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Sparse Density Estimator with Tunable Kernels

Xia Hong, Sheng Chen, and Victor M. Becerra

Abstract

A new sparse kernel density estimator with tunable kernels is introduced within a forward con-

strained regression framework whereby the nonnegative and summing-to-unity constraints of the mixing

weights can easily be satisfied. Based on the minimum integrated square error criterion, a recursive

algorithm is developed to select significant kernels one at time, and the kernel width of the selected kernel

is then tuned using the gradient descent algorithm. Numerical examples are employed to demonstrate that

the proposed approach is effective in constructing very sparse kernel density estimators with competitive

accuracy to existing kernel density estimators.

Index Terms

Probability density function, kernel density estimator, sparse modeling, minimum integrated square

error

I. INTRODUCTION

The probability density function (PDF) estimation, e.g., the Parzen window (PW) and finite

mixture model, is of fundamental importance to many data analysis and pattern recognition

applications [1]–[8]. There is a considerable interest into research on sparse PDF estimation

which can be summarized into two categories. The first category is based on constrained op-

timization. For example, the support vector machine (SVM) density estimation was researched

[9], [10], in which the density estimation problem is formulated as a supervised learning mode

whilst the mean absolute deviation between the empirical cumulative distribution function (CDF)

calculated from the training data and the CDF based on the PDF estimator also calculated from

the training data are minimized. This yields the sparsity inducing property, i.e., at the optimality,
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many kernels’ weights are driven to zero. The desirable property of sparsity inducing also happens

in the interesting approach of reduced set density estimator (RSDE) [11], which is based on the

minimization of the integrated square error (ISE) between the estimator and the true density

evaluated on the training data [2], [11], [12], and two efficient optimization algorithms were

introduced. Alternatively, by exploiting the first and second order Riemannian geometry of the

multinomial manifold, the Riemannian trust-region algorithm [13] was recently applied to find

the set of sparse mixing coefficients based on the minimum ISE (MISE), referred to as the

RTR-MISE algorithm [14].

The second category of sparse kernel density estimators construct the PDF estimator in a

forward regression manner. A regression-based PDF estimation method was introduced [15], in

which the empirical CDF is constructed and used as the desired response. In order to automati-

cally determine the model structure with the improved model generalization, the regression-based

idea of [15] and the approach of [16] were extended to yield an orthogonal forward regression

(OFR) based sparse density estimation algorithm [17] which is capable of automatically con-

structing a very sparse kernel density estimate, with comparable performance to that of the PW

estimate. A simpler and viable alternative approach was proposed to use kernels directly as

regressors by adopting the PW estimate as the target response [18]. A sparse kernel density

estimator [19] was introduced based on the MISE and the forward constrained regression (FCR)

[20] to select significant kernels one at time, which has very low computational cost and is

referred to as the FCR-MISE algorithm.

With the exception of [4], in all the above-mentioned sparse kernel estimators, including

those based on the MISE approach [11], [14], [19], the PDF kernels involve a single and fixed

kernel bandwidth parameter that needs to be empirically predetermined. By contrast, this paper

introduces a new sparse kernel density estimator with tunable kernels also based on the MISE.

Specifically, a new recursive algorithm is developed to select significant kernels one at time,

followed by tuning the kernel width of the selected kernel using the gradient descent algorithm.

This means that there is no need to determine the bandwidth parameters empirically outside the

algorithm loop. Numerical examples are employed to demonstrate that the proposed approach

can construct very sparse kernel density estimates with competitive accuracy, compared to the

existing kernel density estimators.
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II. FORWARD CONSTRUCTION OF TUNABLE SPARSE KERNEL DENSITY ESTIMATOR

Given the finite data set DN = {xj}Nj=1 consisting of N data samples, where the data xj ∈ R
m

follows an unknown PDF p(x), the problem under study is to find a sparse approximation of

p(x) by forward construction based on the subset DM =
{
x

′
1,x

′
2, · · · ,x′

M

}
of M data samples

selected from DN . For example, if x6 from DN is selected to form the first kernel, it is denoted

as x
′
1 in DM . A general kernel based density estimate of p(x) is given by

p̂(M)
(
x;βM ,σM

)
=

M∑
i=1

βiKσi

(
x,x

′
i

)
(1)

subject to

βi ≥ 0, and βT
M1M = 1, (2)

where Kσi

(
x,x′

i

)
is the Gaussian kernel with the kernel center vector x

′
i and an adjustable

kernel width σi given by

Kσi

(
x,x

′
i

)
=

1(
2πσ2

i

)m/2
exp

(
−‖x− x

′
i‖2

2σ2
i

)
, (3)

and βi is the ith kernel weight, while σM =
[
σ1 σ2 · · · σM ]T, βM =

[
β1 β2 · · · βM ]T, and 1M is

the M -dimensional vector whose elements are all equal to one.

We form the kernel density estimator (1) from the subset DM in a forward construction manner.

Specifically given the initial condition σi = σ0, ∀i, and starting from an empty model set, our

proposed sparse kernel density estimation algorithm selects the kernel functions Kσ0

(
x,x

′
i

)
into

the model set one at a time from DN . At each forward step, the associated kernel width σi is

then optimized to obtain Kσi

(
x,x

′
i

)
.

Let the superscript (l) denote the lth forward selection step. At the lth forward selection

step, further denote the intermediate kernel density estimator p̂(l)
(
x;β

(l)
l ,σl) as ŷ(l)(x), where

σ
(l)
l =

[
σ1 σ2 · · · σl

]T and β
(l)
l =

[
β
(l)
1 β

(l)
2 · · · β(l)

l

]T, with β
(l)
i , 1 ≤ i ≤ l, as the kernels weights

at the lth forward selection step, i.e.,

ŷ(l)(x) =
l∑

i=1

β
(l)
i Kσi

(
x,x

′
i

)
. (4)

The proposed algorithm integrates the FCR procedure [20] described below:

(i) At the first step, the PDF estimator is simply

ŷ(1)(x) = Kσ1

(
x,x

′
1

)
, (5)
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where Kσ1

(
x,x

′
1

)
is obtained by adjusting the kernel width from σ0 to σ1 based on the

selected kernel center x′
1. Clearly β

(1)
1 = 1.

(ii) At the lth step, where l ≥ 2, the PDF estimator is constructed by adding the lth kernel

Kσl

(
x,x

′
l) to ŷ(l−1)(x) according to

ŷ(l)(x) = λlŷ
(l−1)(x) + (1− λl)Kσl

(
x,x

′
l

)
, (6)

where Kσl

(
x,x

′
l

)
is obtained by adjusting the kernel width from σ0 to σl based on the

selected kernel center x′
l, while 0 ≤ λl ≤ 1, ∀l, and λ1 = 0.

It can be straightforwardly verified that the model constructed using the FCR procedure

satisfies the convex constraint conditions of (2), namely, β(l)
i ≥ 0, 1 ≤ i ≤ l, and

l∑
i=1

β
(l)
i = 1,

∀l ≥ 1, see [20]. Moreover, given λl and β
(l−1)
l−1 , β(l)

l can be recursively computed via

β
(l)
l =

⎡
⎣ λlβ

(l−1)
l−1

1− λl

⎤
⎦ , (7)

where l > 1 and β
(1)
1 = β

(1)
1 = 1.

It can be seen that the key issues at each forward selection step l are 1) how to initially select

the kernel center vector x′
l with the kernel width σl = σ0, followed by adjusting the kernel width

σl for the selected kernel; and 2) how to compute λl and hence the kernel weight β(l)
l .

III. JOINT KERNEL SELECTION AND KERNEL WIDTH OPTIMIZATION BASED ON THE MISE

We now introduce our new algorithm integrating the kernel term selection, the kernel width

optimization and the kernel weight calculation based on MISE [2], [11], [12] and the FCR

framework described in the previous section. In particular, we detail the joint kernel selection,

the tunable kernel width optimization and kernel weight estimation at the lth forward selection

stage. Specifically, based on the ISE criterion, we formulate initially the kernel weight estimation

problem for a given kernel per forward selection step, and then the kernel width optimization

using the gradient descent algorithm for the selected kernel. Joint kernel selection together with

the kernel width/weights optimization are finally presented.

A. Kernel weight estimation

At the lth forward selection stage, Kσi

(
x,x

′
i

)
are given for 1 ≤ i ≤ l−1, and we consider the

problem of determining λl and σl for a fixed x
′
l based on the ISE which is the global accuracy
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measure for density estimate and is given by [11]

ISE
(
β

(l)
l ,σl

)
=

∫ (
p(x)−

l∑
i=1

β
(l)
i Kσi

(
x,x

′
i

))2

dx

=

∫
p2(x)dx+

∫ ( l∑
i=1

β
(l)
i Kσi

(
x,x

′
i

))2

dx

−2E
[ l∑

i=1

β
(l)
i Kσi

(
x,x

′
i

)]

=

∫
p2(x)dx+

l∑
i=1

l∑
j=1

β
(l)
i β

(l)
j

∫
Kσi

(
x,x

′
i

)
Kσj

(
x,x

′
j

)
dx

−2
l∑

i=1

β
(l)
i E

[
Kσi

(
x,x

′
i

)]

=

∫
p2(x)dx+Q(l)

(
λl, σl

)
, (8)

in which E[•] denotes the expectation with respect to the true density p(x). Since the unknown

term
∫
p2(x)dx is independent of β(l)

l , it can be dropped from the objective function. We write

the argument directly as {λl, σl} for the last term Q(l)
(
λl, σl

)
, which becomes our objective

function. We point out that since our algorithm is based on the FCR framework, only these two

parameters need to be estimated at the lth selection stage. Note that β
(l)
l depends on λl and

β
(l−1)
l−1 , i.e., the sequence {λ1, λ2, · · · , λl−1}, that have already been obtained from the previous

forward selection steps (see (7)). Similarly {σ1, σ2, · · · , σl−1} are also obtained from the previous

forward selection steps.

Using the following unbiased estimator of E
[
Kσi

(
x,x

′
i

)]
E
[
Kσi

(
x,x

′
i

)] ≈ 1

N

N∑
k=1

Kσi

(
xk,x

′
i

)
(9)

as well as noting the result of
∫
Kσi

(
x,x

′
i

)
Kσj

(
x,x

′
j

)
dx given in Appendix yield

Q(l)
(
λl, σl

)
�

l∑
i=1

l∑
j=1

β
(l)
i β

(l)
j Kσi,j

(
x

′
i,x

′
j

)

− 2

N

l∑
i=1

β
(l)
i

N∑
k=1

Kσi

(
xk,x

′
i

)
, (10)
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where σi,j =
√
σ2
i + σ2

j . Using matrix expression, we easily obtain the recursive form of

Q(l)(λl, σl) which is given by

Q(l)
(
λl, σl

)
= μ(l) − 2ν(l) (11)

where ⎧⎨
⎩ μ(l) =

(
β

(l)
l

)T
C

(l)
l β

(l)
l ,

ν(l) =
(
β

(l)
l

)T
p
(l)
l ,

(12)

in which p
(l)
l and C

(l)
l can be computed recursively as

p
(l)
l =

[(
p
(l−1)
l−1

)T 1

N

N∑
k=1

Kσl

(
xk,x

′
l)
]T

, (13)

C
(l)
l =

⎡
⎣ C

(l−1)
l−1 b

(l)
l−1(

b
(l)
l−1

)T
γl

⎤
⎦ , (14)

and ⎧⎨
⎩ γl = 1

/(
4πσ2

l

)m/2
,

b
(l)
l−1 =

[
Kσ1,l

(
x

′
1,x

′
l

) · · ·Kσl−1,l

(
x

′
l−1,x

′
l

)]T
.

(15)

This recursion is initialized at the first step (l = 1) as

C
(1)
1 = K√

2σ1

(
x

′
1,x

′
1

)
= γ1 (16)

and

p
(1)
1 =

1

N

N∑
k=1

Kσ1

(
xk,x

′
1

)
. (17)

By substituting (7) and (12)-(14) into (11), we have

Q(l)
(
λl, σl

)
=⎡

⎣ λlβ
(l−1)
l−1

1− λl

⎤
⎦

T ⎡
⎣ C

(l−1)
l−1 b

(l)
l−1(

b
(l)
l−1

)T
γl

⎤
⎦
⎡
⎣ λlβ

(l−1)
l−1

1− λl

⎤
⎦

− 2
[
λl

(
β

(l−1)
l−1

)T
1− λl

] ⎡⎢⎣ p
(l−1)
l−1

1
N

N∑
k=1

Kσl

(
xk,x

′
l

)
⎤
⎥⎦

= λ2
l μ

(l−1) +
(
1− λl

)2
γl + 2λl

(
1− λl

)(
b
(l)
l−1

)T
β

(l−1)
l−1

− 2λlν
(l−1) − 2

(
1− λl

)
N

N∑
k=1

Kσl

(
xk,x

′
l

)
. (18)
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For l > 1, Q(l)
(
λl, σl

)
is a quadratic function with respect to λl. Hence there exits a unique

minimum of Q(l)
(
λl, σl

)
for a given σl, which can be found by setting ∂

∂λl
Q(l)

(
λl, σl

)
= 0,

followed by the constraint satisfaction operation. This yields the closed-form solution for λl for

the given σl as

λl = min {max {ul, 0} , 1} , (19)

with

ul =

γl −
(
b
(l)
l−1

)T
β

(l−1)
l−1 + ν(l−1) − 1

N

N∑
k=1

Kσl

(
xk,x

′
l

)
μ(l−1) + γl − 2

(
b
(l)
l−1

)T
β

(l−1)
l−1

. (20)

It is easy to verify that the constraint satisfaction operator

min
{
max{u, 0}, 1} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, u > 1,

0, u < 0,

u, 0 ≤ u ≤ 1.

(21)

Therefore, 0 ≤ λl ≤ 1 is guaranteed. By plugging λl back to (18), we obtain the MISE value

Q(l)
(
λl, σl

)
for this given kernel. The computational cost of parameter estimation for a kernel with

fixed width is in the order of O(l), which is extremely low, owing to the recursive computation

and the closed-form solution for the parameter λl when σl is fixed.

B. Kernel width optimization with MISE criterion

We now consider the problem of optimizing Kσl

(
x,x′

l

)
by adjusting σl, also based on the

MISE, when λl is fixed. Express (18) as

Q(l)
(
λ, σl

)
= λ2

l μ
(l−1) − 2λlν

(l−1) + S(l)
(
λl, σl

)
, (22)

where

S(l)
(
λl, σl

)
= 2λl

(
1− λl

) l−1∑
i=1

β
(l−1)
i Kσi,l

(x
′
i,x

′
l)

+
(
1− λl

)2
γl −

2
(
1− λl

)
N

N∑
k=1

Kσl

(
xk,x

′
l

)
(23)

which excludes all the components independent of σl. The gradient descent algorithm for mini-

mizing S(l)
(
λl, σl

)
and hence ISE(l) = ISE

(
λl, σl

)
for the selected x

′
l and the fixed λl is given

as follows.



8

Starting with σold
l = σ0, repeat the following iterations for a sufficiently large number of times

Iter, e.g., Iter = 20 ⎧⎨
⎩ σnew

l = σold
l − η

∂S(l)
(
λl,σ

old
l

)
∂σl

,

σold
l ← max{σnew

l , σmin},
(24)

where η > 0 is a small positive learning rate, σmin is a small positive value representing the

lower bound of the kernel width parameter, and the gradient is given by

∂S(l)
(
λl, σl

)
∂σl

= 2λl

(
1− λl

) l−1∑
i=1

β
(l−1)
i

∂Kσi,l
(x

′
i,x

′
l)

∂σl

− m
(
1− λl

)2
γl

σl

− 2
(
1− λl

)
N

N∑
k=1

∂Kσl

(
xk,x

′
l

)
∂σl

= 2λl

(
1− λl

) l−1∑
i=1

β
(l−1)
i Kσi,l

(x
′
i,x

′
l)
(
− mσl

σ2
i + σ2

l

+

‖x′
i − x

′
l‖2σl

(σ2
i + σ2

l )
2

)
− m

(
1− λl

)2
γl

σl

−

2
(
1− λl

)
N

N∑
k=1

Kσl

(
xk,x

′
l

)(− m

σl

+
‖xk − x

′
l‖2

σ3
l

)
. (25)

C. Joint kernel selection and parameter estimation algorithm

At the lth forward selection stage, a data sample is to be selected from the remaining (N−l+1)

candidate data samples based on the fixed kernel width σ0, while the associated kernel width

σl is optimized, and the l kernel weights are adjusted. More specifically, we initially review the

contribution of each candidate data sample according to its associated MISE value, based on the

fixed kernel width σ0, and decide which is to be added to the model. The data point producing

the smallest MISE value amongst all the candidate data samples is selected as x′
l. With the kernel

weights being fixed, we then adjust the kernel width σl using the gradient descent algorithm

described in Section III-B. Finally, the optimal kernel weights are recalculated for the given σl

as described in Section III-A.

First define X
(l−1)
N ∈ R

m×N as

X
(l−1)
N =

[
x

′
1 · · ·x

′
l−1 x

(l−1)
l · · ·x(l−1)

N

]
, (26)
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and q
(l−1)
N ∈ R

1×N as

q
(l−1)
N =

[ 1
N

N∑
k=1

Kσ0

(
xk,x

′
1

) · · · 1
N

N∑
k=1

Kσ0

(
xk,x

′
l−1

)
1

N

N∑
k=1

Kσ0

(
xk,x

(l−1)
l

) · · · 1
N

N∑
k=1

Kσ0

(
xk,x

(l−1)
N

)]
, (27)

with

X
(0)
N =

[
x
(0)
1 x

(0)
2 · · ·x(0)

N

]
=
[
x1 x2 · · ·xN

]
, (28)

q
(0)
N =

[ 1
N

N∑
k=1

Kσ0

(
xk,x1

) 1

N

N∑
k=1

Kσ0

(
xk,x2

) · · ·
1

N

N∑
k=1

Kσ0

(
xk,xN

)]
. (29)

If the jlth column, where l ≤ jl ≤ N , and the lth column of X
(l−1)
N are interchanged, X(l−1)

N

becomes X
(l)
N . Similarly, if the jlth column and the lth column of q(l−1)

N are interchanged, q(l−1)
N

becomes q
(l)
N . Further define the jth element of q

(l−1)
N as q(l−1)(j) = 1

N

N∑
k=1

Kσ0

(
xk,x

(l−1)
j ) for

l ≤ j ≤ N . We are now ready to present our proposed algorithm.

Initialization: At the 1st stage of the selection procedure, set β(1)
1 = β

(1)
1 = 1 and λ1 = 0.

Step 1). For 1 ≤ j ≤ N , based on σ0, compute

Q(1,j) = γ − 2p
(1,j)
1 , (30)

where γ = 1
(4πσ2

0)
m/2 and p

(1,j)
1 = q(0)(j).

Step 2). Find

Q(1,j1) = min
{
Q(1,j), 1 ≤ j ≤ N

}
. (31)

Then the j1th column and the first column of X(0)
N are interchanged to yield X

(1)
N , and the j1th

column and the first column of q
(0)
N are interchanged to yield q

(1)
N . This effectively selects the
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first kernel.

Step 3). Apply (24) to find σ1.

Step 4). Calculate μ(1) = C
(1)
1 and ν(1) = p

(1)
1 using (16) and (17). Update Q(1) = μ(1) − 2ν(1).

The lth stage of the selection procedure, where l ≥ 2:

Step 1). For l ≤ j ≤ N , set σj = σ0, compute

b
(l,j)
l−1 =

[
Kσ1,j

(
x

′
1,x

(l−1)
j

) · · ·Kσl−1,j

(
x

′
l−1,x

(l−1)
j

)]T
,

d(l,j) =
(
b
(l,j)
l−1

)T
β

(l−1)
l−1 ,

λ
(j)
l =min

{
max

{γ − d(l,j) + ν(l−1) − q(l−1)(j)

μ(l−1) + γ − 2d(l,j)
, 0
}
, 1
}

and

Q(l,j)
(
λ
(j)
l

)
=
(
λ
(j)
l

)2
μ(l−1) +

(
1− λ

(j)
l

)2
γ+

2λ
(j)
l

(
1− λ

(j)
l

)
d(l,j) − 2λ

(j)
l ν(l−1) − 2

(
1− λ

(j)
l

)
q(l−1)(j).

Step 2): Find

Q(l,jl) = min
{
Q(l,j), l ≤ j ≤ N

}
. (32)

Then the jlth column and the lth column of X(l−1)
N are interchanged to yield X

(l)
N . Also the jlth

column and the lth column of q
(l−1)
N are interchanged to yield q

(l)
N . This effectively selects the

lth kernel.

Step 3): With λl = λ
(jl)
l , calculate β

(l)
l using (7). Then apply (24) to find σl.

Step 4). Update p
(l)
l , C(l)

l . Recalculate λl using (19) and (20). Recalculate β
(l)
l using (7). Update

μ(l), ν(l) and Q(l)(λl, σl) using (11)-(14).

Termination: The selection procedure is terminated at the (M + 1)th stage when the following

condition is satisfied ∣∣Q(M+1) −Q(M)
∣∣ ≤ δQ,

where δQ is a predetermined very small positive number, and this produces a subset model with

the M significant kernels.
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TABLE I

COMPUTATIONAL COST OF THE PROPOSED ALGORITHM IN COMPARISON TO THE FCR-MISE ALGORITHM AT THE lTH

FORWARD STEP.

Method Kernel selection Kernel width tuning kernel weight re-estimation
FCR-MISE (N − l + 1)O(l) none none
The proposed (N − l + 1)O(l) Iter×O(N + l) O(N)

D. Remarks:

Remark 1: The reason that the optimisation of (18) with respect to λl and σl is carried

out separately is that the optimal value λl can be expressed in closed form for fixed σl, thus

significantly reducing computational costs. Alternatively both of them can be optimized using

gradient descent algorithm simultaneously. Since the relationship with respect to σl is not

quadratic, the results will not be the same, each only achieving a local minimum. However

the property that (18) is quadratic in λl cannot be exploited for computational advantage.

Remark 2: In FCR-MISE algorithm [19], each kernel has a common fixed width, and appropri-

ate kernel value can be determined empirically through trial and error based on cross-validation.

More specifically, a suitable kernel width value can be found using a line search based on the

cross-validation performance. In the proposed algorithm, the kernel width is given as a σM ,

where each element in σM is optimized from an initial σ0 which needs to be preset. Unlike the

fixed kernel width in FCR-MISE algorithm [19], the choice of σ0 is more relaxed, since there

is a wide range of suitable values.

E. Computational cost

The proposed algorithm is an extension to the low cost FCR-MISE algorithm [19], with the

difference that each kernel is tuned after it has been selected. The FCR-MISE algorithm [19] has

a significant advantage in that it offers a much lower complexity in constructing PDF estimate

than other existing sparse estimators with O(N2) complexity. Table I compares the computational

cost of the proposed algorithm with that of the FCR-MISE algorithm at the lth forward step.

Overall the computational cost is increased at each forward stage, compared to the FCR-MISE

algorithm. Since the tuning of the kernel is only applied to the selected kernel, the extra cost

is small. In contrast to our proposed algorithm which automatically tunes each kernel width,

however, there exists extra computational cost for any estimator based on a pre-set fixed single
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kernel width, such as the FCR-MISE algorithm, since this kernel width has to be empirically

tuned outside the algorithm loop. Moreover, the total computational cost of an algorithm is

dependent on the model size M of the final selected model. Since M is usually much smaller

than N , the total computational cost is approximately linear with respect to the model size M .

Since our proposed algorithm can produce a much smaller model, its total computational cost

can actually be lower than that of the FCR-MISE algorithm.

IV. SIMULATION STUDY

Two numerical examples are provided. In each example, we randomly draw a data set of N

points from a known distribution p(x) to construct the PDF estimate p̂(M)
(
xk;βM ,σM

)
based

on the proposed approach. A separate test data set of Ntest = 10000 sample points was used for

evaluation according to the L1 norm

L1 =
1

Ntest

Ntest∑
k=1

∣∣p(xk

)− p̂(M)
(
xk;βM ,σM

)∣∣. (33)

The experiment was repeated for 100 different random runs.

Example 1: The density to be estimated for this 2-dimensional (2-D) example was given by

the mixture of two densities, a Gaussian and a Laplacian, as defined by

p(x) =
1

4π
exp

(
−(x1 − 2)2

2

)
exp

(
−(x2 − 2)2

2

)

+
0.35

8
exp(−0.7|x1 + 2|) exp(−0.5|x2 + 2|). (34)

The estimation data set had N = 500 samples.

Example 2: The density to be estimated for this 6-D example was the mixture of three

Gaussians defined by

p(x) =
1

3

3∑
i=1

1

(2π)3
√

det(Γi)

× exp

(
−1

2
(x− μi)

TΓ−1
i (x− μi)

)
, (35)

with μ1 = [1 1 1 1 1 1]T, μ2 = [−1 − 1 − 1 − 1 − 1 − 1]T , μ3 = [0 0 0 0 0 0]T, Γ1 =

diag{1, 2, 1, 2, 1, 2}, Γ2 = diag{2, 1, 2, 1, 2, 1}, and Γ3 = diag{2, 1, 2, 1, 2, 1}. The estimation

data set had N = 600 samples.
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TABLE II

PERFORMANCE COMPARISON OF KERNEL DENSITY ESTIMATORS.

(a) Example 1

Method L1 test error Kernel number
(mean ± STD) (mean ± STD)

PW (4.18± 0.8)× 10−3 500± 0
SDC [17] (3.83± 0.8)× 10−3 11.9± 2.6
SKD [18] (3.84± 0.8)× 10−3 15.3± 3.9
RSDE-MNQP [11] (4.24± 0.8)× 10−3 129.4± 35.7
FCR-MISE [19] (3.33± 0.8)× 10−3 25.1± 2.7
RTR-MISE [14] (3.13± 0.7)× 10−3 36.7± 11.3
The proposed (3.57± 0.7)× 10−3 7.6± 1.4

(b) Example 2

Method L1 test error Kernel number
(mean ± STD) (mean ± STD)

PW (3.18± 0.13)× 10−5 600± 0
SDC [17] (4.48± 1.2)× 10−5 14.9± 2.1
SKD [18] (3.11± 0.5)× 10−5 9.4± 1.9
RSDE-MNQP [11] (3.67± 0.7)× 10−5 29.4± 10.1
FCR-MISE [19] (2.82± 0.1)× 10−5 19.4± 0.9
RTR-MISE [14] (2.53± 0.1)× 10−5 81.2± 20
The proposed (2.64± 0.2)× 10−5 2.9± 0.2

Six methods were used for comparison: (a) the well known PW estimate; (b) the sparse

density construction (SDC) algorithm [17]; (c) the sparse kernel density construction (SKD)

algorithm [18]; (d) the reduced set density estimator with multiplicative nonnegative quadratic

programming (RSDE-MNQP) [11]; (e) the FCR-MISE algorithm [19]; and (f) the RTR-MISE

algorithm [14].

We briefly explain these six algorithms. Both the SDC algorithm [17] and the SKD algorithm

[18] are regression-based PDF estimation methods that construct sparse PDF forwardly. For

the SDC algorithm, the empirical CDF is constructed and used as the desired response, but

for the SKD algorithm the PW estimate is constructed and used as the desired response. The

RSDE-MNQP [11], the FCR-MISE [19] and the RTR-MISE [14] are all based on the MISE,

but employ different optimization algorithms. Specifically, the RSDE-MNQP algorithm uses

the MNQP algorithm, the FCR-MISE algorithm formulates the density estimation in a forward

constrained regression manner by selecting one kernel at a time forwardly, and the RTR-MISE

algorithm is based on the Riemannian trust-region algorithm [13]. We also point out that the

MISE cost function is used in PW estimate using grid search for an optimal kernel width.

However, the single kernel width for the other five algorithms needs to be preset empirically.
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The algorithmic parameters of the proposed approach were set to σmin = 0.1 and σmin = 1

for Example 1 and Example 2, respectively, Iter = 20 and η = 0.02 for the both examples,

while δQ was set to 10−4 and 10−5, respectively for the two example. The results obtained by

the seven kernel density estimators are listed in Table II (a) and (b), respectively, for the two

examples, where the results of the SDC, SKD, FCR-MISE and RTR-MISE are quoted from

[14], [17]–[19], respectively. The results of Table II clearly show that our proposed algorithm

can construct much sparser kernel density estimates than the five state-of-the-art benchmark

sparse kernel density estimators compared, with competitive accuracy. Compared to the low

cost FCR-MISE algorithm, the proposed algorithm increases the computational complexity per

forward step of Iter×O(N+ l) due to the tunable kernel calculation. However it is clear that the

resultant models are much sparser leading to fewer forward regression steps for computational

cost reduction. Note that the computational costs of [19] have already been shown to be better

than the other algorithms.

V. CONCLUSIONS

We have introduced a new sparse kernel density estimator with tunable kernels based on the

idea of forward constrained regression by adding one kernel at a time based on the minimum

ISE criterion. Our main contribution has been to develop a new recursive algorithm which selects

a significant kernel at each forward construction stage, and then optimizes the kernel width of

the selected kernels based on the gradient descent algorithm. The significant advantages of the

proposed method are that it is able to obtain very sparse PDF estimates due to the individually

tunable kernel width parameters, and it requires no empirically predetermined parameters out-

side the algorithm. Numerical examples have been employed to demonstrate that the proposed

approach can construct very sparse kernel density estimators with competitive accuracy to the

existing state-of-the-art sparse kernel density estimators.



15

APPENDIX

INTEGRATING
∫
Kσi

(
x,x

′
i

)
Kσj

(
x,x

′
j

)
dx

With the notations x =
[
x1 x2 · · · xm

]T and x
′
i =

[
x

′
i,1 x

′
i,2 · · · x′

i,m

]T for 1 ≤ i ≤ l, we have∫
Kσi

(
x,x

′
i

)
Kσj

(
x,x

′
j

)
dx =

1

(2πσiσj)m

×
m∏
k=1

∫
exp

(
− (xk − x

′
i,k)

2

2σ2
i

− (xk − x
′
j,k)

2

2σ2
j

)
dxk (36)

in which ∫
exp

(
− (xk − x

′
i,k)

2

2σ2
i

− (xk − x
′
j,k)

2

2σ2
j

)
dxk

=

∫
exp

(
−

(σ2
i + σ2

j )x
2
k − 2(x

′
i,kσ

2
j + x

′
j,kσ

2
i )xk

+(x
′
i,k)

2σ2
j + (x

′
j,k)

2σ2
i

2σ2
i σ

2
j

)
dxk

= exp
(
−

(x
′
i,k)

2σ2
j+(x

′
j,k)

2σ2
i

σ2
i +σ2

j
− (x′

i,kσ
2
j+x

′
j,kσ

2
i

σ2
i +σ2

j

)2
2σ2

i σ
2
j/(σ

2
i + σ2

j )

)

×
∫

exp
(
−
(
xk − (x

′
i,kσ

2
j + x

′
j,kσ

2
i )/(σ

2
i + σ2

j )
)2

2σ2
i σ

2
j/(σ

2
i + σ2

j )

)
dxk

= exp
(
− (x

′
i,k − x

′
j,k)

2

2(σ2
i + σ2

j )

)

×
∫

exp
(
−
(
xk − (x

′
i,kσ

2
j + x

′
j,kσ

2
i )/(σ

2
i + σ2

j )
)2

2σ2
i σ

2
j/(σ

2
i + σ2

j )

)
dxk. (37)

Noting
∫

1√
2πs

exp
(
− (x−μ)2

2s

)
dx = 1, we have∫

exp
(
− (xk − x

′
i,k)

2

2σ2
i

− (xk − x
′
j,k)

2

2σ2
j

)
dxk

=
√

2πσ2
i σ

2
j/(σ

2
i + σ2

j ) exp
(
− (x

′
i,k − x

′
j,k)

2

2(σ2
i + σ2

j )

)
(38)

so that ∫
Kσi

(
x,x

′
i

)
Kσj

(
x,x

′
j

)
dx

=
1

(2πσ2
i,j)

m/2
exp

(
− ‖x

′
i − x

′
j‖2

2σ2
i,j

)
= Kσi,j

(x
′
i,x

′
j) (39)
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with σi,j =
√
σ2
i + σ2

j .
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