238 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Patient-specific in silico 3D coronary model in cardiac catheterisation laboratories

    Get PDF
    Coronary artery disease is caused by the buildup of atherosclerotic plaque in the coronary arteries, affecting the blood supply to the heart, one of the leading causes of death around the world. X-ray coronary angiography is the most common procedure for diagnosing coronary artery disease, which uses contrast material and x-rays to observe vascular lesions. With this type of procedure, blood flow in coronary arteries is viewed in real-time, making it possible to detect stenoses precisely and control percutaneous coronary interventions and stent insertions. Angiograms of coronary arteries are used to plan the necessary revascularisation procedures based on the calculation of occlusions and the affected segments. However, their interpretation in cardiac catheterisation laboratories presently relies on sequentially evaluating multiple 2D image projections, which limits measuring lesion severity, identifying the true shape of vessels, and analysing quantitative data. In silico modelling, which involves computational simulations of patient-specific data, can revolutionise interventional cardiology by providing valuable insights and optimising treatment methods. This paper explores the challenges and future directions associated with applying patient-specific in silico models in catheterisation laboratories. We discuss the implications of the lack of patient-specific in silico models and how their absence hinders the ability to accurately predict and assess the behaviour of individual patients during interventional procedures. Then, we introduce the different components of a typical patient-specific in silico model and explore the potential future directions to bridge this gap and promote the development and utilisation of patient-specific in silico models in the catheterisation laboratories

    Automatic detection of lung nodules in CT datasets based on stable 3D mass–spring models

    Get PDF
    We propose a computer-aided detection (CAD) system which can detect small-sized (from 3 mm) pulmonary nodules in spiral CT scans. A pulmonary nodule is a small lesion in the lungs, round-shaped (parenchymal nodule) or worm-shaped (juxtapleural nodule). Both kinds of lesions have a radio-density greater than lung parenchyma, thus appearing white on the images. Lung nodules might indicate a lung cancer and their early stage detection arguably improves the patient survival rate. CT is considered to be the most accurate imaging modality for nodule detection. However, the large amount of data per examination makes the full analysis difficult, leading to omission of nodules by the radiologist. We developed an advanced computerized method for the automatic detection of internal and juxtapleural nodules on low-dose and thin-slice lung CT scan. This method consists of an initial selection of nodule candidates list, the segmentation of each candidate nodule and the classification of the features computed for each segmented nodule candidate.The presented CAD system is aimed to reduce the number of omissions and to decrease the radiologist scan examination time. Our system locates with the same scheme both internal and juxtapleural nodules. For a correct volume segmentation of the lung parenchyma, the system uses a Region Growing (RG) algorithm and an opening process for including the juxtapleural nodules. The segmentation and the extraction of the suspected nodular lesions from CT images by a lung CAD system constitutes a hard task. In order to solve this key problem, we use a new Stable 3D Mass–Spring Model (MSM) combined with a spline curves reconstruction process. Our model represents concurrently the characteristic gray value range, the directed contour information as well as shape knowledge, which leads to a much more robust and efficient segmentation process. For distinguishing the real nodules among nodule candidates, an additional classification step is applied; furthermore, a neural network is applied to reduce the false positives (FPs) after a double-threshold cut. The system performance was tested on a set of 84 scans made available by the Lung Image Database Consortium (LIDC) annotated by four expert radiologists. The detection rate of the system is 97% with 6.1 FPs/CT. A reduction to 2.5 FPs/CT is achieved at 88% sensitivity. We presented a new 3D segmentation technique for lung nodules in CT datasets, using deformable MSMs. The result is a efficient segmentation process able to converge, identifying the shape of the generic ROI, after a few iterations. Our suitable results show that the use of the 3D AC model and the feature analysis based FPs reduction process constitutes an accurate approach to the segmentation and the classification of lung nodules

    Deep Functional Mapping For Predicting Cancer Outcome

    Get PDF
    The effective understanding of the biological behavior and prognosis of cancer subtypes is becoming very important in-patient administration. Cancer is a diverse disorder in which a significant medical progression and diagnosis for each subtype can be observed and characterized. Computer-aided diagnosis for early detection and diagnosis of many kinds of diseases has evolved in the last decade. In this research, we address challenges associated with multi-organ disease diagnosis and recommend numerous models for enhanced analysis. We concentrate on evaluating the Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emission Tomography (PET) for brain, lung, and breast scans to detect, segment, and classify types of cancer from biomedical images. Moreover, histopathological, and genomic classification of cancer prognosis has been considered for multi-organ disease diagnosis and biomarker recommendation. We considered multi-modal, multi-class classification during this study. We are proposing implementing deep learning techniques based on Convolutional Neural Network and Generative Adversarial Network. In our proposed research we plan to demonstrate ways to increase the performance of the disease diagnosis by focusing on a combined diagnosis of histology, image processing, and genomics. It has been observed that the combination of medical imaging and gene expression can effectively handle the cancer detection situation with a higher diagnostic rate rather than considering the individual disease diagnosis. This research puts forward a blockchain-based system that facilitates interpretations and enhancements pertaining to automated biomedical systems. In this scheme, a secured sharing of the biomedical images and gene expression has been established. To maintain the secured sharing of the biomedical contents in a distributed system or among the hospitals, a blockchain-based algorithm is considered that generates a secure sequence to identity a hash key. This adaptive feature enables the algorithm to use multiple data types and combines various biomedical images and text records. All data related to patients, including identity, pathological records are encrypted using private key cryptography based on blockchain architecture to maintain data privacy and secure sharing of the biomedical contents

    Automatic extraction of bronchus and centerline determination from CT images for three dimensional virtual bronchoscopy.

    Get PDF
    Law Tsui Ying.Thesis (M.Phil.)--Chinese University of Hong Kong, 2000.Includes bibliographical references (leaves 64-70).Abstracts in English and Chinese.Acknowledgments --- p.iiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Structure of Bronchus --- p.3Chapter 1.2 --- Existing Systems --- p.4Chapter 1.2.1 --- Virtual Endoscope System (VES) --- p.4Chapter 1.2.2 --- Virtual Reality Surgical Simulator --- p.4Chapter 1.2.3 --- Automated Virtual Colonoscopy (AVC) --- p.5Chapter 1.2.4 --- QUICKSEE --- p.5Chapter 1.3 --- Organization of Thesis --- p.6Chapter 2 --- Three Dimensional Visualization in Medicine --- p.7Chapter 2.1 --- Acquisition --- p.8Chapter 2.1.1 --- Computed Tomography --- p.8Chapter 2.2 --- Resampling --- p.9Chapter 2.3 --- Segmentation and Classification --- p.9Chapter 2.3.1 --- Segmentation by Thresholding --- p.10Chapter 2.3.2 --- Segmentation by Texture Analysis --- p.10Chapter 2.3.3 --- Segmentation by Region Growing --- p.10Chapter 2.3.4 --- Segmentation by Edge Detection --- p.11Chapter 2.4 --- Rendering --- p.12Chapter 2.5 --- Display --- p.13Chapter 2.6 --- Hazards of Visualization --- p.13Chapter 2.6.1 --- Adding Visual Richness and Obscuring Important Detail --- p.14Chapter 2.6.2 --- Enhancing Details Incorrectly --- p.14Chapter 2.6.3 --- The Picture is not the Patient --- p.14Chapter 2.6.4 --- Pictures-'R'-Us --- p.14Chapter 3 --- Overview of Advanced Segmentation Methodologies --- p.15Chapter 3.1 --- Mathematical Morphology --- p.15Chapter 3.2 --- Recursive Region Search --- p.16Chapter 3.3 --- Active Region Models --- p.17Chapter 4 --- Overview of Centerline Methodologies --- p.18Chapter 4.1 --- Thinning Approach --- p.18Chapter 4.2 --- Volume Growing Approach --- p.21Chapter 4.3 --- Combination of Mathematical Morphology and Region Growing Schemes --- p.22Chapter 4.4 --- Simultaneous Borders Identification Approach --- p.23Chapter 4.5 --- Tracking Approach --- p.24Chapter 4.6 --- Distance Transform Approach --- p.25Chapter 5 --- Automated Extraction of Bronchus Area --- p.27Chapter 5.1 --- Basic Idea --- p.27Chapter 5.2 --- Outline of the Automated Extraction Algorithm --- p.28Chapter 5.2.1 --- Selection of a Start Point --- p.28Chapter 5.2.2 --- Three Dimensional Region Growing Method --- p.29Chapter 5.2.3 --- Optimization of the Threshold Value --- p.29Chapter 5.3 --- Retrieval of Start Point Algorithm Using Genetic Algorithm --- p.29Chapter 5.3.1 --- Introduction to Genetic Algorithm --- p.30Chapter 5.3.2 --- Problem Modeling --- p.31Chapter 5.3.3 --- Algorithm for Determining a Start Point --- p.33Chapter 5.3.4 --- Genetic Operators --- p.33Chapter 5.4 --- Three Dimensional Painting Algorithm --- p.34Chapter 5.4.1 --- Outline of the Three Dimensional Painting Algorithm --- p.34Chapter 5.5 --- Optimization of the Threshold Value --- p.36Chapter 6 --- Automatic Centerline Determination Algorithm --- p.38Chapter 6.1 --- Distance Transformations --- p.38Chapter 6.2 --- End Points Retrieval --- p.41Chapter 6.3 --- Graph Based Centerline Algorithm --- p.44Chapter 7 --- Experiments and Discussion --- p.48Chapter 7.1 --- Experiment of Automated Determination of Bronchus Algorithm --- p.48Chapter 7.2 --- Experiment of Automatic Centerline Determination Algorithm --- p.54Chapter 8 --- Conclusion --- p.62Bibliography --- p.6
    • …
    corecore