2,042 research outputs found

    Deriving feasible deployment alternatives for parallel and distributed simulation systems

    Get PDF
    Cataloged from PDF version of article.Parallel and distributed simulations (PADS) realize the distributed execution of a simulation system over multiple physical resources. To realize the execution of PADS, different simulation infrastructures such as HLA, DIS and TENA have been defined. Recently, the Distributed Simulation Engineering and Execution Process (DSEEP) that supports the mapping of the simulations on the infrastructures has been defined. An important recommended task in DSEEP is the evaluation of the performance of the simulation systems at the design phase. In general, the performance of a simulation is largely influenced by the allocation of member applications to the resources. Usually, the deployment of the applications to the resources can be done in many different ways. DSEEP does not provide a concrete approach for evaluating the deployment alternatives. Moreover, current approaches that can be used for realizing various DSEEP activities do not yet provide adequate support for this purpose. We provide a concrete approach for deriving feasible deployment alternatives based on the simulation system and the available resources. In the approach, first the simulation components and the resources are designed. The design is used to define alternative execution configurations, and based on the design and the execution configuration; a feasible deployment alternative can be algorithmically derived. Tool support is developed for the simulation design, the execution configuration definition and the automatic generation of feasible deployment alternatives. The approach has been applied within a large-scale industrial case study for simulating Electronic Warfare systems. © 2013 ACM

    Panel on future challenges in modeling methodology

    Get PDF
    This panel paper presents the views of six researchers and practitioners of simulation modeling. Collectively we attempt to address a range of key future challenges to modeling methodology. It is hoped that the views of this paper, and the presentations made by the panelists at the 2004 Winter Simulation Conference will raise awareness and stimulate further discussion on the future of modeling methodology in areas such as modeling problems in business applications, human factors and geographically dispersed networks; rapid model development and maintenance; legacy modeling approaches; markup languages; virtual interactive process design and simulation; standards; and Grid computing

    HP-CERTI: Towards a high performance, high availability open source RTI for composable simulations (04F-SIW-014)

    Get PDF
    Composing simulations of complex systems from already existing simulation components remains a challenging issue. Motivations for composable simulation include generation of a given federation driven by operational requirements provided "on the fly". The High Level Architecture, initially developed for designing fully distributed simulations, can be considered as an interoperability standard for composing simulations from existing components. Requirements for constructing such complex simulations are quite different from those discussed for distributed simulations. Although interoperability and reusability remain essential, both high performance and availability have also to be considered to fulfill the requirements of the end user. ONERA is currently designing a High Performance / High Availability HLA Run-time Infrastructure from its open source implementation of HLA 1.3 specifications. HP-CERTI is a software package including two main components: the first one, SHM-CERTI, provides an optimized version of CERTI based on a shared memory communication scheme; the second one, Kerrighed-CERTI, allows the deployment of CERTI through the control of the Kerrighed Single System Image operating system for clusters, currently designed by IRISA. This paper describes the design of both high performance and availability Runtime Infrastructures, focusing on the architecture of SHM-CERTI. This work is carried out in the context of the COCA (High Performance Distributed Simulation and Models Reuse) Project, sponsored by the DGA/STTC (Délégation Générale pour l'Armement/Service des Stratégies Techniques et des Technologies Communes) of the French Ministry of Defense

    PRISE: An Integrated Platform for Research and Teaching of Critical Embedded Systems

    Get PDF
    In this paper, we present PRISE, an integrated workbench for Research and Teaching of critical embedded systems at ISAE, the French Institute for Space and Aeronautics Engineering. PRISE is built around state-of-the-art technologies for the engineering of space and avionics systems used in Space and Avionics domain. It aims at demonstrating key aspects of critical, real-time, embedded systems used in the transport industry, but also validating new scientific contributions for the engineering of software functions. PRISE combines embedded and simulation platforms, and modeling tools. This platform is available for both research and teaching. Being built around widely used commercial and open source software; PRISE aims at being a reference platform for our teaching and research activities at ISAE

    Distributed simulation and industry: Potentials and pitfalls

    Get PDF
    We present the views of five researchers and practitioners of distributed simulation. Collectively we attempt to address what the implications of distributed simulation are for industry. It is hoped that the views contained herein, and the presentations made by the panelists at the 2002 Winter Simulation Conference will raise awareness and stimulate further discussion on the application of distributed simulation methods and technology in an area that is yet to benefit from the arguable economic benefits that this technique promises

    A State-of-the-art Integrated Transportation Simulation Platform

    Full text link
    Nowadays, universities and companies have a huge need for simulation and modelling methodologies. In the particular case of traffic and transportation, making physical modifications to the real traffic networks could be highly expensive, dependent on political decisions and could be highly disruptive to the environment. However, while studying a specific domain or problem, analysing a problem through simulation may not be trivial and may need several simulation tools, hence raising interoperability issues. To overcome these problems, we propose an agent-directed transportation simulation platform, through the cloud, by means of services. We intend to use the IEEE standard HLA (High Level Architecture) for simulators interoperability and agents for controlling and coordination. Our motivations are to allow multiresolution analysis of complex domains, to allow experts to collaborate on the analysis of a common problem and to allow co-simulation and synergy of different application domains. This paper will start by presenting some preliminary background concepts to help better understand the scope of this work. After that, the results of a literature review is shown. Finally, the general architecture of a transportation simulation platform is proposed

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead

    SISO Space Reference FOM - Tools and Testing

    Get PDF
    The Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (SpaceFOM) version 1.0 is nearing completion. Earlier papers have described the use of the High Level Architecture (HLA) in Space simulation as well as technical aspects of the SpaceFOM. This paper takes a look at different SpaceFOM tools and how they were used during the development and testing of the standard.The first organizations to develop SpaceFOM-compliant federates for SpaceFOM development and testing were NASA's Johnson Space Center (JSC), the University of Calabria (UNICAL), and Pitch Technologies.JSC is one of NASA's lead centers for human space flight. Much of the core distributed simulation technology development, specifically associated with the SpaceFOM, is done by the NASA Exploration Systems Simulations (NExSyS) team. One of NASA's principal simulation development tools is the Trick Simulation Environment. NASA's NExSyS team has been modifying and using Trick and TrickHLA to help develop and test the SpaceFOM.The System Modeling And Simulation Hub Laboratory (SMASH-Lab) at UNICAL has developed the Simulation Exploration Experience (SEE) HLA Starter kit, that has been used by most SEE teams involved in the distributed simulation of a Moon base. It is particularly useful for the development of federates that are compatible with the SpaceFOM. The HLA Starter Kit is a Java based tool that provides a well-structured framework to simplify the formulation, generation, and execution of SpaceFOM-compliant federates.Pitch Technologies, a company specializing in distributed simulation, is utilizing a number of their existing HLA tools to support development and testing of the SpaceFOM. In addition to the existing tools, Pitch has developed a few SpaceFOM specific federates: Space Master for managing the initialization, execution and pacing of any SpaceFOM federation; EarthEnvironment, a simple Root Reference Publisher; and Space Monitor, a graphical tool for monitoring reference frames and physical entities.Early testing of the SpaceFOM was carried out in the SEE university outreach program, initiated in SISO. Students were given a subset of the FOM, that was later extended. Sample federates were developed and frameworks were developed or adapted to the early FOM versions.As drafts of the standard matured, testing was performed using federates from government, industry, and academia. By mixing federates developed by different teams the standard could be tested with respect to functional correctness, robustness and clarity.These frameworks and federates have been useful when testing and verifying the design of the standard. In addition to this, they have since formed a starting point for developing SpaceFOM-compliant federations in several projects, for example for NASA, ESA as well as SEE
    corecore