4 research outputs found

    Quadratic Approximation of the Newsvendor Problem with Imperfect Quality

    Get PDF
    The paper presents a newsvendor problem in a fuzzy environment by introducing product quality as a fuzzy variable, and product demand as a probability distribution in an economic and supply chain management environment. In order to determine the optimal order quantity, a methodology is developed where the solution is achieved using a fuzzy ranking method combined with a quadratic programming problem approximation. Numerical examples are provided and compared in both situations, namely fuzzy and crisp. The results of these numerical examples show that the decision maker has to order a higher quantity when product quality is a fuzzy variable. The model can be useful for real world problems when historical data are not available

    A Novel Method for Optimal Solution of Fuzzy Chance Constraint Single-Period Inventory Model

    Get PDF
    A method is proposed for solving single-period inventory fuzzy probabilistic model (SPIFPM) with fuzzy demand and fuzzy storage space under a chance constraint. Our objective is to maximize the total profit for both overstock and understock situations, where the demand D~j for each product j in the objective function is considered as a fuzzy random variable (FRV) and with the available storage space area W~, which is also a FRV under normal distribution and exponential distribution. Initially we used the weighted sum method to consider both overstock and understock situations. Then the fuzziness of the model is removed by ranking function method and the randomness of the model is removed by chance constrained programming problem, which is a deterministic nonlinear programming problem (NLPP) model. Finally this NLPP is solved by using LINGO software. To validate and to demonstrate the results of the proposed model, numerical examples are given

    A fuzzy periodic review integrated inventory model involving stochastic demand, imperfect production process and inspection errors

    Get PDF
    In this study, we investigate an integrated production-inventory system consisting of a single-vendor and single-buyer. The buyer manages its inventory level periodically at a certain period of time. We consider a fuzzy annual demand, imperfect production, inspection errors, partial backordering, and adjustable production rate in the proposed model. Additionally, it is assumed that the protection interval demand follows a normal distribution. The model contributes to the current literature by allowing the inclusion of fuzzy annual demand, adjustable production rate and imperfect production and inspection processes. Our objective is to optimize the number of deliveries from vendor to buyer, the buyer’s review period, and the vendor’s production rate, so that the joint expected total annual cost incurred has the minimum value. Furthermore, an iterative procedure is proposed to find the optimal solutions of the model. We also provide a numerical example and conduct a simple sensitivity analysis to illustrate the model’s behaviour and feasibility. The results from the sensitivity analysis show that the defective rate, type I inspection error, fuzzy annual demand, fixed production cost, variable production cost and setup cost give impacts to both the review period and production rate. Finally, it is concluded that the proposed model can be applied by managers or practitiones for managing inventories across the supply chain involving a vendor and a buyer
    corecore