91 research outputs found

    Speech Dereverberation Based on Integrated Deep and Ensemble Learning Algorithm

    Full text link
    Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverberation property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data

    Deep neural network techniques for monaural speech enhancement: state of the art analysis

    Full text link
    Deep neural networks (DNN) techniques have become pervasive in domains such as natural language processing and computer vision. They have achieved great success in these domains in task such as machine translation and image generation. Due to their success, these data driven techniques have been applied in audio domain. More specifically, DNN models have been applied in speech enhancement domain to achieve denosing, dereverberation and multi-speaker separation in monaural speech enhancement. In this paper, we review some dominant DNN techniques being employed to achieve speech separation. The review looks at the whole pipeline of speech enhancement from feature extraction, how DNN based tools are modelling both global and local features of speech and model training (supervised and unsupervised). We also review the use of speech-enhancement pre-trained models to boost speech enhancement process. The review is geared towards covering the dominant trends with regards to DNN application in speech enhancement in speech obtained via a single speaker.Comment: conferenc

    Ensemble Hierarchical Extreme Learning Machine for Speech Dereverberation

    Get PDF
    ata-driven deep learning solutions, which are gradient-based neural architectures, have proven useful in overcoming some limitations of traditional signal processing techniques. However, a large number of reverberated-anechoic training utterance pairs covering as many environmental conditions as possible is required to achieve robust performance in unseen testing conditions. In this study, we propose to address the data requirement issue while preserving the advantages of deep neural structures leveraging upon hierarchical extreme learning machines (HELMs), which are not gradient-based neural architectures. In particular, an ensemble HELM learning framework is established to effectively recover anechoic speech from a reverberated one based on a spectral mapping. In addition to the ensemble learning framework, we further derive two novel HELM models, namely highway HELM, termed HELM(Hwy), and residual HELM, termed HELM(Res), both incorporating low-level features to enrich the information for spectral mapping. We evaluated the proposed ensemble learning framework using simulated and measured impulse responses by employing TIMIT, MHINT, and REVERB corpora. Experimental results show that the proposed framework outperforms both traditional methods and a recently proposed integrated deep and ensemble learning algorithm in terms of standardized objective and subjective evaluations under matched and mismatched testing conditions for simulated and measured impulse responses

    Integrating Plug-and-Play Data Priors with Weighted Prediction Error for Speech Dereverberation

    Full text link
    Speech dereverberation aims to alleviate the detrimental effects of late-reverberant components. While the weighted prediction error (WPE) method has shown superior performance in dereverberation, there is still room for further improvement in terms of performance and robustness in complex and noisy environments. Recent research has highlighted the effectiveness of integrating physics-based and data-driven methods, enhancing the performance of various signal processing tasks while maintaining interpretability. Motivated by these advancements, this paper presents a novel dereverberation frame-work, which incorporates data-driven methods for capturing speech priors within the WPE framework. The plug-and-play strategy (PnP), specifically the regularization by denoising (RED) strategy, is utilized to incorporate speech prior information learnt from data during the optimization problem solving iterations. Experimental results validate the effectiveness of the proposed approach

    GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration

    Full text link
    Pre-trained diffusion models have been successfully used as priors in a variety of linear inverse problems, where the goal is to reconstruct a signal from noisy linear measurements. However, existing approaches require knowledge of the linear operator. In this paper, we propose GibbsDDRM, an extension of Denoising Diffusion Restoration Models (DDRM) to a blind setting in which the linear measurement operator is unknown. GibbsDDRM constructs a joint distribution of the data, measurements, and linear operator by using a pre-trained diffusion model for the data prior, and it solves the problem by posterior sampling with an efficient variant of a Gibbs sampler. The proposed method is problem-agnostic, meaning that a pre-trained diffusion model can be applied to various inverse problems without fine-tuning. In experiments, it achieved high performance on both blind image deblurring and vocal dereverberation tasks, despite the use of simple generic priors for the underlying linear operators

    Feature enhancement of reverberant speech by distribution matching and non-negative matrix factorization

    Get PDF
    This paper describes a novel two-stage dereverberation feature enhancement method for noise-robust automatic speech recognition. In the first stage, an estimate of the dereverberated speech is generated by matching the distribution of the observed reverberant speech to that of clean speech, in a decorrelated transformation domain that has a long temporal context in order to address the effects of reverberation. The second stage uses this dereverberated signal as an initial estimate within a non-negative matrix factorization framework, which jointly estimates a sparse representation of the clean speech signal and an estimate of the convolutional distortion. The proposed feature enhancement method, when used in conjunction with automatic speech recognizer back-end processing, is shown to improve the recognition performance compared to three other state-of-the-art techniques
    corecore