784 research outputs found

    Attack-Resilient Supervisory Control of Discrete-Event Systems

    Full text link
    In this work, we study the problem of supervisory control of discrete-event systems (DES) in the presence of attacks that tamper with inputs and outputs of the plant. We consider a very general system setup as we focus on both deterministic and nondeterministic plants that we model as finite state transducers (FSTs); this also covers the conventional approach to modeling DES as deterministic finite automata. Furthermore, we cover a wide class of attacks that can nondeterministically add, remove, or rewrite a sensing and/or actuation word to any word from predefined regular languages, and show how such attacks can be modeled by nondeterministic FSTs; we also present how the use of FSTs facilitates modeling realistic (and very complex) attacks, as well as provides the foundation for design of attack-resilient supervisory controllers. Specifically, we first consider the supervisory control problem for deterministic plants with attacks (i) only on their sensors, (ii) only on their actuators, and (iii) both on their sensors and actuators. For each case, we develop new conditions for controllability in the presence of attacks, as well as synthesizing algorithms to obtain FST-based description of such attack-resilient supervisors. A derived resilient controller provides a set of all safe control words that can keep the plant work desirably even in the presence of corrupted observation and/or if the control words are subjected to actuation attacks. Then, we extend the controllability theorems and the supervisor synthesizing algorithms to nondeterministic plants that satisfy a nonblocking condition. Finally, we illustrate applicability of our methodology on several examples and numerical case-studies

    Synthesis of Covert Actuator Attackers for Free

    Full text link
    In this paper, we shall formulate and address a problem of covert actuator attacker synthesis for cyber-physical systems that are modelled by discrete-event systems. We assume the actuator attacker partially observes the execution of the closed-loop system and is able to modify each control command issued by the supervisor on a specified attackable subset of controllable events. We provide straightforward but in general exponential-time reductions, due to the use of subset construction procedure, from the covert actuator attacker synthesis problems to the Ramadge-Wonham supervisor synthesis problems. It then follows that it is possible to use the many techniques and tools already developed for solving the supervisor synthesis problem to solve the covert actuator attacker synthesis problem for free. In particular, we show that, if the attacker cannot attack unobservable events to the supervisor, then the reductions can be carried out in polynomial time. We also provide a brief discussion on some other conditions under which the exponential blowup in state size can be avoided. Finally, we show how the reduction based synthesis procedure can be extended for the synthesis of successful covert actuator attackers that also eavesdrop the control commands issued by the supervisor.Comment: The paper has been accepted for the journal Discrete Event Dynamic System

    Stealthy Sensor Attacks for Plants Modeled by Labeled Petri Nets

    Get PDF
    The problem of stealthy sensor attacks for labeled Petri nets is considered. An operator observes the plant to establish if a set of critical markings has been reached. The attacker can corrupt the sensor channels that transmit the sensor readings, making the operator incapable to establish when a critical marking is reached. We first construct the stealthy attack Petri net that keeps into account the real plant evolutions observed by the attacker and the corrupted plant evolutions observed by the operator. Starting from the reachability graph of the stealthy attack Petri net, an attack structure is defined: it describes all possible attacks. The supremal stealthy attack substructure can be obtained by appropriately trimming the attack structure. An attack function is effective if the supremal stealthy attack substructure contains a state whose first element is a critical marking and the second element is a noncritical marking

    Selection of a stealthy and harmful attack function in discrete event systems

    Get PDF
    In this paper we consider the problem of joint state estimation under attack in partially-observed discrete event systems. An operator observes the evolution of the plant to evaluate its current states. The attacker may tamper with the sensor readings received by the operator inserting dummy events or erasing real events that have occurred in the plant with the goal of preventing the operator from computing the correct state estimation. An attack function is said to be harmful if the state estimation consistent with the correct observation and the state estimation consistent with the corrupted observation satisfy a given misleading relation. On the basis of an automaton called joint estimator, we show how to compute a supremal stealthy joint subestimator that allows the attacker to remain stealthy, no matter what the future evolution of the plant is. Finally, we show how to select a stealthy and harmful attack function based on such a subestimator

    A Polynomial Approach to Verifying the Existence of a Threatening Sensor Attacker

    Get PDF
    The development of cyber-physical systems (CPS) has brought much attention of researchers to cyber-attack and cyber-security. A sensor attacker targeting on a supervised discrete event system can modify a set of sensor readings and cause the closed-loop system to reach undesirable states. In this letter, we propose a new attack detection mechanism under which the supervisor only needs to keep track of the last observable event received. Given a plant and a supervisor enforcing a state specification, we define a sensor attacker threatening if it may cause the closed-loop system to enter a forbidden state. Our goal is to verify whether there exists such a threatening sensor attacker for a given controlled system. A new structure, called All Sensor Attack (ASA), is proposed to capture all possible sensor attacks launched by the attacker. Based on the ASA automaton, a necessary and sufficient condition for the existence of a stealthy threatening sensor attacker is presented. Finally, we show that the condition can be verified in polynomial time

    An Unknown Input Multi-Observer Approach for Estimation, Attack Isolation, and Control of LTI Systems under Actuator Attacks

    Get PDF
    We address the problem of state estimation, attack isolation, and control for discrete-time Linear Time Invariant (LTI) systems under (potentially unbounded) actuator false data injection attacks. Using a bank of Unknown Input Observers (UIOs), each observer leading to an exponentially stable estimation error in the attack-free case, we propose an estimator that provides exponential estimates of the system state and the attack signals when a sufficiently small number of actuators are attacked. We use these estimates to control the system and isolate actuator attacks. Simulations results are presented to illustrate the performance of the results
    • …
    corecore