place in friction modeling, it is often 20 
used for benchmarking the performance of other more complex models (Tjahjowidodo, 21 
2004; Wahyudi and Tijani, 2008).  The major problems with this model have been the failure 22 
to account for friction at zero velocity and other several friction behaviors especially at low 23 
velocity.  24 
Morin (1833) introduced the idea of friction at rest known as stiction or static friction.  25 
Stiction friction is defined as the force (torque) requires to initiate motion from rest, and is 26 
generally greater than the Coulomb (Kinetic) friction.  Friction was then seen to depend not 27 
only on velocity but magnitude and rate of the external force.  This resulted in a complete 28 
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model of static friction as shown in Figure 2(c).  However, Stribeck (1902) observed a 1 
decreasing friction with increasing velocity at low velocity during the transition from 2 
stiction to kinetic friction and he proposed the concept of Stribeck friction  shown in Figure 3 
2(d).  In order to overcome the jump discontinuity of the model at zero velocity, a 4 
modification was introduced (Karnopp, 1985) by replacing the jump with a line of finite 5 
slope as shown in Figure 2(e).  A combination of stiction, Stribeck, Coulomb and viscous 6 
friction model is been referred to as Stribeck friction (Armstrong, 1991) or General Kinetic 7 
Friction (GKF), (Evangelos et.al, 2002), and is described by    8 

 

( ) ( ) 0, 0

( ) 0, 0,

sgn( ) ( ) 0, 0,

f

f e e s

s e e s

F t

F F t F F

F F t F F

 θ θ ≠ θ =


= θ = θ = <
 θ = θ ≠ >

ɺ ɺ ɺɺ

ɺ ɺɺ

ɺ ɺɺ

  (4) 9 

Several variant of Stribeck friction has been reported and evaluated by Armstrong (1991).  A 10 
general exponential form is given by  11 

 ( ) ( )exp( sgn( )f c s c s θ
F F F F F

δ θ = + − − θ θ θ + θ  
ɺ

ɺ ɺ ɺ ɺ ɺ  (5) 12 

where  fF , sF , cF  , and 
θ

Fɺ   are the friction force, stiction, kinetic and viscous frictions 13 

respectively, θɺ  is the velocity of motion, sθɺ is the Stribeck velocity, constant δ  is an 14 

empirical parameter that determines the shape of the model, in which sgn( )θɺ  is defined as 15 

 

1 ( ) 0

sgn( ) 0 ( ) 0

1 ( ) 0

t

t

t

+ θ >


θ = θ =
− θ <

ɺ

ɺ ɺ

ɺ

   (6) 16 

 where values of δ =1 and δ =2 indicate  the Tustin /exponential model (1947) and Gaussian 17 
model respectively.   18 
Hess and Soom (1990) proposed another model of the form 19 

 
2

( ) sgn( )
1 ( )

s c
f c θ

s

F F
F F F

 −
θ = + θ + θ 

+ θ θ  
ɺ

ɺ ɺ ɺ

ɺ ɺ
 (7) 20 

which is known as Lorentzian friction model. 21 
Tustin (1947) was the first to make use of a negative viscous friction (stribeck) in the analysis 22 
of feedback control. Armstrong (1991) employed exponential, gaussian, Lorentzian together 23 
with a polynomial model given by 24 

 2 3 4 5 6 7 8
2 3 4 5 6 7( )f c θ

F F F F F F F F Fθ = + θ + θ + θ + θ + θ + θ + θɺɺ ɺ ɺ ɺ ɺ ɺ ɺ ɺ   (8) 25 

for friction identification in a robot arm system. The  Lorentzian model gave best 26 
performance fit and  was later adopted for the friction compensation.   27 
Several other researchers have employed the complete stribeck model both for fixed and 28 
adaptive model-based friction compensation ( Envangelos, et.al.,2002; and Lorinc and Bela, 29 
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2007).  Improved performance with respect to tracking and steady state accuracy have been 1 
reported by them.  A continuous, differentiable friction model with six parameters was 2 
recently proposed by Makkar et al., (2005).  The performance of the model was evaluated 3 
with numbers of  simulations and found  to account for major friction effects such as 4 
Coulomb, viscous, and stribeck. Its experimental implementation for friction compensation 5 
has not yet been reported. 6 
 7 

 8 
Fig. 2. Static friction models (a) Coulomb friction,(b) Coulomb + Viscous friction (c) Stiction 9 
+ Coulomb + Viscous friction (d) Stiction + Stribeck + Coulomb + Viscous and (e) Modified 10 
Stribeck friction (Karnopp Model) 11 

Though the General Kinetic Friction (GKF) fails to account for pre-sliding friction behaviors 12 
and other dynamics characteristics such as friction lag and local memory hysteresis, 13 
experimental works have proven that a good static friction model can approximate the real 14 
friction force with a degree of confidentiality of 90% (Armstrong, 1991; Lorinc and Bela, 15 
2007).  Also, Canudas de Wit et al., (1995) demonstrated that the simulated static friction 16 
model and dynamic friction model predicts almost the same limit cycles generated by 17 
friction in controlled positioning system.  Hence, static friction model-based compensation 18 
and identification techniques still have great significant practical applications. 19 
Dynamic friction models have been proposed to account for various pre-sliding friction 20 
behaviors and these are becoming essentials for higher precision performance at micro- and 21 
nano- scale velocity and positioning control (Yi et.al., 2008).  Some of the common dynamic 22 
models which have been considered in control applications are  Dahl, Lugre, Leuven, and 23 
Generalized Maxwell-Slip (GMS).  Dahl model (1968) was the first simple dynamic model 24 
proposed  for  simulations of control system with friction.  This  was used for adaptive 25 
friction compensation by Ehrich (1991) and is expressed as 26 
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 1 sgn( )
c

dF F

dx F

α
 

= σ − θ 
 

ɺ   (9) 1 

where F  is the friction as a function of displacement x , cF  is the Coulomb friction, θɺ  is the 2 

motion velocity and α  is empirical parameter which determines the shapes of the model. 3 
It is position dependent model which captures the hysteresis behavior of friction but fails to 4 
account for stiction and Stribeck.   5 
Another dynamic model was proposed and implemented by Canudas de Wit et al. (1995). In 6 
addition, Canudas de wit et al. (1995) modified the Dahl model to incorporate breakaway 7 
(stiction)  friction and its dynamics together with Stribeck effect using exponential GFK to 8 
give what is been referred to as Lugre friction. This model captures most of the 9 
experimentally observed friction characteristics, and is the first dynamic model that seeks to 10 
effect smooth transition between the two friction regimes without recourse to switching 11 
function. It is mathematically given by  12 

 ,
( )

o

dz
z

dt g

θ
= θ − σ

θ

ɺ

ɺ

ɺ
  (10) 13 

 1( ) ( )t o

dz
F z F

dt θ= σ + σ θ + θɺɺ ɺ  (11) 14 

where  z  is average of bristle deflection, tF  is the tangential friction force, ( )g θɺ  is stribeck 15 

friction for steady-state velocities, Fθɺ  is viscous friction coefficient, while oσ  and 1σ  are 16 

dynamic parameters, which are respectively the frictional stiffness and frictional damping. 17 
Lugre model has been employed for friction analysis and compensation in various control 18 
systems (Wen-Fang, 2007). 19 
However, Lugre model fails to capture the non-local memory effect of hysteresis. Leuven 20 
model proposed by Swevers et.al.,(2000) is an elaborate model than Lugre as it  21 
incorporating hysteresis function with non-local memory behavior in pre-sliding regime.  22 
Apart from its complexity that has rendered it less effective in control system application, 23 
Lampaert et.al.,(2002) pointed out two major problems associated with Leuven model 24 
namely: discontinuity and memory stack algorithm. 25 
GMS is a qualitative new formulation by Lampaert et.al. (2003) based on the rate-state 26 
approach of the Lugre and the Leuven models.  It is noteworthy that despite the unique 27 
advantages of dynamic models, one of the major challenges associated with their practical 28 
implementation is the dependency of the models on unmmeasurable internal state of the 29 
system and/or availability of very high resolution of  (order 610− ) sensing devices 30 
(Armstrong, 1991).  Hence, many of the reported works employing complex dynamic 31 
friction model are based on simulation study.   32 

2.2 Non-parametric based techniques 33 
Due to the complexity and difficulty associated with physical models of friction in terms of 34 
model selection, parameters estimation, and implementation, non-parametric based 35 
approach using Artificial Intelligent (AI) approach is been alternatively employed in control 36 
systems for friction identification and compensation.  Neural network (NN), fuzzy logic 37 
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(FL)/adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM), and 1 
genetic algorithm are among the common AI methods that have been reportedly used in 2 
positioning control system. 3 
The theory of artificial neural network (ANN) is based on simulated nerve cells or neuron 4 
which are joined together in a variety of ways to form network.  The main feature of the 5 
ANN is that it has the ability to learn effectively from the data, and has been identified as a 6 
universal function approximator (Haykin, 1999).  ANN with back propagation was 7 
proposed by (Kemal M. Ciliza and Masaypshi Tomizukab,2007; Wahyudi and Tijani, 2008) 8 
for friction modeling and compensation with varying structures and applications. The 9 
performance of classical friction model was compared with Multilayer Feedforward 10 
Network (MFN)-based friction model for friction compensation in (Wahyudi and Tijani, 11 
2008), and  MFN was reported to outperform the classical friction model.  A hybrid ANN 12 
was developed by Kemal and Masayoshi (2007) where static and adaptive parametric 13 
models are combined with ANN to better capture the discontinuities at the zero velocity.  A 14 
radial basis function (RBF) approach was proposed in (Du and Nair, 1999; and Haung et al., 15 
2000) where the center points and variances of the Gaussian functions had to be chosen a 16 
priori.  Gan and Danai  (2000) developed model-based neural network (MBNN), and  17 
structured according to linearized state space model of the plant   and incorporated into  18 
Lugre friction model in a Linear Motor stage.  19 
Despite the extensive use of ANN for friction modelling, no ANN structure has been agreed 20 
upon for optimal friction modeling for a varieties of motion control systems.  There is need 21 
to extend the notion of MBNN for other friction models that are suitable for some motion 22 
control systems.  Some of  the challenges associated with the use of ANN in friction 23 
modeling include:  selection of appropriate structures (layers, neurons, and models) for a 24 
particular application, generalization and local minimal problems. 25 
Though ANFIS has been applied in nonlinear system modeling and control (Stefan, 2000), 26 
its application in friction modeling and compensation in motion control has not received 27 
much attention in the literatures. ANFIS is a Tagaki Sugeno (TSK)   based fuzzy inference 28 
system implemented in the framework of adaptive networks ( Jang 1995).  It has the ability 29 
to construct an input-output mapping based on both human knowledge (in the form of 30 
fuzzy if-then rules) and stipulated input-output data pairs.  Existing work  related to the use 31 
of Neuro-Fuzzy can be found in many areas such as  velocity control in (Jun and Pyeong, 32 
2000), (Chorng-Shyan 2003) . In the latter case, fuzzy inference system was introduced to 33 
compensate for friction parameter variations.  Recently Tijani et.al (2011) reported the 34 
application of ANFIS in friction modelling and compensation in motion control system. 35 
Their  results confirmed that this technique produces better performance in friction 36 
modelling than  paramteric methods. 37 
Application of Support Vector Regression (SVR) in adaptive friction compensation was 38 
recently proposed  (Wang et al., 2007, Ismaila et.al. 2009(b)). It is noted that SVR has not 39 
been extensively explored as compared to ANN for  friction modelling.  Also, other forms of 40 
SVR such as least square support vector regression regression (LS-SVR) has been proposed 41 
as alternative to SVR with a more simplified optimization algorithm (Johan, Van Gestel, De 42 
Brabanter and Vandewalle, 2002), however it  is yet to be employed in friction identification.  43 
In addition, GA was employed for   the estimation of optimal parameters for Lugre 44 
parametric models by De-peng (2005), while hybrid of ANN and Gafor friction modelling 45 
has been reported in (Sung-Kwun et.al., 2006). 46 
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3. System modelling and identification 1 

Development of an appropriate mathematical model is the first step in order to characterize 2 
friction associated with motion control system. Figure 2 shows the experimental set-up of a 3 
DC motor-driven rotary motion system which consists of servo motor driven by an 4 
amplifier and position encoder attached to the shaft as the feedback sensor. The input to the 5 
motor is the armature voltage u  driven by a voltage source. The measurable variable is the 6 
angular position of the shaft, θ  in radian, while the angular velocity of the motor shaft ( θɺ  in 7 
radian/s) is estimated using an appropriate digital filter. The plant was integrated into 8 
MATLAB xPC target environment as shown in Figure 3 for real-time experimental 9 
implementation. 10 
Basically, in line with model-based friction compensation approach, the system can be 11 
decomposed into  nominal (linear model) and non-linear sub-systems as shown in Figure4. 12 
The nominal/linear sub-system is obtained from the physics of the system based on first 13 
principle approach and system identication process for linear parameters estimation (Tijani 14 
et.al,2009).  The nonlinear sub-system on the other hand, represents the friction present in 15 
the system. The friction occurs  between various moving moving parts in the system. For 16 
instance, it exists  between the motor shaft and bearing, encoder shaft, external shaft, load 17 
and associated bearing. As stated in section 2.1, the friction can take different form 18 
depending on the geometary of the system and operating conditions. In this study, major 19 
sliding friction effects dominating the sliding motion regime are considered.  This consists of 20 
stiction, Stribeck, and coulomb frcition as shown in  Figure 2e.  Note that the viscous friction 21 
is regarded is included in  linear sub-system model and its detailed derivation is reported in 22 
(Tijani, 2009). The resulting second order mathematical model is given as 23 

 

( )
( )

( ) ( 1)p

s K
G s

u s s s

θ
= =

τ +    (12) 24 

where 275K =  and  0.1009pτ =  25 

3.1 Friction identification experiments 26 
Generally,  in supervised AI-based modelling the availability of representative data is very 27 
important.  Two major experiments are required to obtain the velocity to friction 28 
relationship for both break-away friction force and Stribeck friction.  The major hardware, 29 
apart from the Host and Target PC, are the National Instrument (NI) Multifunction input-30 
output (I/O) data acquisition (DAQ) PCI6024E, with BNC-2110 adapter for data acquisition 31 
to and from the Target Pc.  A Scancon incremental shaft encoder with resolution of 42 10x −  32 
(in quadrature mode) was used for measuring the position in radian.  A current sensor with  33 
0-5Amp current rating which is above the maximum current rating of the motor, 2Amp.  34 
was used  for measuring the armature current.  A simple experiment based on Ohm’s Law 35 
was carried out to test and model the V-I relationship of the sensor prior to the performance 36 
of the experiment.  This is required to transform the output voltage of the current sensor to 37 
coresponding current. 38 
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 1 
 2 
 3 

 4 
Fig. 2. DC-Motor driven rotary motion systems. 5 

 6 

 7 
Fig. 3. MALAB xPC target set-up. 8 

 9 

 10 
Fig. 4. Complete system model. 11 

The resulting voltage-to-current relationship is given by 12 
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where sV  is sensor output in volts and sI  is equivalent current sensor output in amperes. 1 
 The first experiment tagged break-away experiment is to yield the break-away friction force  2 
( fτ ) in an open-loop mode. The break-away force is the force requires to initiate motion, in 3 

other word it represents the stiction friction at zero velocity, i.e. the 
0

( )f θ=
τ θ

ɺ

ɺ . The 4 

systematic steps followed according to (Armstrong, 1991) are: 5 
• “Warming-Up” of the Plant at beginning of each run 6 
• Gradual Increase of the motor Current at steps of 0.001volts command signal in pen 7 

loop mode until the shaft moves (or breaks-away), this was taken to be at least 2 8 
encoder counts. 9 

• Repetition of steps 1-2 for several times  and Averaging of results in order to guarantee 10 
repeatability 11 

The procedures were repeated for both positive and negative directions of motion with 10 12 
time runs for different days with a ramp input.  The mean of the resulting values measured 13 
by the current sensor in volts is then computed to give the average stiction friction force 14 
2.531volt and 2.475volt for poistive and negative direction of motion respectively. The 15 
difference between the friction force values in the poistive and negative directions of motion  16 
justifies the asymetric nature of friction. 17 
The second experiment involves identification of steady-state velocity-friction relationship. 18 
The direct relationship between the friction torque, fτ   and motor torque mτ  at steady state 19 

(i.e when 0θ ≈ɺ ) is explored in this experiment. At steady state,  f mτ = τ , and since mτ  is 20 

proportional to the armature current ai , it follows that fτ  is propotional to ai . The 21 

experiement is conducted for a  closed-loop system  with an appropriate velocity controller. 22 
Though any linear controller can be employed, a stiff velocity control scheme such as the 23 
pseudo-derivative feedback with feedforward (PDFF) (Ohm,1990) has been shown to give 24 
better performance especially at low-velocity control regime (Tijani, 2009).  A suitable 25 
velocity region is selected for both directions of motion to cover the low and high speed 26 
above the region  of  Stribeck effect.  For each constant velocity within this region, the 27 
average of armature current and steady state velocity are then computed after the transient 28 
period of 0.2 second.  Five different runs were carried out for each velocity input, and the 29 
overall mean is computed.  A total of 108 data sets were obtained for each direction of 30 
motion. Figure 5 and Figure 6 show samples of the steady state responses of the plant for 31 
positive and negative directions respectively. Finally, the friction data aqcuired in voltage 32 
form based on the output of the current sensor is transformed into actual armature current 33 
using the V-I relationship in (13). The complete experimental data set for both directions are 34 
shown in Figure 7. 35 

4. Artificial intelligent based friction modelling and compensation 36 

The development of Artificial Intelligent (AI) based friction modelling and application of 37 
such model in friction compensation in motion control is described in this section. The 38 
objective is to demonstrate the suitability of AI techniques in friction compensation in 39 
motion control system. Though there exists  several AI methods that can be applied based 40 
on their approximating capability, the focus in this section is on the ANFIS and SVR based 41 
on their unique characteristics over other AI methods.  42 
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Fig. 5. Samples of positive steady-state velocity responses. 2 
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Fig. 6. Samples of negative steady-state velocity responses. 5 
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Fig. 7. Complete experimental friction-velocity data set for both positive and negative 2 
direction. 3 

4.1 ANFIS and SVR as modeling tools 4 
Both ANFIS and SVR are characterized with unique qualities that make them effective for 5 
nonlinear system identification and modeling. ANFIS  is an hybrid AI-paradigm, integrating 6 
the best features of Fuzzy System (based on expert knowledge) and Neural Networks (based 7 
on data mining) in solving the problems of transforming the expert knowledge into fuzzy 8 
rules and tuning of membership functions associated with ordinary fuzzy inference system. 9 
On the other hand, SVR is an extension of the well developed theories of Support vector 10 
machine (SVM) to regression problems with introduction of ε -insensitivity loss function by 11 
Vapnik (1995). Unlike traditional learning algorithm for function estimation such as Neural 12 
network that minimizes the error on the training data based on the principle of Empirical 13 
risk minimization, SVR embodies the principle of structure risk minimization which 14 
minimizes an upper bound on the expected risk. Hence, it is characterized by better ability 15 
to generalize, and at the same time it is  less prone to the problems of overfitting and local 16 
minimal. Though initially developed for linear function estimation, the principle of linear 17 
SVR was extended to non-linear case by the application of the kernel trick. Due to these 18 
unique advantages, SVR has been recently employed for non-linear function approximation 19 
and  system modeling (Bi etal 2004, Ahmed etal 2008).  A brief theoretical overview of the 20 
two paradigms are given here while full detail can be obtained in the literatures (Jang, 1993, 21 
Tijani et.al., 2011). It should be noted that there are two techniques of SVR namely 22 



Mechatronics 

 

14

SVRε − and v SVR− . The first is based on original concept of ε -insensitivity  Vapnik 1 
(1995), and it involves the selection of appropriate ε -parameter for the modelling process. 2 
The challenges associated with the selection of ε  is overcome by the use of v SVR−  in 3 
which a parameter v  is introduced to facilitate the optimal computation of ε -sensitivity 4 
function. Tijani (2009) reported a comparison of these two techniques. v SVR−  was reporter 5 
with both better modelling and compensation accuracy of friction in motion control system. 6 
Hence, only the v SVR− is reported in this chapter while the reader is referred to the 7 
literature for detailed review of the other two approaches 8 

4.1.1 ANFIS overview 9 
Basically, ANFIS implements Takagi Sugeno Fuzzy Inference System, and consists of five 10 
layers minus the input layer O as shown in Figure 8. Besides the input layer O, each other 11 
layer performs a specific function based on the associated node function as follows: 12 
Layer 1 is responsible for the fuzzification of the input signal 1X and 2X with appropriate 13 
membership function. It consists of adaptive nodes in which the parameters of membership 14 
function are adjusted during learning process.  15 
Layer 2 compute the firing strength iω  of each rule using a T-norm (min, product, etc) of the 16 
incoming signals.  17 
Layer 3 estimate the normalized firing strength, iϖ  of each fuzzy rule 18 

Layer 4 also consists of adaptive nodes for computing the consequence parameters iQ . 19 

Layer 5 compute the overall output, O  using a linear combination of all the incoming 20 
signals from layer 4 : 21 
Parametrically, ANFIS is represented by two parameter sets: the input/premise parameters 22 
and  the output/ consequence parameters. 23 

4.1.2 SVR overview 24 
Given a set of N input/output data 1{ , }N

i i ix y =  such that n
ix ∈ℜ  and  iy ∈ℜ , the goal of  25 

v SVR−  learning theory is to find a function f  which minimizes the regularized risk 26 
function(structural risk function) of the form (Sch¨olkopf and Smola, 2002): 27 

 21
[ ] : [ ]

2
v

reg empR f R f w v= + + ε   (14) 28 

 29 

 30 
Fig. 8. Two inputs, one output typical ANFIS structure. 31 
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where 21

2
w  is the regularization term(or complexity penalizer) used to find the flattest 1 

function with sufficient approximation qualities, [ ]empR f  is an empiric risk defined as: 2 

 
1

1
[ ] : ( , ( ))

N

emp i i
i

R f L y f x
N =

= ∑    (15) 3 

and parameter v  is  for automatic selection of optimal ε  and control of number of SVs. For 4 
Vapnik’s ε -insensitivity, the loss function is defined as :  5 

 
0 ( )

( ) ( )
( )

if y f x
L y y f x

y f x otherwiseε ε

 − ≤ ε
= − = 

− − ε
 (16) 6 

Methodologically, v SVR−  processes are similar to that of SVRε − . It involves formulation 7 
of the problem in the primal weight space as a constrained optimization problem by  8 
formulating the Lagrangian, then take the conditions for optimality, and finally solve the 9 
problem in the dual space of Lagrange multipliers called support values. Though, initially 10 
developed for linear function estimation, the principle of linear SVR was extended to non-11 
linear case by the application of the kernel trick. For non-linear regression in the primal 12 
weight space the model is of the form  13 

 ( ) ( )Tf x x b= ω ϕ +   (17) 14 

where for the given training set 1{ , }N
i i ix y = , ( ) : hnnφ ⋅ ℜ →ℜ is a mapping to a high dimensional 15 

feature space by the application of the kernel trick which is defined as  16 

 ( , ) ( ) ( )T
i j i jK x x x x= ϕ ϕ  (18) 17 

The constraint optimization problem in the primal weight space is 18 

, , , 1

1
min ( , , , ) . ( )

2

N
T

P i i
b i

J C v
∗

∗ ∗

ω ξ ξ =

 
ω ξ ξ ε = ω ω+ ε + ξ + ξ 

 
∑  19 

Subject to: 20 

 ( )T
i iy x b−ω ϕ − ≤ ε + ξ  1,2...,i N=  21 

 ( )T
i ix b y ∗ω ϕ + − ≤ ε + ξ 1,2...,i N=  and , 0∗ξ ξ ≥ , 0ε ≥  (19) 22 

where  ,i i
∗ξ ξ are the slack variables for soft margin 23 

By defining the Lagrangian and applying the conditions for optimality solution, one obtains 24 
the following v-SVR dual optimization problem:  25 

 
, , 1 1

1
max ( , ) ( )( ) ( , ) ( )

2

N N

D i i j j i j i i i
i j i

J K x x y
∗

∗ ∗ ∗ ∗

α α = =

α α = − α − α α − α + α − α∑ ∑   26 
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Subject to: 
1

( ) 0
N

i i
i

∗

=

α − α =∑ , 1 

 0 ,i i

C

N
∗≤ α α ≤  ∀ 1,2,...i N=   and  ( ) .

N

i i
i

C v∗α + α ≤∑   (20) 2 

Thus, the regression estimate is  given by 3 

 
1

( ) ( ) ( , )
N

i i i j
i

f x K x x b∗

=

= α + α +∑  (21) 4 

where ,i i
∗α α  are the Lagrange multipliers which are the solution to the Quadratic 5 

optimization problem, and b follows from the complementary Karush-Kuhn-Tucker(KKT) 6 
conditions (Scholkolpf and Smola,2002). 7 
From the foregoing review, it is clear that the choice of Kernel function and the optimization 8 
parameters to be selected aprior play important roles in overall performance of the 9 
regression process. As previously reported in (Sch¨olkopf and Smola, 2002), the range  10 
0 1v≤ ≤ has been identified as effective range of parameter v for control of errors, thereby 11 
simplifying the selection range of parameters combination as compared to ε -SVR. 12 

4.2 Development of ANFIS friction model 13 
The ANFIS-GP model was developed using MATLAB Fuzzy logic toolbox. First the data 14 
was partitioned into training (60) and validation (40) data sets, and based on prior 15 
information about the friction characteristics, two membership functions were assigned to 16 
the input while the value of the premise parameters were initially set to satisfy ε -17 
completeness (Lee,1990) with 0.5ε = . The training was carried out using Hybrid training 18 
with 0.0001 error target and 100 epochs. Figure 9 shows the resulting model with Gaussian 19 
membership function.  20 

4.3 Development of v SVR−  friction model 21 
The SVR-model was developed with reference to the original Matlab toolbox codes by Canu 22 
et al (2005). The overall procedures are as follows: 23 
• Partitioning of data into training and validation sets. 24 
• Selection of Kernel function: e.g. Gaussian kernel    25 
• Selection and tuning of the regression parameters:σ -Kernel parameter ( 0 1v≤ ≤ ), and 26 

C–Capacity control for optimum performance. Various combinations of these 27 
parameters were employed and cross-validated with testing data for both directions of 28 
motion.  29 

• Computation of the difference of the Lagrange multipliers ( )i i
∗α −α , support vectors 30 

(nsv), bias term, b and epsilon, ε . 31 
• Computation of the SVR/decision functions.   32 
The resulting  SVR models with training data and associated support vectors (circled ‘star 33 
data points’) are shown in  Figure10 (a) and (b) for positive and negative directions 34 
respectively. 35 
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Fig. 9. ANFIS friction model with Gaussian membership function. 2 

4.4 Friction compensation  3 
The developed AI-based friction models are used in model-based friction compensation  as 4 
shown in Figure 11. The linear PD controller using root-locus technique with nominal plant 5 
plant model given in equation (12). The use of PD controller is to enable proper evaluation 6 
of the friction model performance since the controller does not have an integral action that 7 
has the effect of suppressing the friction effect. The real-time scheme is implemented with 8 
the  MATLAB xPc target. ANFIS is implemented with the inbuilt MATLAB Fuzzy-Simulink 9 
block while the resulting model parameters (difference of Lagrange multipliers and bias) of 10 
the v-SVR are integrated to an embedded Matlab function for online real-time friction 11 
compensation. Referring to Figure 11, the control law with friction compensation is given as: 12 

 ˆ
c in fu u u= +   (22) 13 

Hence it can be seen that if ˆ ( ) ( )f fu uθ ≈ θɺ ɺ  and the modeling error is approximately equal 14 

zero, the effect of friction force is effectively compensated and the position accuracy 15 
improved. 16 
Figure 12 (a) and (b) show the the comparison of the response of the plant with and without 17 
both ANFIS and v-SVR friction compensators for 0.1 and 1 degree step inputs . The tracking 18 
errors for 0.1 and 1 degree for 1Hz sine wave  input are shown in Figure 13 (a) and (b). 19 
These were repeated for 0.5 and 10 degrees step (both directions) and sine wave reference 20 
input, and the overall results are reported  in Table 2 (a), (b) and Table 3 for point-to-point  21 
and tracking control respectively in terms of response time, steady state accuracy and root 22 
mean square error(RMSE). 23 
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(a) Positive direction. 2 
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(b) Negative direction. 4 

Fig. 10. SVRv −  friction mod 5 

 6 

 7 
Fig. 11. Control scheme for the model-based friction compensation. 8 
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fû  

refθ

+
cu  θɺ̂  

rθ  
Velocity 
Estimator 

FRICTION
MODEL 

PLANT 



Artificial Intelligent Based Friction Modelling and Compensation in Motion Control System 

 

19 

5. Performance comparison of the proposed AI-models 1 

The performance comparison of the two proposed AI-based friction models is carried out  in 2 
terms of modeling accuracy, compensation efficiency, and computational time/complexity. 3 
The modeling accuracy refers to the performance of the model on training and validation is 4 
data. Table 4 gives the comparison of the two models RMSE for both directions of motion. 5 
The percentage reduction in both steady state and tracking error for each ANFIS-based and 6 

SVRv −  compensators was computed so as to  compare their compensation efficiency as 7 
shown respectively in Figure 14(a) and (b) and Figure 15. Also, the computational time for 8 
training and prediction based on the MATLAB resources was computed to examine the 9 
complexity of each model as reported in Table 5 .  10 

6. Discussions 11 

The performance improvements recorded with each of the friction compensators over only 12 
linear PD controller indicate the importance and requirements of friction compensation for 13 
precision positioning control especially at low reference input where the effect of negative 14 
friction is highly deteriorating. Comparatively, a better modeling accuracy and 15 
compensation efficiency were generally obtained with  SVRv −  as reported in Table 4, and 16 
shown in Figure 14 (a) and (b) and Figure 15.  Significant reduction in positioning error over 17 
the use of only linear controller was observed in particular  up to 90% reduction in steady 18 
state error and 60% reduction in root mean square error for PTP and tracking respectively 19 
with the v-SVR based friction compensators as against 90% and 50% reduction respectively 20 
with ANFIS model. On the other hand, with the MATLAB resources employed, ANFIS is 21 
less computational intensive with average computational time of 110ms per training while 22 

SVRv −  takes 220ms per each iteration in modeling of friction as indicated in Table 5. It 23 
should be noted that, many iterative steps are required in SVR development as compared to 24 
ANFIS.  However, ANFIS is noted to have  lesser  prediction response with slower time 25 
response of 1.6ms as compared to SVRv −  with approximately 0.5ms. This implies a 26 
tradeoff between desired performance accuracy in favor of SVR and less computational 27 
efforts for model development in favor of ANFIS.  28 
The general performance of SVR over ANFIS can be attributed to the fact that SVR 29 
algorithm minimizes an upper bound on the expected risk, that is, SVR not only minimizes 30 
the error on the training data as in ANFIS modeling but it also minimizes model complexity.  31 
So it was able to generalize better than ANFIS on the noisy real-time velocity data during 32 
the compensation especially for tracking control.  33 
 34 
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Fig. 12(a). 0.1 deg. 36 
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Fig. 12(b). 1.0 deg. 2 

Fig. 12. Step input responses with and without the Friction compensator. 3 
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(a) 0.1-deg. Sine input. 6 
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(b) 1-deg. Sine input. 9 

Fig. 13(a) and (b). Position tracking error for sinusoidal reference signal. 10 
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POSITIVE STEP INPUTS 

 
0.1-deg. 0.5-deg. 1-deg. 10-deg. 

Friction 
Compensators 

ess(%) Tr(sec.) ess(%) Tr(sec.) ess(%) Tr(sec.) ess(%) Tr(sec.) 

No 
Compensator 

75 N/A 37.6 N/A 7.6 0.017 1.8 0.015 

ANFIS 4 0.0084 0.8 0.009 0.4 0.015 0.3 0.014 

v-SVR 4 0.008 0.8 0.01 0.4 0.015 0.1 0.014 

Table 2(a). Performance comparison  results for positive PTP positioning control. 1 

 2 

 
NEGATIVE STEP INPUTS 

 
-0.1-deg. -0.5-deg. -1-deg. -10-deg. 

Friction 
Compensators 

ess(%) Tr(sec.) ess(%) Tr(sec.) ess(%) Tr(sec.) ess(%) Tr(sec.) 

No Compensator 76 N/A 44.26 N/A 21 0.017 1.24 0.015 

ANFIS 4 0.009 0.8 0.008 0.4 0.012 0.1 0.014 

v-SVR 4 0.008 0.8 0.013 0.4 0.013 0.04 0.014 

Table 2(b). Performance comparison results for negative PTP positioning control.  3 

 4 

Friction Compensators 
Root Mean Square Errors (RMSE) 

0.1-deg. 0.5-deg 1-deg. 10-deg. 

No Compensator 0.0355 0.0656 0.0874 0.0959 

ANFIS 0.0165 0.0277 0.0380 0.0587 

v-SVR 0.0132 0.0255 0.0390 0.0608 

Table 3. Performance comparison results for tracking positioning control.  5 

 6 
  Training RMSE Prediction RMSE 

ANFIS 
Positive Direction 0.000458 0.000443 

Negative Direction 0.000725 0.000744 

v-SVR 
Positive Direction 0.000408 0.000430 

Negative Direction 0.000690 0.000727 

Table 4. Performance comparison in terms of the modelling accuracy. 7 

  
Training 

Computational 
time(ms) 

Prediction 
Computational 

time(ms) 

ANFIS 
Positive Direction 108.581 1.605 

Negative Direction 110.080 1.605 

v-SVR 
Positive Direction 209.692 0.493 

Negative Direction 224.828 0.493 

Table 5. Performance comparison in terms of computational time. 8 
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Fig. 14(a) and (b). Comparison of the ANFIS and SVRv −  models in terms of %reduction in 4 
steady state error over only PD controller for step inputs 5 
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Fig. 15. Comparison of the ANFIS and SVRv −  Models in terms %reduction in    tracking 7 
error over Only PD controller for tracking control. 8 

Figure 14(a) 

Figure 14(b) 
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7. Conclusion 1 

The application of artificial intelligent based techniques in friction modeling and 2 
compensation in motion control system has been presented in this chapter.  The chapter  3 
focuses  on comparative study of the two developed AI-friction models which have  been 4 
carried out in terms of modeling accuracy, compensation efficiency, and computational 5 
time.  In comparison, SVRv −  outperformes ANFIS both in representing and compensating 6 
the frictional  effects especially for tracking control at low velocity regime. The results show 7 
v-SVR to be better in representing friction than ANFIS with smaller RMSE for both training 8 
and prediction of friction.  Though, both perform equally in PTP control, v-SVR 9 
outperformed ANFIS in tracking control with 60% to 50% reduction in tracking error. 10 
Computationally, ANFIS is better with smaller computational processes and time for 11 
modeling than SVR, but appears to be poor in prediction than SVR. 12 
It is noted from this study that  the performance of the friction model is greatly affected by 13 
the precision of the sensor employed. This has limited the minimum velocity that can be 14 
controlled to 0.1 degree. Apart from sensor effect, extension of these techniques to 15 
micro/nano scale positioning control will required the incorporation of  dynamic friction 16 
model in the AI-friction model development.   17 
Also, the velocity estimation from the position sensor used introduced noise in the feedback 18 
signal. This is responsible for non-smoothness in the tracking responses. This  can be 19 
avoided either with the use of better position sensor together with more sophisticated 20 
velocity filter or by using separate  sensor to measure the velocity directly. 21 
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