22 research outputs found

    Inverse Density as an Inverse Problem: The Fredholm Equation Approach

    Full text link
    In this paper we address the problem of estimating the ratio qp\frac{q}{p} where pp is a density function and qq is another density, or, more generally an arbitrary function. Knowing or approximating this ratio is needed in various problems of inference and integration, in particular, when one needs to average a function with respect to one probability distribution, given a sample from another. It is often referred as {\it importance sampling} in statistical inference and is also closely related to the problem of {\it covariate shift} in transfer learning as well as to various MCMC methods. It may also be useful for separating the underlying geometry of a space, say a manifold, from the density function defined on it. Our approach is based on reformulating the problem of estimating qp\frac{q}{p} as an inverse problem in terms of an integral operator corresponding to a kernel, and thus reducing it to an integral equation, known as the Fredholm problem of the first kind. This formulation, combined with the techniques of regularization and kernel methods, leads to a principled kernel-based framework for constructing algorithms and for analyzing them theoretically. The resulting family of algorithms (FIRE, for Fredholm Inverse Regularized Estimator) is flexible, simple and easy to implement. We provide detailed theoretical analysis including concentration bounds and convergence rates for the Gaussian kernel in the case of densities defined on Rd\R^d, compact domains in Rd\R^d and smooth dd-dimensional sub-manifolds of the Euclidean space. We also show experimental results including applications to classification and semi-supervised learning within the covariate shift framework and demonstrate some encouraging experimental comparisons. We also show how the parameters of our algorithms can be chosen in a completely unsupervised manner.Comment: Fixing a few typos in last versio

    Learning with sample dependent hypothesis spaces

    Get PDF
    AbstractMany learning algorithms use hypothesis spaces which are trained from samples, but little theoretical work has been devoted to the study of these algorithms. In this paper we show that mathematical analysis for these algorithms is essentially different from that for algorithms with hypothesis spaces independent of the sample or depending only on the sample size. The difficulty lies in the lack of a proper characterization of approximation error. To overcome this difficulty, we propose an idea of using a larger function class (not necessarily linear space) containing the union of all possible hypothesis spaces (varying with the sample) to measure the approximation ability of the algorithm. We show how this idea provides error analysis for two particular classes of learning algorithms in kernel methods: learning the kernel via regularization and coefficient based regularization. We demonstrate the power of this approach by its wide applicability

    A Balanced Approach to Adaptive Probability Density Estimation

    Get PDF
    Our development of a Fast (Mutual) Information Matching (FIM) of molecular dynamics time series data led us to the general problem of how to accurately estimate the probability density function of a random variable, especially in cases of very uneven samples. Here, we propose a novel Balanced Adaptive Density Estimation (BADE) method that effectively optimizes the amount of smoothing at each point. To do this, BADE relies on an efficient nearest-neighbor search which results in good scaling for large data sizes. Our tests on simulated data show that BADE exhibits equal or better accuracy than existing methods, and visual tests on univariate and bivariate experimental data show that the results are also aesthetically pleasing. This is due in part to the use of a visual criterion for setting the smoothing level of the density estimate. Our results suggest that BADE offers an attractive new take on the fundamental density estimation problem in statistics. We have applied it on molecular dynamics simulations of membrane pore formation. We also expect BADE to be generally useful for low-dimensional applications in other statistical application domains such as bioinformatics, signal processing and econometrics

    Multivariate Density Estimation with Deep Neural Mixture Models

    Get PDF
    Albeit worryingly underrated in the recent literature on machine learning in general (and, on deep learning in particular), multivariate density estimation is a fundamental task in many applications, at least implicitly, and still an open issue. With a few exceptions, deep neural networks (DNNs) have seldom been applied to density estimation, mostly due to the unsupervised nature of the estimation task, and (especially) due to the need for constrained training algorithms that ended up realizing proper probabilistic models that satisfy Kolmogorov's axioms. Moreover, in spite of the well-known improvement in terms of modeling capabilities yielded by mixture models over plain single-density statistical estimators, no proper mixtures of multivariate DNN-based component densities have been investigated so far. The paper fills this gap by extending our previous work on neural mixture densities (NMMs) to multivariate DNN mixtures. A maximum-likelihood (ML) algorithm for estimating Deep NMMs (DNMMs) is handed out, which satisfies numerically a combination of hard and soft constraints aimed at ensuring satisfaction of Kolmogorov's axioms. The class of probability density functions that can be modeled to any degree of precision via DNMMs is formally defined. A procedure for the automatic selection of the DNMM architecture, as well as of the hyperparameters for its ML training algorithm, is presented (exploiting the probabilistic nature of the DNMM). Experimental results on univariate and multivariate data are reported on, corroborating the effectiveness of the approach and its superiority to the most popular statistical estimation techniques

    Artificial Intelligence-Based Patient Monitoring System for Medical Support

    Get PDF
    Purpose In this paper, we present the development of a monitoring system designed to aid in the management and prevention of conditions related to urination. The system features an artificial intelligence (AI)-based recognition technology that automatically records a user’s urination activity. Additionally, we developed a technology that analyzes movements to prevent neurogenic bladder. Methods Our approach included the creation of AI-based recognition technology that automatically logs users’ urination activities, as well as the development of technology that analyzes movements to prevent neurogenic bladder. Initially, we employed a recurrent neural network model for the urination activity recognition technology. For predicting the risk of neurogenic bladder, we utilized convolutional neural network (CNN)-based AI technology. Results The performance of the proposed system was evaluated using a study population of 30 patients with urinary tract dysfunction, who collected data over a 60-day period. The results demonstrated an average accuracy of 94.2% in recognizing urinary tract activity, thereby confirming the effectiveness of the recognition technology. Furthermore, the motion analysis technology for preventing neurogenic bladder, which also employed CNN-based AI, showed promising results with an average accuracy of 83%. Conclusions In this study, we developed a urination disease monitoring system aimed at predicting and managing risks for patients with urination issues. The system is designed to support the entire care cycle of a patient by leveraging AI technology that processes various image and signal data. We anticipate that this system will evolve into digital treatment products, ultimately providing therapeutic benefits to patients
    corecore