30,944 research outputs found

    Credit scoring: a review on support vector machines and metaheuristic approaches

    Get PDF
    Development of credit scoring models is important for fnancial institutions to identify defaulters and nondefaulters when making credit granting decisions. In recent years, artifcial intelligence (AI) techniques have shown successful performance in credit scoring. Support Vector Machines and metaheuristic approaches have constantly received attention from researchers in establishing new credit models. In this paper, two AI techniques are reviewed with detailed discussions on credit scoring models built from both methods since 1997 to 2018. Te main discussions are based on two main aspects which are model type with issues addressed and assessment procedures. Ten, together with the compilation of past experiments results on common datasets, hybrid modelling is the state-of-the-art approach for both methods. Some possible research gaps for future research are identifed

    Credit risk modeling: A comparative analysis of artificial and deep neural networks

    Get PDF
    Credit risk assessment plays a major role in the banks and financial institutions to prevent counterparty risk failure. One of the primary capabilities of a robust risk management system must be detecting the risks earlier, though many of the bank systems today lack this key capability which leads to further losses (MGI, 2017). In searching for an improved methodology to detect such credit risk and increasing the lacking capabilities earlier, a comparative analysis between Deep Neural Network (DNN) and machine learning techniques such as Support Vector Machines (SVM), K-Nearest Neighbours (KNN) and Artificial Neural Network (ANN) were conducted. The Deep Neural Network used in this study consists of six layers of neurons. Further, sampling techniques such as SMOTE, SVM-SMOTE, RUS, and All-KNN to make the imbalanced dataset a balanced one were also applied. Using supervised learning techniques, the proposed DNN model was able to achieve an accuracy of 82.18% with a ROC score of 0.706 using the RUS sampling technique. The All KNN sampling technique was capable of achieving the maximum true positives in two different models. Using the proposed approach, banks and credit check institutions can help prevent major losses occurring due to counterparty risk failure.credit riskdeep neural networkartificial neural networksupport vector machinessampling technique

    Support Vector Machines for Credit Scoring and discovery of significant features

    Get PDF
    The assessment of risk of default on credit is important for financial institutions. Logistic regression and discriminant analysis are techniques traditionally used in credit scoring for determining likelihood to default based on consumer application and credit reference agency data. We test support vector machines against these traditional methods on a large credit card database. We find that they are competitive and can be used as the basis of a feature selection method to discover those features that are most significant in determining risk of default. 1

    Credit risk modeling: A comparative analysis of artificial and deep neural networks

    Get PDF
    Credit risk assessment plays a major role in the banks and financial institutions to prevent counterparty risk failure. One of the primary capabilities of a robust risk management system must be detecting the risks earlier, though many of the bank systems today lack this key capability which leads to further losses (MGI, 2017). In searching for an improved methodology to detect such credit risk and increasing the lacking capabilities earlier, a comparative analysis between Deep Neural Network (DNN) and machine learning techniques such as Support Vector Machines (SVM), K-Nearest Neighbours (KNN) and Artificial Neural Network (ANN) were conducted. The Deep Neural Network used in this study consists of six layers of neurons. Further, sampling techniques such as SMOTE, SVM-SMOTE, RUS, and All-KNN to make the imbalanced dataset a balanced one were also applied. Using supervised learning techniques, the proposed DNN model was able to achieve an accuracy of 82.18% with a ROC score of 0.706 using the RUS sampling technique. The All KNN sampling technique was capable of achieving the maximum true positives in two different models. Using the proposed approach, banks and credit check institutions can help prevent major losses occurring due to counterparty risk failure.credit riskdeep neural networkartificial neural networksupport vector machinessampling technique

    Consumer finance: challenges for operational research

    No full text
    Consumer finance has become one of the most important areas of banking, both because of the amount of money being lent and the impact of such credit on global economy and the realisation that the credit crunch of 2008 was partly due to incorrect modelling of the risks in such lending. This paper reviews the development of credit scoring—the way of assessing risk in consumer finance—and what is meant by a credit score. It then outlines 10 challenges for Operational Research to support modelling in consumer finance. Some of these involve developing more robust risk assessment systems, whereas others are to expand the use of such modelling to deal with the current objectives of lenders and the new decisions they have to make in consumer finance. <br/

    Operations research in consumer finance: challenges for operational research

    No full text
    Consumer finance has become one of the most important areas of banking both because of the amount of money being lent and the impact of such credit on the global economy and the realisation that the credit crunch of 2008 was partly due to incorrect modelling of the risks in such lending. This paper reviews the development of credit scoring,-the way of assessing risk in consumer finance- and what is meant by a credit score. It then outlines ten challenges for Operational Research to support modelling in consumer finance. Some of these are to developing more robust risk assessment systems while others are to expand the use of such modelling to deal with the current objectives of lenders and the new decisions they have to make in consumer financ

    A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition

    Get PDF
    Predicting student attrition is an intriguing yet challenging problem for any academic institution. Class-imbalanced data is a common in the field of student retention, mainly because a lot of students register but fewer students drop out. Classification techniques for imbalanced dataset can yield deceivingly high prediction accuracy where the overall predictive accuracy is usually driven by the majority class at the expense of having very poor performance on the crucial minority class. In this study, we compared different data balancing techniques to improve the predictive accuracy in minority class while maintaining satisfactory overall classification performance. Specifically, we tested three balancing techniques—oversampling, under-sampling and synthetic minority over-sampling (SMOTE)—along with four popular classification methods—logistic regression, decision trees, neuron networks and support vector machines. We used a large and feature rich institutional student data (between the years 2005 and 2011) to assess the efficacy of both balancing techniques as well as prediction methods. The results indicated that the support vector machine combined with SMOTE data-balancing technique achieved the best classification performance with a 90.24% overall accuracy on the 10-fold holdout sample. All three data-balancing techniques improved the prediction accuracy for the minority class. Applying sensitivity analyses on developed models, we also identified the most important variables for accurate prediction of student attrition. Application of these models has the potential to accurately predict at-risk students and help reduce student dropout rates
    corecore