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a b s t r a c t

Many learning algorithms use hypothesis spaces which are trained from samples, but little
theoretical work has been devoted to the study of these algorithms. In this paper we
show that mathematical analysis for these algorithms is essentially different from that for
algorithms with hypothesis spaces independent of the sample or depending only on the
sample size. The difficulty lies in the lack of a proper characterization of approximation
error. To overcome this difficulty, we propose an idea of using a larger function class (not
necessarily linear space) containing the union of all possible hypothesis spaces (varying
with the sample) to measure the approximation ability of the algorithm. We show how
this idea provides error analysis for two particular classes of learning algorithms in kernel
methods: learning the kernel via regularization and coefficient based regularization. We
demonstrate the power of this approach by its wide applicability.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In learning theory, a widely used approach is regularization, or a penalized version of the classical structural or empirical
risk minimization [1–3]. This approach, given an input metric space X , an output space Y ⊂ R and a sample z =
{(xi, yi)}mi=1 ∈ (X × Y )

m independently and identically drawn according to an underlying distribution ρ on Z = X × Y ,
searches over a setH of functions from X to Y , called the hypothesis space, for a function

fz = argmin
f∈H
{Ez(f )+ λΩ(f )} . (1.1)

Here Ez(f ) = 1
m

∑m
i=1 `(y, f (x)) is the empirical risk with ` : R2 → R+ a loss function measuring the prediction error as

`(y, f (x)) if f (x) is used to predict the real output y, λ is a nonnegative regularization parameter, and Ω : H → R+ is a
penalty functional which usually satisfies Ω(0) = 0 for 0 ∈ H . When λ = 0, (1.1) becomes the classical empirical risk
minimization (ERM) scheme [1].
Many learning algorithms fall into the setting of (1.1) with specific loss function, hypothesis space and penalty functional,

including regularization networks [3] and support vector machines (SVM) [4]. The choice of the loss function ` usually
depends on learning problems, for example, the least square loss (y− f (x))2 for regression and the hinge loss (1−yf (x))+ =
max {1− yf (x), 0} for classification with support vector machines.
We are interested in the generalization ability of the scheme (1.1). Our purpose is to bound the (excess) generalization

error E(fz)− E(f ∗` ), where

E(f ) = E `(y, f (x)) =
∫
Z
`(y, f (x))dρ
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is the expected risk and

f ∗` = argmin E(f )

with the minimum taken over all measurable functions is the target function. This has received much attention in the
literature and there have been lot of works on this topic, for cases where the loss function, hypothesis space and penalty
functional are specified, see e.g. [5–10] and the references therein. Among them the most useful case is the regularization
in a reproducing kernel Hilbert space (RKHS) associated with a Mercer kernel.
A Mercer kernel K on X is a continuous symmetric function K : X × X → Rwhich is positive semi-definite in the sense

that thematrix
(
K(xi, xj)

)m
i,j=1 is positive semi-definite for any set {xi}

m
i=1 ⊆ X . The RKHS associatedwith theMercer kernel K

is defined [11] as the completion of the linear span of the set of functions {K(x, ·) : x ∈ X}with the inner product satisfying
〈K(x, ·), K(x′, ·)〉K = K(x, x′).

Example 1. Let K be a Mercer kernel on X andH = HK ,Ω(f ) = ‖f ‖2K . Then (1.1) becomes the regularization algorithm in
RKHS

fz = arg min
f∈HK

{
Ez(f )+ λ‖f ‖2K

}
. (1.2)

A main advantage of such a setting is that this algorithm reduces to a finite dimensional optimization problem due to the
representer theorem [12,13], which holds because of the reproducing property of the RKHS.

The choice of the hypothesis spaceH and the penalty functionalΩ are crucial for the performance of the algorithm (1.1).
One classical approach is to choose the hypothesis space H according to some a priori knowledge on the sampling

distribution ρ. In this case the hypothesis space is independent of the sample. A typical example is the set of linear functions
in linear regression and linear discrimination analysis.
Another approach in the literature concerns more the fit of the hypothesis space to the data. A large class of learning

algorithms with this approach choose the hypothesis space and the penalty functional according to the sample size only:
H = Hm andΩ = Ωm. That is,

fz = arg min
f∈Hm
{Ez(f )+ λΩm(f )} . (1.3)

A typical example is tuning the kernel parameter according to the sample size [14–16] where with a Gaussian kernel
Kσ (x, y) = exp

{
−
|x−y|2

2σ 2

}
of variance σ = σm depending onm, the hypothesis space isH = HKσm andΩ(f ) = ‖f ‖

2
Kσm
.

In the literature, almost all the results on the error analysis of the scheme (1.1) focus on (1.3), for algorithms with
hypothesis spaces independent of the sample or only depending on the sample size, see [1,6,4,3,17,7,18,14,15,9] and the
references therein. Usually the error bounds are obtained by balancing the sample (estimation) error and the approximation
error,which leads to suitable choices of parameters according to the sample sizem. Evenwhen the hypothesis space depends
on the sample size, the error analysis can still be done by first fixing the parameterized hypothesis space and then optimizing
the regularization parameter. So throughout the paper we regard the hypothesis spaces depending only on the sample size
as ‘‘sample independent’’.
The main purpose of this paper is to study learning algorithms of the form (1.1) with the hypothesis space depending

on the sample z, not only on the sample size m. That is,H = Hz with a penalty functional also depending on the sample:
Ω = Ωz. So the scheme (1.1) now takes the following sample dependent form

fz = arg min
f∈Hz
{Ez(f )+ λΩz(f )} . (1.4)

Learning algorithms of the type (1.4) include model selection via resampling [19], adaptive model selection [20], universal
algorithms [21,22], tuning kernel parameter via sample values [23], learning the kernel [24,25] and coefficient based
regularization [26,13,27] in kernel methods. Let us list two special examples here. For more details and mathematical
analysis, see Sections 3–5.

Example 2. Let X ⊂ Rn and Kσ (x, y) = exp
{
−
|x−y|2

2σ 2

}
be Gaussian kernels with 0 < σ <∞. Define

σz = arg min
0<σ<∞

min
f∈HKσ

{
Ez(f )+ λ‖f ‖2Kσ

}
.

TakingH = HKσz andΩ(f ) = ‖f ‖
2
Kσz
in (1.1) yields a special example of the sample dependent scheme (1.4) for learning

the kernel:

fz = arg min
f∈Hσz

{
Ez(f )+ λ‖f ‖2Kσz

}
.
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Example 3. Let 1 ≤ p <∞ and K ∈ C(X × X) (not necessarily positive semi-definite). Choose

Hz =

{
m∑
i=1

αiK(xi, ·) : (α1, . . . , αm) ∈ Rm
}
and Ωz

(
m∑
i=1

αiK(xi, ·)

)
=

m∑
i=1

|αi|
p.

Then (1.1) becomes a special example of the sample dependent scheme (1.4) where fz =
∑m
i=1 αz,iK(xi, ·) with αz =

(αz,1, . . . , αz,m)
T given by

αz = arg min
α∈Rm

{
Ez

(
m∑
i=1

αiK(xi, ·)

)
+ λ

m∑
i=1

|αi|
p

}
.

In the literature, no much attention has been paid to the error analysis of the sample dependent scheme (1.4) which
is of the same importance. To the best of our knowledge, only two special cases have been considered. One is for those
algorithms that can be written as two-stage minimization problems with the first layer minimization associated with a
sample independent hypothesis space. The error analysis can be done by making full use of this special feature of these
algorithms, for example, in [20–22] for the adaptive model selection and universal estimators. The other is the linear
programming SVM for which the error analysis is done in [28] by relating it to the well-known classical SVM.
An immediate question is whether methods for analyzing the scheme (1.3) still work for (1.4). Unfortunately, this is not

the case. We shall point out in Section 2 that the error analysis for the scheme (1.4) with sample dependent hypothesis
space is essentially different from and more difficult than that for (1.3). Then we will focus on the error analysis for the
scheme (1.4). Our main contribution is to provide a general approach, by which we study two classes of algorithms in kernel
methods: learning the kernel (like Example 2) and coefficient based regularization (like Example 3). The main advantage
of our approach is its generality and wide applicability. Of course, for particular algorithms, better error bounds might be
obtained by means of special features of specific algorithms.

2. Error decomposition in mathematical analysis

When the hypothesis space H is independent of the sample or depends only on the sample size, a widely used and
powerful method for the error analysis of the scheme (1.1) based on ERM and regularization is the error decomposition
method which bounds the generalization error by the sum of sample error and approximation (or regularization) error. The
sample error is usually estimated by concentration inequalities [29,2,3,30] and the approximation error by rich knowledge
from approximation theory [14,8,31,32,18]. This method has been well understood. Let us explain this briefly for fz given
by (1.1).

2.1. Error decomposition with sample independent hypothesis

The main idea of error decomposition is the law of large numbers by which we have Ez(f ) → E(f ) in probability (as
m→∞) for a fixed function f . So we expect that fz defined by (1.1) is a good approximation of its sample independent or
noise-free limit defined by

fλ,H = argmin
f∈H
{E(f )+ λΩ(f )} . (2.1)

Write
E(fz)− E(f ∗` ) = {E(fz)− Ez(fz)} +

{
(Ez(fz)+ λΩ(fz))−

(
Ez(fλ,H )+ λΩ(fλ,H )

)}
+
{
Ez(fλ,H )− E(fλ,H )

}
+
{
E(fλ,H )− E(f ∗` )+ λΩ(fλ,H )

}
− λΩ(fz).

Since fz is a minimizer of the penalized empirical risk, the second term is≤ 0. Also,−λΩ(fz) ≤ 0. So we have the following
error decomposition

E(fz)− E(f ∗` ) ≤
{
E(fz)− Ez(fz)+ Ez(fλ,H )− E(fλ,H )

}
+D(λ) (2.2)

where
D(λ) :=

{
E(fλ,H )− E(f ∗` )+ λΩ(fλ,H )

}
= inf
f∈H

{
E(f )− E(f ∗` )+ λΩ(f )

}
.

The first term in the error decomposition (2.2) is called the sample error. Here the quantity Ez(fλ,H ) − E(fλ,H ) can be
estimated by applying standard probability inequalities to the random variable `(y, fλ,H (x)) in (Z, ρ). The other quantity
E(fz) − Ez(fz) involves a set of random variables `(y, f (x)) with f running over a subset ofH , which leads to the theory of
uniform convergence [1] studying those function setsF satisfying supf∈F |Ez(f )−E(f )| → 0with confidence (asm→∞).
Thus bounds for the sample error for a specific hypothesis space H can be derived by concentration inequalities [2] and
depend on the capacity of the hypothesis space [33,34].
The last term D(λ) in the error decomposition (2.2) is independent of the sample. It characterizes the approximation

ability of the hypothesis space H (with respect to the target function f ∗` ) and is called the approximation error or
regularization error [35,32].
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The above error decomposition procedure is now standard in learning theory and also works for the scheme (1.3). Its
key feature provided by the sample independent scheme (1.3) is that the approximation errorD(λ) does not depend on the
sample z.

2.2. Error decomposition with sample dependent hypothesis

Things become completely different for the scheme (1.4) where the hypothesis space depends on the sample. At first
glance, it seems that the error decomposition procedure (2.2) is still valid. However, this needs us to formally define a
function fλ,Hz as a minimizer of the penalized expected risk overHz and then the approximation error as E(fλ,Hz)−E(f ∗` )+
λΩz(fλ,Hz). This quantity depends on the sample z. So the approximation error defined in such a way involves not only the
approximation ability of a fixed hypothesis space with respect to the target function but also the variance of the sample.
This is the essential difficulty of the problem. As we know there is no general approach in the literature to overcome this
difficulty. Error decomposition methods like (2.2) cannot be applied directly to analyze the generalization performance of
algorithms with sample dependent hypothesis spaces.
In this paper we propose an error decompositionmethod which works for sample dependent hypothesis spaces. The key

idea lies in a universal hypothesis and proper definition of the approximation error.

Definition 1. We say that a class H0 of functions on X is a universal hypothesis associated with the scheme (1.4) if⋃
m∈N

⋃
z∈Zm Hz ⊆ H0. The approximation error associated withH0 and a penalty functionalΩ0 : H0 → R+ is defined as

D0(λ) = inf
f∈H0

{
E(f )− E(f ∗` )+ λΩ0(f )

}
, λ > 0. (2.3)

Note that the universal hypothesis is not necessarily a linear space. The approximation error (2.3) is independent of the
sample z. A minimizer

fλ,H0 = arg minf∈H0
{E(f )+ λΩ0(f )} (2.4)

of the approximation error will help to realize the error decomposition: write

E(fz)− E(f ∗` ) = {E(fz)− Ez(fz)} +
{
(Ez(fz)+ λΩz(fz))−

(
Ez(fλ,H0)+ λΩ0(fλ,H0)

)}
+
{
Ez(fλ,H0)− E(fλ,H0)

}
+
{
E(fλ,H0)− E(f ∗` )+ λΩ0(fλ,H0)

}
− λΩz(fz).

Define the sample error as

S(z, λ) = {E(fz)− Ez(fz)} +
{
Ez(fλ,H0)− E(fλ,H0)

}
(2.5)

which may be estimated in terms of the capacity ofH0.
If we define further the hypothesis error P (z, λ) as

P (z, λ) = (Ez(fz)+ λΩz(fz))−
(
Ez(fλ,H0)+ λΩ0(fλ,H0)

)
, (2.6)

then we obtain an error decomposition for the algorithm (1.4) with the sample dependent hypothesis space as

E(fz)− E(f ∗` ) ≤ S(z, λ)+ P (z, λ)+D0(λ). (2.7)

This proceduremay be regarded as a generalization of the error decomposition technique in (2.2): if the hypothesis space
is sample independent, one can take H0 = H and Ω0 = Ω . Then the hypothesis error is at most zero and (2.7) reduces
to (2.2).

2.3. Choosing the universal hypothesis

For the sample dependent case, in general the hypothesis error P (z, λ) does not satisfy P (z, λ) ≤ 0: the functionalΩ0
is different from the functional Ωz in the definition of fz. Hence the sum of the sample error and the approximation error
need not bound the generalization error E(fz)− E(f ∗` ). This forms the essential difference and difficulty.
The error decomposition (2.7) still yields satisfactory error analysis ifwe can choose the universal hypothesisH0 properly.

A proper choice of (H0,Ω0) is important not only for estimating the hypothesis error P (z, λ) (mainly caused by the
difference between the penalty functionalsΩ0 andΩz), but also for bounding the sample error S(z, λ) (dependingmainly on
the capacity ofH0) aswell as the approximation errorD0(λ) (measuring the approximation ability of (H0,Ω0)). Fortunately
this is possible for many algorithms. Here we propose two approaches for choosing (H0,Ω0).
The first approach to choose the universal hypothesisH0 works for learning algorithmswhich can be formulated as two-

stage optimization problems (see Example 2). Let {Hσ : σ ∈ Σ} be a set of function spaces togetherwith penalty functionals
{Ωσ }. Take

σz = argmin
σ∈Σ

min
f∈Hσ
{Ez(f )+ λΩσ (f )}
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and define fz by (1.4) with Hz = Hσz and Ωz = Ωσz . For such learning algorithms, we can take H0 = ∪σ∈Σ Hσ and
Ω0(f ) = inf{Ωσ (f ) : f ∈ Hσ , σ ∈ Σ}. Then the error decomposition (2.7) can be applied. This approach will be
demonstrated in Section 3 for the algorithm of learning the kernel via regularization.
Our second approach works when all the sample dependent hypothesis spaces Hz are subspaces of a Banach space or

even a Hilbert space (see Example 3). We naturally choose this Banach space as the universal hypothesisH0. If we can find
a penalty functionalΩ0 onH0 such that the quantity

(Ez(fz)+ λΩz(fz))−
(
Ez(fµ)+ µΩ0(fµ)

)
(2.8)

can be bounded efficiently where

fµ := arg min
f∈H0
{E(f )+ µΩ0(f )}

for someµ = µ(λ) > 0, then the error decomposition (2.7) can be used to provide satisfactory error bounds. Here to bound
(2.8) the penalty functional Ω0 on H0 should be closely related to the penalty functional Ωz on Hz. This approach will be
demonstrated for the algorithm of coefficient based regularization, with a positive semi-definite kernel in Section 4 and a
general kernel in Section 5.

3. Learning the kernel via regularization

If the Mercer kernel K is fixed, the algorithm (1.2) is well understood, see e.g. [7,8,14,35,31] and the references therein. A
crucial problem for this algorithm is the choice of the kernel. It essentially determines the performance of the algorithm, as
has been proved both practically and theoretically. This has recently motivated the research topic of learning the kernel, see
e.g. [24,23,36,37,25]. These learning algorithms construct a kernel Kz which depends on the sample z. With such a kernel,
(1.2) becomes an algorithm with sample dependent hypothesis space and the classical analysis for regularization schemes
with a fixed kernel does not work. Here we show how our idea can be applied to this setting.
LetK be a set of Mercer kernels on X . For every K ∈ K , let

Qλ(K) = min
f∈HK

{
Ez(f )+ λ‖f ‖2K

}
.

The approach of learning the kernel via regularization finds a kernel Kz ∈ K by

Kz = argmin
K∈K

Qλ(K). (3.1)

Note that Example 2 is a special case whereK is a set of Gaussians. Under very mild conditions, this approach is shown to
be solvable [25,31] and prevent overfitting [38].
Consider the function fz defined by (1.2) with the kernel being Kz learned by (3.1). The hypothesis space here is the RKHS

HKz and the penalty functional is Ωz(f ) = λ‖f ‖2Kz . We use our idea of error decomposition in this setting. Define H0 =⋃
K∈K HK . It is easy to check that

⋃
z HKz ⊆ H0 for every Kz ∈ K. Define, for f ∈ H0,Ω0(f ) = inf

{
‖f ‖2K , f ∈ HK , K ∈ K

}
and let

fλ,H0 = arg minf∈H0
{E(f )+ λΩ0(f )} .

Proposition 2. Let fz be the solution of (1.2) with the kernel Kz given by (3.1). With H0, Ω0 and fλ,H0 defined as above, there
holds

P (z, λ) =
(
Ez(fz)+ λ‖fz‖2Kz

)
−
(
Ez(fλ,H0)+ λΩ0(fλ,H0)

)
≤ 0.

Proof. Since fλ,H0 ∈ H0, there exists a subset Kλ of K such that fλ,H0 ∈ HK for every K ∈ Kλ and Ω0(fλ,H0) =
infK∈Kλ

‖fλ,H0‖
2
K . By the definition of Kz and fz, we have

Ez(fz)+ λ‖fz‖2Kz = Qλ(Kz) = min
K∈K

Qλ(K) ≤ min
K∈Kλ

Qλ(K)

≤ min
K∈Kλ

{
Ez(fλ,H0)+ λ‖fλ,H0‖

2
K

}
= Ez(fλ,H0)+ λΩ0(fλ,H0).

This proves the conclusion. �

By Proposition 2, the hypothesis errorP (z, λ) vanishes and the error decomposition (2.7) reduces to (2.2). Then one can
estimate the error bounds and find the learning rates, as done in [38,39].
The learning algorithm (1.2) with Kz given by (3.1) is also known as learning in the multi-kernel spaces H0 in [31,38],

since it can be formulated as

fz = argmin
K∈K

min
f∈HK

{
Ez(f )+ λ‖f ‖2K

}
.



Q. Wu, D.-X. Zhou / Computers and Mathematics with Applications 56 (2008) 2896–2907 2901

In this formulation, it is a regularization scheme with sample independent hypothesis space and the conclusion in
Proposition 2 is an easy consequence of the definition of fz and fλ,H0 . Here we give a different point of view. Note that
not all algorithms for learning the kernel can be written as double layer minimization problems. Though our idea presented
here does not provide new results, we hope it may shed light on the study of other approaches for learning the kernel.

4. Coefficient based regularization with positive semi-definite kernels

The research on coefficient based regularization dates back to the study of ridge regression in the 1970’s [26]. It is usually
used in statistics and learning theory when one needs to fit the data in certain trend, for instance, a linear function in ridge
regression and a linear combination of simple classifiers in boosting. It searches for a function over the linear span of a set
of base functions. To be precise, denote by I an index set and {hi}i∈I a set of functions on X . Then the hypothesis space is
H = span {hi}i∈I and the penalty functional is

Ω(f ) =
∑
i∈I

S(αi) for f =
∑
i∈I

αihi ∈ H,

where S : R → R+ is even and nondecreasing on [0,+∞). Typical choices are S(t) = |t|p, 1 ≤ p ≤ +∞, in the `p
regularization. This method has attracted much attention recently because it leads to sparse solutions and may be useful in
signal processing and feature subset selection [13,27].
Whether the hypothesis space of the coefficient based regularization scheme is sample dependent or sample independent

is determined by the choice of base functions hi. In kernel methods, the base functions have the form hi(x) = K(x′i, x) with
K : X × X → R a given kernel. When x′i coincides with the sample pattern xi, it leads to the sample dependent hypothesis
space

HK ,z =

{
fα : fα(x) =

m∑
i=1

αiK(xi, x),α = (α1, . . . , αm) ∈ Rm
}
. (4.1)

The coefficient based regularization algorithm with the hypothesis spaceHK ,z is

fz = fαz = arg minfα∈HK ,z
{Ez(fα)+ λΩ(fα)} . (4.2)

We see that Example 3 belongs to this model.
Another advantage of this setting is that the kernel K is not necessarily positive semi-definite. This may be useful in some

cases and will be studied in detail in the next section.
In this section we consider the case when the kernel is positive semi-definite. We will show that (4.2) is closely related

to (1.2) in this case. Firstly, the reproducing kernel Hilbert space is well studied and hence the approximation error can be
well estimated. Secondly, the hypothesis error can be well estimated by bounding the quantity (2.8). Lastly, rich knowledge
about the algorithm (1.2) enhances our understanding of (4.2).
Now assume that the kernel K involved in the algorithm (4.2) is positive semi-definite. ChooseH0 = HK andΩ0(f ) =

η‖f ‖2K for f ∈ HK with η > 0 a parameter to be determined later. Obviously
⋃
m∈N

⋃
z∈Zm HK ,z ⊆ H0, soH0 is a universal

hypothesis.
To estimate the hypothesis error P (z, λ) and hence activate the error decomposition (2.7), we relate (4.2) to (1.2).
Let µ = ηλ. To avoid confusion, here we denote by f +z,µ the solution to (1.2) with regularization parameter µ, i.e.,

f +z,µ = arg minf∈HK

{
Ez(f )+ µ‖f ‖2K

}
. (4.3)

It will play the role of a stepping stone between fz and fλ,H0 = fµ defined by

fµ = arg min
f∈HK

{
E(f )+ µ‖f ‖2K

}
.

The representer theorem (see e.g. [12,13]) asserts that f +z,µ = fαµ ∈ HK ,z for some αµ = (αµ,1, . . . , αµ,m) ∈ Rm. Hence a
comparison between fz and f +z,µ is possible. On the other hand, fµ is a data-free limit of f

+
z,µ. The following result bounds the

hypothesis error with satisfactory rates.

Proposition 3. Let z ∈ Zm. Assume `(y, 0) ≤ M̃ almost surely for some M̃ > 0. If there exist two nonnegative constants
C1 = C1(µ,m) and C2 = C2(µ,m) such that

Ω(f +z,µ) =
m∑
i=1

S(αµ,i) ≤ C1Ez(f +z,µ)+ C2‖f
+

z,µ‖
2
K (4.4)

and η is chosen to satisfy η ≥ C2
1+λC1

(that is, µ ≥ λC2
1+λC1

), then

(Ez(fz)+ λΩ(fz))−
(
Ez(fµ)+ µ‖fµ‖2K

)
≤ λC1M̃.
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Proof. By the fact f +z,µ ∈ HK ,z, we know that

Ez(fz)+ λΩ(fz) ≤ Ez(f +z,µ)+ λΩ(f
+

z,µ).

The relation (4.4) and the assumption on η further bound the right-hand side by

(1+ λC1)Ez(f +z,µ)+ λC2‖f
+

z,µ‖
2
K = (1+ λC1)

(
Ez(f +z,µ)+

λC2
1+ λC1

‖f +z,µ‖
2
K

)
≤ (1+ λC1)

(
Ez(f +z,µ)+ µ‖f

+

z,µ‖
2
K

)
.

But

Ez(f +z,µ)+ µ‖f
+

z,µ‖
2
K ≤ Ez(0)+ µ · 0 ≤ M̃

and

Ez(f +z,µ)+ µ‖f
+

z,µ‖
2
K ≤ Ez(fµ)+ µ‖fµ‖2K .

Our conclusion follows. �

From Proposition 3,P (z, λ) ≤ λC1M̃ when (4.4) holds. Thus the key for an efficient error decomposition of scheme (4.2)
is an inequality of form (4.4) for the scheme (1.2). Moreover, for the bound λC1M̃ of the hypothesis error to be effective, we
would require λC1 → 0 as m→ ∞ with proper choice of λ to guarantee the consistency. Fortunately, this is true in most
cases. Next we illustrate this for two particular learning algorithms: the kernel regression and linear programming SVM.

4.1. Kernel regression

Ridge regression tries to fit the data by a linear model. If we fit the data by linear combinations of kernel functions
evaluated at the sampling points, this is just the scheme (4.2)with least square loss and penalty functionalΩ(fα) =

∑m
i=1 α

2
i :

fz = fαz where αz = arg min
α∈Rm

{
1
m

m∑
i=1

(fα(xi)− yi)2 + λ‖α‖2`2

}
. (4.5)

By computing the partial derivatives, we see that the solution of (4.5) is given by fz = fαz with αz satisfying the linear system

(λmIm + (K [x])2)α = K [x]y,
where K [x] = (K(xi, xj))mi,j=1 and y = (y1, . . . , ym)

T .
For this algorithm, we have the following conclusion.

Theorem 4. With the least square loss, the solution f +z,µ = fαµ to (4.3) satisfies
m∑
i=1

α2µ,i =
1
mµ2

Ez(f +z,µ).

Hence with the choice η = 1 (so that µ = λ) we have(
Ez(fz)+ λ

m∑
i=1

α2z,i

)
−
(
Ez(fµ)+ µ‖fµ‖2K

)
≤
M2

mλ

if |y| ≤ M almost surely.

Proof. Recall that the coefficient αµ for f +z,µ satisfies

(µmIm + K [x])αµ = y.

This gives µmαµ = y− K [x]αµ. But f +z,µ(xi) =
∑m
j=1 αµ,jK(xj, xi) is just the ith component of the vector K [x]αµ. We have

µ2m2
m∑
i=1

α2µ,i =

m∑
i=1

(yi − f +z,µ(xi))
2
= mEz(f +z,µ).

This proves the first claim. It shows that (4.4) holdswithC1 = 1
mµ2
andC2 = 0. The choiceη = 1 impliesµ = λ > 0 =

λC2
1+λC1

.
Hence our conclusion follows from Proposition 3 and the bound `(y, 0) = y2 ≤ M2. �

By Theorem 4, in the error decomposition (2.7) of scheme (4.5), the hypothesis error is well bounded: P (z, λ) ≤ M2
mλ .

It decays of order O( 1mλ ). This is rather fast. We will not go into the details of estimating error bounds and learning rates
because they are standard in learning theory and out of the scope of this paper. But we refer the reader to [9] for some
techniques.



Q. Wu, D.-X. Zhou / Computers and Mathematics with Applications 56 (2008) 2896–2907 2903

4.2. Linear programming SVM classification

Support vector machine classification algorithms use the hinge loss `(y, f (x)) = (1− yf (x))+ with Y = {±1} containing
only two labels. The classical kernel SVM searches for a classifier sgn(fz) by taking signs of a real-valued function fz ∈ HK
obtained by a regularization scheme of form (1.2). It is implemented by convex quadratic programming optimization [1].
The linear programming SVMwas motivated by the idea of having a solution with sparser representation [1]. It searches for
a classifier sgn(fz) generated by a real-valued function fz produced inHK ,z by the algorithm

fz = fαz where αz = arg min
α∈Rm

{
1
m

m∑
i=1

(1− yifα(xi))+ + λ‖α‖`1

}
.

It can be implemented by convex linear programming optimization and have the ability of handling huge data. For this
algorithm, we have the following result.

Theorem 5. With the hinge loss, the solution f +z,µ = fαµ to (4.3) satisfies
m∑
i=1

|αµ,i| =
1
2µ

Ez(f +z,µ)+ ‖f
+

z,µ‖
2
K .

Hence with a choice η ≥ 1/2 we have(
Ez(fz)+ λ

m∑
i=1

|αz,i|

)
−
(
Ez(fµ)+ µ‖fµ‖2K

)
≤
1
2η
.

The first part follows from the KKT conditions of the optimization problem for (4.3) while the second follows from
Proposition 3. This result holds true even when an offset term is involved (see [28]). In order to show the consistency or
find learning rates, one needs to choose η = η(m, λ) → ∞ as m → ∞ and at the same time µ = ηλ → 0 as λ → 0.
This, in general, will lead to learning rates slightly worse than that of the classical quadratic programming SVM. But when
the kernel spaceHK has low capacity, they may have the same rates. For details we refer to [28].

4.3. Sharper bound for noise-free distributions

We have given a general clue to activate the error decomposition (2.7) for the coefficient based regularization scheme
(4.2) by bounding the hypothesis error in Proposition 3. This bound is independent of the underlying distribution from
which the sample is drawn. It might be improved if the distribution is noise free in the sense that E(f ∗` ) = 0. This noise-free
condition means to reconstruct a function from exact data in regression, or the underlying distribution is deterministic in
classification problems.

Proposition 6. Under the assumptions of Proposition 3, if in addition E(f ∗` ) = 0, then there holds

(Ez(fz)+ λΩ(fz))−
(
Ez(fµ)+ µ‖fµ‖2K

)
≤ λC1

{(
Ez(fµ)− E(fµ)

)
+D(µ)

}
(4.6)

where

D(µ) = inf
f∈HK

{
E(f )+ µ‖f ‖2K

}
is just the approximation error.

Proof. By the proof of Proposition 3 we know that

Ez(fz)+ λΩ(fz) ≤ (1+ λC1)
(
Ez(f +z,µ)+ µ‖f

+

z,µ‖
2
K

)
≤ (1+ λC1)

(
Ez(fµ)+ µ‖fµ‖2K

)
.

The conclusion follows by writing

Ez(fµ)+ µ‖fµ‖2K =
(
Ez(fµ)− E(fµ)

)
+
(
E(fµ)+ µ‖fµ‖2K

)
and using the fact that the second term on the right-hand side equalsD(µ) by the definition of fµ. Since E(f ∗` ) = 0, it is just
the approximation error. �

Inmany situations, there holdsD(µ)→ 0 asµ→ 0 (otherwise, the algorithmswould not lead to a good approximation
of the target function f ∗` ). Then the term in the brace on the right-hand side of (4.6) decays to 0 as m → ∞ and µ → 0.
Hence the bound in (4.6) is sharper than that given in Proposition 3. By Proposition 6, to guarantee the consistency for the
noise-free setting it suffices to choose the parameter η so that λC1 is bounded. This also leads to faster learning rates. For an
example, see [28].
We remark that in order to establish results in this section we provided some relations to the classical regularization

schemes in the corresponding RKHS, which is of independent interest.
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5. Coefficient based regularization with general kernels

A main advantage of coefficient based regularization schemes lies in that one may use very general kernels instead of
positive semi-definite ones. This may be useful when a priori knowledge is available or one hopes to fit the data for some
trends.
When a general kernel is used, a Hilbert space approach may be insufficient for characterizing the approximation error.

Instead, we will use a Banach space depending on the kernel K .
Assume that K : X × X → R is continuous. We consider the Banach space FK of all functions of the form

f (x) =
∞∑
i=1

αiK(x′i, x), x′i ∈ X

with the norm

‖f ‖ = inf

{
∞∑
i=1

|αi| : f (x) =
∞∑
i=1

αiK(x′i, x), x
′

i ∈ X

}
.

It is easy to see that FK can be embedded into L∞(X) and

‖f ‖∞ ≤ κ̃‖f ‖ ∀ f ∈ FK

with κ̃ = ‖K‖∞. Moreover, for every z ∈ Zm, there holds HK ,z ⊆ FK . Hence FK may play the role of H0 for the error
decomposition.
Note that one cannot use FK as the hypothesis space and ‖f ‖ the regularizer in the regularization scheme. It may cause

serious computational difficulty since no representer theorem guarantees the solution to have a simple form. ButFK may be
used as a universal hypothesis to characterize the approximation error and hence be useful for the mathematical analysis.
To realize the error decomposition via FK , defineH0 = FK ,Ω0(f ) = ‖f ‖ and

fλ = arg inf
f∈FK
{E(f )+ λ‖f ‖} .

The existence of fλ is not known. But this is not essential in our analysis because a sequence of approximating functions
plays the same role.
Nowwe canproceed the error decomposition procedure. To bound the hypothesis error,weneed somebasic assumptions

on the algorithm and some elementary concepts.
Let us illustrate the idea by studying the following algorithm:

fz = arg min
fα∈HK ,z

{
Ez(fα)+ λ

m∑
i=1

|αi|

}
. (5.1)

Firstly, we assume that the loss function `(y, f (x)) is locally Lipschitz in the sense that for every B > 0 there exists L(B)
such that

|`(y, f (x))− `(y, g(x))| ≤ L(B)|f (x)− g(x)|

for every x ∈ X and any functions f , g with ‖f ‖∞, ‖g‖∞ ≤ B. Obviously L(B) is increasing. Since we do not need the bound
to be sharp, we assume below that L(B) is continuous from the right.
We need the following notation concerning the uniform continuity of the kernel K on the metric space (X, d):

ωK (δ) = sup
t∈X

sup
d(x,x′)≤δ

|K(x, t)− K(x′, t)|.

It is easy to see that limδ→0 ωK (δ) = 0 due to the compactness of X .

Definition 7. A point set {x1, . . . , xm} ⊆ X is said to be ∆-dense if for every x ∈ X there exists some 1 ≤ i ≤ m such that
d(x, xi) ≤ ∆.

If∆ ≥ supx∈X min1≤i≤m d(x, xi), then {x1, . . . , xm} is∆-dense.
The following bound on fλ is an easy consequence of the fact

λ‖fλ‖ ≤ E(fλ)+ λ‖fλ‖ ≤ E(0)+ λ · 0 ≤ M̃.

Lemma 8. If `(y, 0) ≤ M̃ almost surely, there holds

‖fλ‖∞ ≤ κ̃‖fλ‖ ≤ κ̃
M̃
λ
.
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Now we can bound the quantity (2.8) and hence the hypothesis error in the error decomposition (2.7).

Theorem 9. If {x1, . . . , xm} is∆-dense in X, then the solution fz to (5.1) withΩ(fα) = ‖α‖`1 satisfies

(Ez(fz)+ λΩ(fz))− (Ez(fλ)+ λ‖fλ‖) ≤ L

(
κ̃M̃
λ

)
M̃
λ
ωK (∆).

Proof. For any 0 < τ < 1, there exists an expression

fλ(x) =
∞∑
j=1

βjK(tj, x)

such that {tj} ⊂ X and

‖fλ‖ ≤
∞∑
j=1

|βj| ≤ ‖fλ‖ + τ ≤
M̃
λ
+ τ

the last by Lemma 8. Choose N0 ∈ Z+ such that
∑
∞

j=N0+1
|βj| ≤ τ . Then∥∥∥∥∥fλ −

N0∑
j=1

βjK(tj, ·)

∥∥∥∥∥
∞

≤ κ̃

∥∥∥∥∥ ∞∑
j=N0+1

βjK(tj, ·)

∥∥∥∥∥ ≤ κ̃τ .
Since {x1, . . . , xm} is∆-dense in X , for every tj, there exists some x(tj) ∈ {x1, . . . , xm} such that d(x(tj), tj) ≤ ∆. So we have∥∥∥∥∥

N0∑
j=1

βjK(x(tj), ·)−
N0∑
j=1

βjK(tj, ·)

∥∥∥∥∥
∞

≤

N0∑
j=1

|βj|ωK (∆) ≤

(
M̃
λ
+ τ

)
ωK (∆).

It follows that∥∥∥∥∥
N0∑
j=1

βjK(x(tj), ·)− fλ

∥∥∥∥∥
∞

≤

(
M̃
λ
+ τ

)
ωK (∆)+ κ̃τ .

It is easy to see that both
∑N0
j=1 βjK(x(tj), ·) and fλ are bounded in L

∞(X) by κ̃
∑
∞

j=1 |βj| ≤ κ̃(
M̃
λ
+ τ). Since `(y, f (x)) is

locally Lipschitz, we have∣∣∣∣∣Ez

(
N0∑
j=1

βjK(x(tj), ·)

)
− Ez(fλ)

∣∣∣∣∣ ≤ L
(
κ̃

(
M̃
λ
+ τ

))((
M̃
λ
+ τ

)
ωK (∆)+ κ̃τ

)
.

Notice the fact
∑N0
j=1 βjK(x(tj), ·) ∈ HK ,z. There holds

Ez(fz)+ λ
m∑
i=1

|αi,z| ≤ Ez

(
N0∑
j=1

βjK(x(tj), ·)

)
+ λ

N0∑
j=1

|βj|

≤ Ez(fλ)+ L

(
κ̃

(
M̃
λ
+ τ

))((
M̃
λ
+ τ

)
ωK (∆)+ κ̃τ

)
+ λ (‖fλ‖ + τ) .

Let τ → 0. We obtain

Ez(fz)+ λ
m∑
i=1

|αi,z| ≤ Ez(fλ)+ λ‖fλ‖ + L(κ̃
M̃
λ
)
M̃
λ
ωK (∆).

This completes the proof. �

Remark 1. One may also consider the algorithms with regularizerΩ(fα) =
∑m
i=1 |αi|

p for p > 1. In that case, one need to
useΩ0(f ) = η‖f ‖with a suitable choice of the parameter η.

Remark 2. Though we have activated the error decomposition (2.7) for the algorithmwith general kernels, it is still hard to
estimate the error bounds and learning rates. The reason is thatFK is only a Banach space. Its capacity is not easy to control.
The approximation error associated with FK is also difficult. We will not go into the details of these problems but leave
them for future research. But the hypothesis error is not so hard in this case. Theorem 9 tells that it depends on the quantity
ωK (∆).
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Let us present some discussions on this term in what follows.

Definition 10. A probability P is nondegenerate on X if its support is X , i.e., every open subset of X has positive probability
measure.

Proposition 11. Suppose P is nondegenerate and {xi}mi=1 are random samples drawn according to P. Then for every ε > 0, there
exists some µε > 0 such that {xi}mi=1 are ε-dense with probability at least 1 − N (X, ε2 ) exp(−mµε), where N (X, ε2 ) is the
covering number of X by balls of radius ε/2.

Proof. Let Bj, j = 1, . . . ,N = N (X, ε2 ) be the balls with radius
ε
2 covering X . Then µε = minj P(Bj) > 0 since P is

nondegenerate. Let

Ej =
{
{xi}mi=1 ⊆ X : {xi}

m
i=1

⋂
Bj 6= ∅

}
and E =

⋂
j Ej. It is easy to check that every element in E forms an ε-dense set. Thus, the conclusion follows from the fact

that the measure of the set E is at least 1−N (1− µε)m ≥ 1−N exp(−mµε). �

Proposition 11 shows that∆ usually converges fast if themarginal distribution ρX is nondegenerate. This means for large
data setting, the term ωK (∆)will be very small for a smooth kernel.
Theorem 9 tells that the performance of coefficient based regularization schemes depends on the distribution of the

sampling points {xi}mi=1 in X . The quantity ∆ and hence ωK (∆) becomes smaller as the sample size increases. This fact
verifies the idea of improving the performance by semi-supervised learning [40,41], i.e., adding some unlabelled data into
the sample. Intuitively, this is somewhat equivalent to an idea of using a relatively larger hypothesis space.

6. Conclusions and discussions

We observed that many algorithms in the literature use hypothesis spaces trained from samples. However, little
theoretical work has been devoted to the study of these algorithms. We showed some essential differences between these
algorithms and those with sample independent hypothesis spaces. We also point out the difficulty to deal with these
algorithms: the lack of a proper characterization of the approximation error. To overcome this difficulty, we propose the idea
of using a universal hypothesis containing the union of all possible hypothesis spaces (varying with the sample) to measure
the approximation ability of the algorithm.When this is used in the error decomposition procedure, an additional nontrivial
term called hypothesis error appears, comparingwith the algorithmswith sample independent hypothesis spaces.We show
that the hypothesis error can be estimated satisfactorily in many cases by bounding the quantity (2.8). This is illustrated for
two particular classes of learning algorithms in kernel methods: learning the kernel via regularization and coefficient based
regularization. It shows that our approach is widely applicable.
Note that our approach involves a universal hypothesis and is a rather general clue. Such a generality is sometimes also

a drawback. We provided two approaches for choosing the universal hypothesisH0 where the penaltyΩ0 should be closely
related to the data dependent penalty so that the hypothesis error can be controlled. However, there is no general theory
yet and further study for choosing (H0,Ω0) is needed.
Recall the error decomposition (2.7). Except the estimation of the hypothesis error, another concern is how much is lost

in the estimation of the sample error by taking the relatively large function class H0. This may depend on the underlying
distribution, the algorithm,H0 and the penalty functionalΩ0. See for example the results in [28,38].
As a very general approach we do not expect the derived error estimate to be tight in most cases. One may find some

other approaches to study the performance of algorithms with sample dependent hypothesis spaces, especially when the
algorithm has some special structures and special efficient methods are available. For example, when the algorithm has
a two-layer minimization form, one may use the methods in [20,31,38,21,22]. As for the kernel regression via coefficient
based regularization, one can bound the difference between fz and f +z,µ directly because of their explicit forms. But for the
coefficient based regularization with loss functions other than the square loss, no evidence shows this approach works. Our
approach shows its power by a uniform solution (Proposition 3) to these problems.
There aremany other algorithms falling into the setting of learningwith sample dependent hypothesis spaces.We cannot

work on them completely in this paper. However, we believe our idea will shed light on the study of these algorithms.
Two topics in kernel method may be interesting for the future work. One is on the learning of kernel functions. There

are many methods to construct a kernel through samples, see e.g. [23,42,37]. The analysis should not be so easy as we have
done in Section 3 for the regularization method. Another is the regularization scheme with the sample dependent choice
of the regularization parameter. The regularization parameter restricts the space that fz lies in. When it is chosen in such a
way that depends on the sample, the regularization scheme becomes one with sample dependent hypothesis space. As far
as we know, this problem is far from being well understood, even for the classical choice via cross validation [12].
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