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摘要 

在本論文中，我們提出了兩項算法來配合三維虛擬肺部内窺檢驗 

系統。它們分別是設計及應用在電腦素描圖像數據上的自動化抽 

取樹形結構肺部氣管算法和自動化居中線碓定算法° 

在自動化抽取樹形結構肺部氣管算法中，我們利用了三維種子區 

域生長算法來協助獲得分割後的肺氣管範圍。首先基因算法根據 

氣管樹的幾何特點，如形狀、位置和長度來取得一個種子點°另 

外再以肺部和肺部氣管的體積比例，產生出最佳的定限值°用這 

最佳的定限值，氣管區域被抽取出，並被重組和用三維紋理映射 

方法來立體展現它的内部結構° 

然後，運用我們的自動化居中線碓定算法在這些已被抽取的肺氣 

管圖像數據上°這項算法有兩個主要組合°它們是末端點檢索算 

法和以圖形為基礎的居中線算法。末端點檢索算法取得肺氣管的 

末端點資料後，再利用最短的路徑算法和距離變換來獲得肺氣管 

的居中線。我們用真實的電腦素描圖像數據來傲不同的實驗，而 

實驗結果是令我們鼓舞的。 
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Abstract 

In this paper, we propose � a method to automate the segmentation of 

airway tree structures in lung from a stack of grey-scale computed tomography 

(CT) images; and {ii) an automatic centerline determination algorithm for three 

dimensional virtual bronchoscopy CT image. In the automated segmentation 

algorithm, a three-dimensional seeded region growing is performed on images 

without any preprocessing operation which may assist to obtain the segmented 

bronchus area. We first use genetic algorithm (GA) to retrieve a seed point and 

the algorithm is based on the geometric features (shape, location and size) of the 

airway tree. By the feature of the size of the lung and airway tree, an optimal 

threshold value is yielded. The final extracted bronchus area with the optimal 

threshold value is reconstructed and visualized by three dimensional texture 

mapping method. Then, the algorithm is followed by our centerline extraction 

algorithm. The extraction algorithm has two main components, end points 

retrieval algorithm and graph based centerline algorithm. The end points retrieval 

algorithm extracts end points of the lung airway tips. Distance transform 

and the modified Dijkstra's shortest path algorithm are then applied in the 

centerline algorithm which yields the centerline of the bronchus. Our centerline 

extraction algorithm is tested with various real CT image data and phantom 

data. The inspiring experimental results show that our algorithm has good 

performance. 
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Chapter 1 

Introduction 

There are four common imaging modalities [60]: X-ray computed tomography 

(CT), nuclear medicine imaging including both positron emission tomography 

(PET) and single photon emission computed tomography (SPECT), magnetic 

resonance imaging (MRI) or nuclear magnetic resonance image (NMR), and 

ultrasonography or ultrasound. Some methodologies are more appropriate for 

specific data created by the modality. To produce optimal visualization, un-

derstanding the strength and weakness of those mechanisms is necessary. 

Traditionally, all images are viewed on film including the volume data im-

ages due to CRT displays' fundamental resolution limitations. Nowadays, there 

are some new directions for virtual reality in medicine. Some medical appli-

cations attempt to merge technology into immersive display (virtual reality). 

Robb [45] mentions that, by using virtual reality, users can manipulate the 

virtual object similar to that of real objects. The viewers can interactively 

visualize the illustrated objects. Furthermore, he suggests that engaging other 

senses such as touch, hearing or even smell can enrich the visualization. 

Recently, the idea of using virtual reality is of great interest to the medical 

imaging community. Virtual reality system can provide an initial assessment 

of the condition of patients. Bronchoscopy is a medical diagnosis for evaluating 

the endobronchial anatomy. Virtual reality and volumetric imaging develops 
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Chapter 1 Introduction ^ 

so rapidly that their technology is matured enough to create a simulated (vir-

tual) environment for medical surgery, which takes less cost and risks. Virtual 

bronchoscopy [33] [14] is a new concept to combine volumetric imaging and 

virtual reality technology. As its name tells, the concept is applied to bron-

choscopy. It is gaining public attention because of its potential for decreasing 

discomfort and inconvenience, considerably lower cost and risks, in compari-

son with routine bronchoscopic screening procedures. Simulation technology 

makes it possible for navigation to experience adverse scenarios without risk 

to human life or damage to expensive equipment [6]. In addition, it is use-

ful for training medical students or physicians to achieve better surgery skills. 

Comparing the virtual and real surgery [1], although it has the physical biopsy, 

color/texture limitations, virtual one takes the advantages of measurements 

providing, reproducibility, flexibility and non-invasiveness. 

Since the research potential of developing virtual bronchoscopy system is 

very high and the advantages of using such system are prominent, we plan to 

develop a virtual bronchoscopy system to train medical students. Moreover, 

it allows healthcare providers to practise procedures in an environment where 

mistakes do not have serious consequences. In addition, it lowers risk associated 

with training on human patients, avoids the use of animals for training, and 

establishes standards and optimization of specific procedures. 

In order to develop the virtual bronchoscopy system, it is necessary to ex-

tract and recognize the three dimensional structure of bronchus in lung area. 

The automated extraction algorithm of the bronchus area [26] is an enhance-

ment of algorithm described in [34] and [35]. It is for the recognition of bronchus 

in three-dimensional CT images, which is based on region growing method. Re-

gion growing method [59] is the most popular and widely used method for the 

detection of tree structured objects such as bronchus and blood vessels [22 . 

The algorithm is applied to real three dimensional CT images and experimen-

tal results have been given to demonstrate its ability to extract bronchus area 

and the result is satisfactory. 
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We can extract the bronchus. However, they are just a simple set of voxels. 

To understand their three dimensional structure, additional analysis is neces-

sary. Centerline extraction [22] is the basis to understand three dimensional 

structure. To extract centerlines, thinning processing is usually applied. How-

ever, it produces skeletons which may not reflect the true shape of the original 

pattern. Therefore, a more accurate algorithm for extracting the centerline of 

bronchus is desired. Our centerline extraction algorithm uses distance trans-

formation [4] [3] approach to label each voxel in the object with a medialness 

messure. Dijkstra's single-source shortest path algorithm which is a graph 

based technique to yield the centerline precisely. Our centerline extraction al-

gorithm is based on Blezek [2] method which he applies to virtual endoscopy 

system. Endoscoopy system is for examining visually the interior of a bodily 

canal or a hollow organ such as the colon, bladder, or stomach. Bronchoscopy 

system is for inspection of the interior of the bronchi. Bronchoscopy system and 

endoscopy system differ in the applied object. The latter one usually is applied 

on hollow organs and cavities without special consideration of the branching 

feature. In virtual bronchoscopy system, careful consideration of the branching 

characteristic is required. To understand more about the bronchus features, 

the introduction to the structure of bronchus is provided. 

1.1 Structure of Bronchus 

The lung [10] contains a complex system of branching trees that conduct air and 

blood down to the small gas exchanging regions [42]. Each lobe of a lung has an 

airway tree which contains the air we breath, and vascular trees which contain 

blood. An blood filled airway wall surrounds throughoutly the airway tree [41 . 

The bronchus is composed of a pipe structure and contains air in it. It starts 

from the end of trachea and branches repeatedly like a tree while extending in 

the lung [34]. Each branch divides into two smaller branches consistently. The 

two daughter branches from the same parent often differ in diameter and/or 
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in length. The dichotomy is hence irregular. However, as a rule, the diameter 

of the daughter branches is smaller than that of the parent branch. Therefore, 

the diameter and the length of the airways become progressively smaller as one 

proceeds from the trachea to the periphery [56]. The airway wall is very thin 

and its inner area is filled with air. If it runs across the slice vertically which 

are axial images from top to bottom of body, its cross section on a slice is 

observed as an approximately circular ring. However, its border is often vague 

and hardly recognized even for human eyes [35]. Using computed tomography 

(CT), we can obtain multislice lung data sets. 

1.2 Existing Systems 

The advantages and disadvantages of several existing systems are discussed. 

Virtual Endoscope System, Virtual Reality Surgical Simulator, Automated Vir-

tual Colonoscopy and QUICKSEE are to be introduced. 

1.2.1 Virtual Endoscope System (VES) 

VES [21] is a system with force sensation to train inexperienced young doc-

tors to simulate operations that require special technical skills, i.e. endoscopic 

insertion. The force simulation mechanism is developed with the use of four 

rubber rollers and differential gears. This simple structure is easy to control 

and stable for the linear and rotational drive of the endoscope. 

1.2.2 Virtual Reality Surgical Simulator 

Virtual Reality Surgical Simulator [39] is an interactive system for the training 

and assessment of suturing technique in the context of end-to-end anastomosis. 

It is composed by surgical tools with force feedback, a three dimensional visual 

display of the simulated surgical field, physics-based computer simulations of 
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the tissues and tools, and software to measure and evaluate the trainee's perfor-

mance. The main focuses of this system are the quantification and evaluation 

of a user's performance and the realistic sense of the touch. 

1.2.3 Automated Virtual Colonoscopy (AVC) 

AVC [20] is a computer-aided diagnostic system for automatically analyzes the 

three dimensional images of the colon and highlights areas of potential lesions 

by color-enhancing in order to focus a physician's attention to suspicious areas. 

Human visual analysis is time-consuming, tedious, and often prone to error of 

interpretation. It can measure the colon's wall thickness and provide the shape 

analysis. However, it has the false positive findings problem. 

1.2.4 QUICKSEE 

It is a digital endoscopic system, QUICKSEE [43] [18], to achieve the following 

tasks: (i) dynamic interactive visualization of anatomical structures that exist 

in a high-resolution three dimensional image, and (ii) extensive quantitative 

analysis of these structures. The proposed system enables noninvasive and un-

restricted exploration of the virtual anatomy and can be useful as a diagnostic 

tool or as a surgical (endoscopy) planning aid. The system is particularly useful 

for analyzing complex three dimensional branching structures, such as the coro-

nary arteries and pulmonary airways and arteries. Usually systems either lack 

the means for: (1) interactive exploration along arbitrary paths and analysis 

of complex (branching) structures; or (2) do not permit endoscopic exploration 

interactively on real image data. QUICKSEE fills these requirments. However, 

it does not use any virtual reality technology. The user would not have the 

sense of immersion. 
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1.3 Organization of Thesis 

The organization of this paper is given as follows. After giving an introduction 

which includes the introduction of structure of bronchus and existing systems 

in Chapter 1, we describe three dimensional visualization in medicine, sev-

eral advanced segmentation methods and overview of centerline determination 

methods in Chapters 2, 3, 4 respectively. Detailed description of our automated 

extraction algorithm and centerline algorithm are presented in Chapters 5 and 

6. Experimental results are presented in Chapter 7. Conclusion is given in 

chapter 8. 



Chapter 2 

Three Dimensional Visualization 

in Medicine 

^acquisition^ & H & display 
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Figure 2.1: The medical visualization pipeline from acquisition to display 

Visualization is for displaying the data to user in a convenience way for hav-

ing further visual details from the data. It should provide rapid and accurate 

analysis. User can always cross reference the original data to the visualization. 

There are typical steps for the three dimensional visualization in medicine [60 

as shown in Figure 2.1. It is composed by a series of complex steps. They in-

7 
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elude acquisition, restructuring, classification, rendering, and display in order. 

2.1 Acquisition 

X-ray computed tomography (CT), nuclear medicine imaging including both 

positron emission tomography (PET) and single photon emission computed 

tomography (SPECT), magnetic resonance imaging (MRI) or nuclear magnetic 

resonance image (NMR), and ultrasonography or ultrasound are four common 

imaging modalities. It is essential to understand the mechanisms' strengths and 

weakness to produce optimal visualization. Some mechanisms are designed for 

particular data created by the modality. Using spiral computed tomography 

(S-CT) enables volumetric data acquisition during a very short time spans [53 . 

Our system is specially applied on CT data. 

2.1.1 Computed Tomography 

X-ray Computed Tomography [Yoo98] or CT is the most familiar form of three 

dimensional medical imaging. To protect the technologists and other clinic staff 

from exposure from routine use, a CT scanner is a room sized X-ray instrument 

with a shielded environment It is an X-ray modality. The process of generating 

a CT scan is similar to generating a standard x-ray film. However, while a single 

x-ray exposure generates a complete film based exam, the CT image must be 

reconstructed from multiple views. The advantage of being an x-ray modality 

is that laymen and clinicians alike have considerable intuition when dealing 

with x-ray based images. The concepts of dense objects like bone absorbing 

more photons relative to less dense tissues like muscle or fat come naturally 

from our experience and expectations about x-ray imaging. 

A typical CT scanner can generally acquire the data for an transaxial slice 

in a matter of seconds (within 1 to 5 seconds). An exam can include several 

series of slices, in some cases with and without pharmaceutical contrast agents 
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injected into the patient to aid in diagnostic reading. Slices can be spaced such 

that they are either overlapping or contiguous, though some protocols call for 

gaps between the slices. A large study can include well over 100 separate 512 

by 512 pixel images. The radiation dose from a CT scan is comparable with 

that of a series of traditional X-rays. 

2.2 Resampling 

The data usually is not in standard format after the acquisition process. It is 

necessary to res ample and restructure the data to fullfil the limited flexibility 

of visualization packages. This process is lack of generality. It is specific to the 

visualize software and the particular data sets. 

2.3 Segmentation and Classification 

The division of an image into coherent regions along some syntactic (local image 

characteristic) criteria is segmentation. Classification is used for the labeling 

of those regions with the aid of a user. The simplest classifier mechanism is 

intensity windows (multiple thresholding classification) which are mainly useful 

in dealing with X-ray CT data. 

Segmentation is the process of recognizing objects within an image. The 

image will be divided into a number of disjoint areas which have different 

features. To specify a single object of an image, the first task is to determine 

for every pixel of the image whether it represents or belongs to the interested 

object or not. Generally, there are no general segmentation method which can 

recognize any object in any kind of image. The segmentation method used 

depends the characteristics of the objects and the given image. 

Basic segmentation techniques can be categorized into three classes, feature 

thresholding methods, region based methods, and edge oriented methods. 
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2.3.1 Segmentation by Thresholding 

Segmentation by thresholding assigns all pixels with an intensity at or above 

a fixed value (threshold) to an object. The object is represented by those 

pixels with intensity values higher than the threshold. It is simple and fast. 

However, it is relied on threshlod determination and it works only on a very 

limited number of images as it considers only the intensity value without any 

consideration of spatial location. Another basic limitation of thresholding is 

that it cannot classify image elements with multiple objects. 

The other two classes methods use information from pixels in an arbitrarily 

large neighborhood around a pixel. They assume that objects in the image 

represent a closed region. There are two general approaches, finding the border 

of the region (i.e. the edge oriented methods) or finding the interior of the region 

(i.e. the region based methods including texture analysis and region growing). 

2.3.2 Segmentation by Texture Analysis 

For the texture analysis, the granularity is dependent on the resolution at which 

the texture is observed and medical images appear to be simple ones. A inherent 

problem is that the uncertainty of the location of the local texure. If given a 

small neighborhood, the location is relative precise, but the texture measure is 

uncertain. On the other hand, if a large neighborhood is given, the texture is 

measured with high accuracy, but the location is uncertain. Therefore, a local 

texture segmentation will never show the precise border lines of a region which 

need some refinement to be done. 

2.3.3 Segmentation by Region Growing 

Segmentation by region growing requires a pixel or a set of pixels (region) which 

belongs to the desired object. Then its neighborhood is examined iteratively to 

decide whether the current examining pixel belongs to the interested object or 
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not. This method has the advantage that it is capable of correctly segmenting 

spatially separated objects although they have the same features and it can 

generate connected regions. However, it is more computationally expensive 

than single pixel techniques and the results strongly depend upon the choice 

of an acceptance condition which is hard to determine and the seed pixel. 

2.3.4 Segmentation by Edge Detection 

In this method, significant intensity changes between two adjacent pixels are 

interpreted as edges of the objects in the image. It is easy to compute and 

fast similar to region growing one. The main drawback is lack of connectivity 

in detected edges or closed regions. Computationally expensive and unreliable 

post processing methods is needed to connect edges, which are the border of 

the same object. If choosing inappropriate mask in the smoothing step, the 

noise may not be reduced or reduced some important information. A few recent 

advanced segmentation method is discussed in chapter 3. 

All the segmentation methods mentioned are belonged to the interactive or 

semi-automatic segmentation. There are some automated segmeatation meth-

ods [59] which apply the syntactic and semantic elements to an image. 

A virtual bronchoscopy system needs airway paths for effective use [17] [54 

55]. There are two general approaches for path definition: manual-path defini-

tion and recent automated techniques. The former one is time-consuming and 

error-prone. The user needs to specify key frames, traces path or self-guided 

navigation. It cannot readily get many paths. The latter one does not use 

grey-scale information and also error-prone. It includes the methods like seg-

mentation followed by three dimensional skeletonization, active contour models, 

morphological operations, estimation of principal eigenvectors and vector fields. 

They require inordinate processing time and some of them lead to imprecise or 

missing paths. Higgins [55] presents an automatic path-computation method, 

which is robust to data anisotropy. It uses true grey-scale information and has 
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very fast computation. Furthermore, it gives many paths. Hong [19] presents 

an interactive virtual colonoscopy method, which uses a physically based cam-

era control model and a hardware assisted visibility algorithm. A user provides 

the path starting and ending points, it can automatically determine the path. 

Users also can interactive navigate in it. 

2.4 Rendering 

This step should be familiar to those people with knowledge of display tech-

niques for volume data. There are two main rendering methods: volume and 

surface rendering methods [11]. Volume rendering topics includes raycasting 

volume renderers and splat ting. The surface rendering includes marching cubes 

and the dividing cubes algorithm, polygon decimation and mesh simplification. 

We should retain our focus on how to best extract pertinent information and 

present it for maximum effect. 

Ramaswamy [44] suggests another coherence-based dynamic navigation method. 

They present a fast volume rendering method for virtual endoscopic exploration 

on an inexpensive workstation. For computing a dynamic sequence of views, 

researchers suggest methods that exploit the temporal coherence between ad-

jacent views. They propose volume-rendering based navigation method exploit 

the temporal-coherence concept. Brady [5] presents a similar method. It is 

a two-phase perspective raycasting algorithm that considering the coherence 

inherent in adjacent frames during navigation. 

By using two dimensional or three dimensional textured data slices and a 

blending operator, three dimensional texture mapping [32] approach is much 

faster with hardware-accelerated texture than ray casting. This method is a 

direct data visualization technique that is similar to ray casting. Three dimen-

sional textures are a logical extension of two dimensional textures. In three 

dimensional textures, texels become unit cubes in texel space. The three di-
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mens.onal texture is used as a voxel cache, processing two dimensional layer 

each time by all rays simultaneously. It has taken the advantage of spatial 

coherence. However, the main disadvantage of three dimensional texture com-

pared with CPU based volume technique is the missing capability of shaded 

rendering. It may be achieved by applying the shaded volume rendering algo-

rithm [9]. 

2.5 Display 

Traditionally, the images are viewed on film even for the volume data images. 

It is caused by the fundamental resolution limitations inherent in CRT displays. 

Nowadays, there are some medical applications tried to emerge technology in 

virtual reality. Robb [45] mentions that using of virtual reality, users can be 

allowed to manipulate with intuitive immediacy similar to that of real objects. 

The viewer can interactively visualize the illustrated object. Furthermore, he 

suggests that by engaging other senses such as touch and hearing or even smell 

to enrich the visualization. 

2.6 Hazards of Visualization 

It is essential that three dimensional medical visualization systems are capable 

of complex image processing algorithms and provide representations that are 

more informative than the original. The trained professional should be able to 

search for cues and structures from the augmented presentation. The followings 

are the main related hazards [60] that should be noticed when constructing the 

three dimensional medical data image. 
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2.6.1 Adding Visual Richness and Obscuring Important Detail 

Some fancy computer graphics algorithms are easily misleading others. Texture 

mapping is an powerful technique to increase visual cue, but it may distract 

and hide certain information about the quality of the tissue of the object. 

Sometimes the fuzzy pictures and a cloud of glowing voxels convey provide more 

information than isosurface representations of the same data though without 

visually appealing images. The most informative visualization is not always 

the most visually appealing at first glance. 

2.6.2 Enhancing Details Incorrectly 

Data often consists a significant amount of ambient noise. The noise may 

be removed automatically by the visualization system and a cleaner image 

is reconstructed. This may cause an error, as the noise may be part of the 

observable detail. The visualization should always consider the clinical problem 

first and provide the flexibility for the clinician to decide. 

2.6.3 The Picture is not the Patient 

We often try to improve comprehension by emphasizing a particular feature 

of an image, and exaggerating the strength of the feature. However, we may 

mislead the observer into believing what he has observed is the real picture of 

the patient. We should try to emphasize without betraying the truth. 

2.6.4 Pictures-'R'-Us 

Computer graphics people often tempted to produce pretty pictures. However, 

we must keep in our mind that we are solving medical problems. We should 

address the problems of the patients being asked by the clinicians but not to 

produce entertainment quality images to win any awards. 



Chapter 3 

Overview of Advanced 
Segmentation Methodologies 

To recognize an object in a image, segmentation is the main process. It is an 

important step for most of analysis procedures. Apart from the basic segmenta-

tion methods introduced in section 2.3, some advanced methods are discussed. 

3.1 Mathematical Morphology 

Pisupati [41] [42] proposes an mathematical morphology algorithm to automate 

the segmentation of pulmonary tree structures in the lung. In mathematical 

morphology, structuring elements which are geometric structures of different 

sizes and shapes are used to process images. It is used to investigate geomet-

ric structures in images. In the algorithm, it uses different two dimensional 

morphological operators, i.e. dilation, erosion, opening and closing to analysis 

the images to obtain potential airways in each image by using the segmented 

knowledge of previous images to process the current image. As lung tree have 

almost cylindrical branches, they use circular structuring elements. Grey-scale 

reconstruction operator is the main operator. Two images are inputed, mask 

image I and marker image J. The previous image is assigned as marker image 

15 
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J and current image is assigned as mask image L The reconstruction operator 

extracts connected components of I which are marked by J, Then segmented 

airway volume is obtained by processing three dimensional region growing. The 

algorithm has an assumption that airway has wall of uniform thickness which 

may not match with real data. This assumption will result of underestimate 

or overestimate vascular regions. Using different radius of circle structuring 

elements will affect the segmented images. In additon, the choices of marker 

image and mask image are crucial to the result too. 

3.2 Recursive Region Search 

Another method [22] is a kind of recursive search method of cross section of 

tree structured objects. This method requires a cross section of a trunk of 

a tree structured object as the initial condition. The method consists of two 

parts. First it detects the initial cross section of each trunk as the starting 

point of the proposed method. Second it extracts all branches belonging to 

it. During the processing, the location of branching points and the numbers 

of branches at them are memorized. When the top of a branch is reached, 

the immediate branching point is identified and a search of another branch is 

repeated. Each cross sectional region is perpendicular to the direction of the 

branch. It determines the child regions by using a direction vector. It is a 

vector that is vertical to the parent region and its direction conincicies with the 

direction of the top of the branch. It is a unit vector with magnitiule same as the 

pixel interval of CT image. The regions are thresliolcled. If proper candidate 

region is cletecred. the direction vector is modified to the vector which connects 

the COM iter of gravity of the parent region and that of the detected child region. 

The newly child region is assigned as the next parent region and recursive 

the process. However, in the paper, it does not mention the siturations to 

deteriiiine a proper child region. If two child regions are closed each other, it 

is a hard problem to determine which is belonged to current parent region as 
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both have the chances. 

3.3 Active Region Models 

Ivins and Porrill [23] describe a segmentation method for medical images using 

a closed snake which is driven by a pressure force. Snakes are active contour 

models and the pressure force is a statistical function for describing the char-

acteristics of image data. Apart from pressure force, there are tension, stiffness 

and repulsion forces. The first two forces are used to keep the boundary smooth-

ness of the region model. The latter force can prevent the self-intersection. 

When the snake encounters pixels that are not belonged to user-defined limits 

relative to a seed region, it stops the expansion and may contract the model 

if any violation between the limits and the pressure force. Each force has an 

parameter associated with it to preserve the energy balancing of the changing 

model. The main different of statistical snake and original snake [24] is that 

the model of statistical snake can be expanded and contracted considerably 

during energy minimisation. This method is usually applied on brain MR im-

ages. However, to ensure that statistical snake executes successfully, a small 

part of the snake should overlap the desired feature and suitable parameters 

are required. Using this approach, it is possible to generate three dimensional 

images apart from the problems of not routine enough as it is too difficult and 

time consuming. Also medical images usually have not strong enough edges 

for the model to reach equilibrium. 



Chapter 4 

Overview of Centerline 
Methodologies 

Centerline has an important role in automatic analysis of various anatomies. 

It is used in computing edge gradients, searching for border positions, deriving 

video-densitometric profiles and measurement of vessel diameters. It is the 

basis for three-dimensional reconstruction of vessel segments or of the entire 

arterial tree. Nevertheless, centerline is acted as a logical frame for quantitation 

and navigation. Several methodologies are available for centerline detection. 

4.1 Thinning Approach 

Skeletonization, sometimes referred to as thinning, is a process where objects 

are reduced to structures of lower dimension while preserving the topology and 

shape. Thinning method is one of the conventional approaches. For three-

dimensional skeletonization, the border points are "peeled off ’ layer by layer 

while preserving the topology of the original object. It iteratively converts 

those foreground border points that are not satisfied certain geometrical and 

topological constraints to background points. 

There are two ways to implement thinning operations, sequential and paral-

18 
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lei. Gong and Bert and [15] present a simple parallel three-dimensional thinning 

algorithm, which conserves medial surfaces. The medial surface is the set of cen-

ters of maximal Euclidean balls included in the object. This parallel algorithm 

is based on some deletion predicates. The method of Ge [12] is a sequential one 

which define a skeleton as the locus of the centers of maximally inscribed balls 

(CMBs). They propose to use CMBs as geometrical constraints in the thinning 

algorithm. First, they use CMBs as anchor points so that the resulting skele-

ton is medially positioned. Second, they use a faster algorithm for calculating 

the number of connected components within a neighborhood surrounding each 

voxel in the entire object. Their method is an improvement of Lee's method 

27]. In order to detect CMBs, they first compute the distance transform of 

a binary volume. The distance transform for a point in the foreground is the 

distance from this point to the nearest point in the background. There are a 

few types of distance transform and 3-4-5 Chamfer distance transform is used. 

The weight is 3, 4 and 5 if the distance between two direct neighbors are 1, y/2 

and A/3 units apart respectively. By comparing the distance value of each voxel 

with its neighboring voxels, the CMBs are determined. They divide the neigh-

borhood into eight overlapping octants of 2x2 voxels to compute the number 

of 26-connected components in a neighborhood. They claim that this calculat-

ing the number of connected neighbor algorithm avoids the use of any extra 

checking necessary in the existing approaches and it does not require any extra 

data structure. The number of computation is, therefore, kept at a minimum. 

A path between two points specified is determined by applying the thinning 

algorithm. Extra loops along this path caused by holes may exist which require 

user to mark those points on each unwanted branch. 

Recently, they propose a modified algorithm [13] to reduce the user inter-

action. Their algorithm involves three steps. In the first step, they generate a 

three dimensional skeleton of the binary colon volume using a fast topological 

thinning algorithm. In the second step, they employ a graph search algorithm 

to remove extra loops and branches. These loops and branches are caused by 
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holes in the object which are artifacts produced during image segmentation. 

To remove extra branches and loops, they convert the skeleton to a weighted 

graph in which each edge corresponds to a branch, and the weight of each edge 

represents the size of the corresponding branch. They consider the edges in 

the graph to be pipes and the weights to be their sizes. The true central path, 

then, should be the widest pathway between two endpoints since the central 

lumen is always wider than artificial holes. In graph terms, they define the flow 

of a path between two vertices as the smallest weight along the path. Then 

the central path is the path with the largest flow. After extra branches are 

pruned, the skeleton becomes a single path lying medially in the colon lumen. 

However, the path is usually jagged due to the discrete nature of the CT image 

data. In the final step, they compute a smooth representation of the central 

path by approximating the skeleton with cubic B-splines. This final step is 

necessary because the skeleton contains many sudden changes in direction due 

to the discrete nature of image data. The user is required to supply two end-

points for the central path. The algorithm is not fully automatic. On an SGI 

system with an RIOOOO CPU without optimization, the time ranges from less 

than 1 minute for a subsampled 10MB volume to several minutes for a 150MB 

volume using the original resolution. The time required to convert a skeleton to 

a graph and to search for the true central path never exceeded 15 seconds. The 

time required for relatively small volumes (100MB) is acceptable for practical 

applications. However, speed remains an issue since a large volume (200MB) 

may take about 10 minutes of total time to process. 

Nystrom [38] describes another skeletonization applied to magnetic reso-

nance angiography images. The first skeletonization step reduces the object to 

a surface skeleton from which the original object can be recovered. The surface 

skeletons are computed in two phases. During the first phase, removable voxels 

are identified and iteratively removed until an at most two voxel thick surface 

of skeletal voxels is identified. During the second phase, this set is reduced to 

unit-wide surfaces and curves in a thinning process that has to be split into 
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six (the number of face-neighbours of a voxel) directional processes, each of 

them applied once. The second step reduces the surface skeleton further to a 

curve skeleton in two iterative phases. Voxels are iteratively removed from the 

surfaces and reduced to unit thickness by iteratively applying a final thinning 

process, until no more voxels can be removed. To obtain cleaner skeletons an 

optional pruning step can follow the skeletonization. The skeletons are labelled 

with the distance to the original background. Using this information, a simple 

and brute-force pruning method is applied. The shortest skeletal branches, 

labelled with small distances, are probably resulted from either noise or weak 

protrusions of the object. They can be pruned in iterated scans. Every skeletal 

voxel with a distance label less than a threshold is removed, unless its removal 

would disconnect the skeleton. For a 30 Mbyte MR angiography image the 

computation times for the whole process take about 15 minutes. 

4.2 Volume Growing Approach 

In Samara's paper [48], the centerline calculation technique is based on a vol-

ume growing method that segments a volume corresponding to air in CT data 

obtained from an insufflated colon. A 10-point neighborhood consisting of eight 

in-slice voxels (adjacent in-slice voxels including the diagonal voxels) and two 

out-of-slice voxels (directly above and below the voxel of interest) is used for 

volume growing. Volume growing is initiated by indicating a seed point in 

the rectum, air voxels are grown and tagged with growth step numbers. Each 

grown voxel is assigned an iteration number one more than its parent voxel 

corresponding to the step of growth from the seed voxel. The seed voxel is 

initialized to a growth step number of zero. Voxels with the same growth step 

number lie along a wave front. The centers of mass of grown voxels with similar 

growth step numbers are used as a 'forward centerline'. The last voxel added to 

the volume grown during this initial volume growing is used as a seed voxel for 

a 'backward centerline' volume growing. This procedure is repeated by growing 
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from the cecum to the rectum to generate a 'backward centerline'. Each point 

on the forward centerline is averaged with its nearest neighbor on the backward 

centerline to yield a point on the final calculated centerline. The technique is 

evaluated on a clinical colon case by comparing the calculated centerline with 

points indicated by two radiologists. Root mean square (RMS) differences be-

tween the computed and indicated points are small (4-5mm) and comparable to 

inter-observer differences. Results indicate that with this technique the center-

line of the colon can be accurately and quickly calculated. The time required 

for centerline computation is approximately one minute on a Silicon Graph-

ics 0 2 workstation. The average RMS difference between the indicated and 

calculated points is 4.924 mm. 

4.3 Combination of Mathematical Morphology and Re-

gion Growing Schemes 

Masutani [31] proposes a new model based on region growing controlled by 

math-morphological information of local shape, which has the ability of topo-

logical correction to extract bifurcation structure of three dimensional vascular. 

First, the initial shape is acquired by thresholding. Then, region growing is pro-

cessed basically in the space limited by the initial shape. Structural informa-

tion of the shape is simultaneously obtained. The region grows while avoiding 

non-vessel regions and keeps its local smoothness based on math-morphological 

information and local shape processing. Mathematical morphology is a well-

known theory for structure analysis and processing of binary shapes. Most 

math-morphological operations and analysis methods can be defined in terms 

of the basic operations erosion, dilation, closing and opening. One of the most 

important characteristics of them is controllability of their results by size and 

shape of filter kernel (structuring element). Morphological size is defined as 

a math-morphological quantity, which is an attribute of voxels that belong to 

an object. Distribution of morphological size in a shape is called pattern spec-
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trum to represent the characteristics of the whole shape. Morphological size of 

a voxel in an object means the minimum size of kernels, which can remove the 

voxel from the shape by opening operation. It represents local thickness of the 

object at the position of a voxel. After the process, segments of small region 

(cluster) are produced. Each cluster's center of gravity [30] will be used as the 

approximation for a node position. Centerline can be reconstructed by linking 

the nodes created. In this algorithm, except for initial shape acquisition and 

seed definition, users require to select a suitable mode. The growth termination 

condition is also variable. 

4.4 Simultaneous Borders Identification Approach 

In Sonka's paper [52], it mentions a semi-automatic lumen centerline detection 

in complex coronary angiograms. The method is based on simultaneous detec-

tion of the approximate position of the left and right coronary borders. There 

are four stages: observer identification of segment of interest, straightened edge 

image generation, simultaneous detection of approximate coronary and lumen 

centerline detection. In the first stage, the observer needs to define at least two 

points located within the vessel lumen which indicate the region of interest, 

(which segment of coronary). The two points serve as starting point and end-

ing point. Two additional points are entered, one on either side of the vessel, 

to define the width of the image region to be analyzed. A estimated starting 

centerline is produced and then smoothed. In next stage, the vessel segment of 

interest is straightened and smoothed in a direction parallel to the centerline 

estimated. In the third stage, the simultaneous border detection method [51 

uses a three dimensional graph searching approach. The optimization criterion 

used incorporates information about the global characteristics of the border 

pair into the detection process. The cost function used causes a high contrast 

border to more strongly influence the position of the opposite border than a low 

contrast border does. It identifies the border pair that has the greatest proba-
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bility of corresponding to the actual coronary borders. Finally, the midpoints 

between the left and right borders are calculated in the straightened coronary 

and are mapped and then smoothed in the original image space. Comparing 

with other conventional detection, the computational complexity is significant 

increased. In addition, it requires manual definition of the vessel centerline 

together with two additional points that serve with the centerline to define the 

vessel segment to be analyzed. 

4.5 Tracking Approach 

In the paper of Swift [55], they provide an axis generation method for three di-

mensional virtual bronchoscopic image. It deals with three dimensional branch-

ing tubular structures to find smooth central axes through the major airways. 

The user specifies a starting point based on the interested structure (i.e. the 

trachea). Then using an adaptive searching technique, their method auto-

matically steps through the structure and recording its movement and making 

measurements along the way. For each point during the searching, the airway 

cross-section is determined through a combination of grey-scale image data 

and a prior structural model constraints. After getting the first seek point as a 

viewing point, it casts rays radially outward to estimate the radius of a circle 

enclosing the tubular structure and the locations of tube walls. The centroid of 

the structure's cross-section is calculated from estimated wall locations. New 

candidate branches are determined and the new corresponding viewing points 

are produced. Based on the cross-section estimated of every viewing point, a 

path is determined. It requires a few minutes for a typical 512x512x25 CT 

image. 
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4.6 Distance Transform Approach 

Niblack [37] uses distance transform to generate skeletons and centerlines. The 

main advantage of this approach is that they are non-iterative. The skeleton 

is produced in a fixed number of passes through the image regardless of the 

object sizes. They first compute the distance transform, then select a subset M 

of pixels which is the set of local maxima in the distance transform and finally 

select pixels to connect the pixels, called saddle points, whose neighborhoods 

contain alternating humps and valleys. An example of saddle point is a pixel 

with distance transform value x such that clockwise around its four neighbor 

pixels there are pixels with values > x (part of a hump), < x (valley), > x 

(hump) and < x (valley). The set of pixels in M is connected by climbing 

"uphill", i.e. along paths of increasing distance transform values, from saddle 

points and neighbors of local maxima. For a 528x512 test image of a printed 

circuit board from an industrial application which contain several thick (ap-

proximately 90 pixel diameter) circuit pads, using a contour-based distance 

transform, their algorithm requires 2.5s. The experiments are run on an IBM 

RS/6000 with approximately 20 mips. 

Blezek [2] uses a distance transform (three dimensional chamfer 3-4-5 dis-

tance map) to label each voxel in the object with a medialness measure. The 

shortest path between start and end positions is found using Dijkstra's single-

source shortest path algorithm using the medialness measure as weights in a 

graph search algorithm. The 3-4-5 chamfer distance transform closely approx-

imates the true Euclidean distance transform and is computationally efficient. 

Each voxel is considered as a node in a weighted, directed graph and have 26 

neighbors which are connected by edges. The weight or distance associated 

with moving from any neighbor voxel to an adjacent voxel is a function of the 

adjacent voxel's medialness measure. The path of "least resistance" through 

voxels that are more medial is determined. Our algoirthm is based on Blezek 

method which he applies to virtual endoscopy system. Endoscoopy system is 
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for examining visually the interior of a bodily canal or a hollow organ such 

as the colon, bladder, or stomach. Bronchoscopy system is for inspection of 

the interior of the bronchi. Bronchoscopy system and endoscopy system dif-

fer in the applied object. The latter one usually is applied on hollow organs 

and cavities without special consideration of the branching feature. In virtual 

bronchoscopy system, careful consideration of the branching characteristic is 

required. The comparison between our algorithm and his algorithm is given in 

section 7.2 in chapter of Experiments and Discussion. 



Chapter 5 

Automated Extraction of 
Bronchus Area 

5.1 Basic Idea 

The bronchus is bounded by a thin wall and is filled with air. The CT values 

(intensity) of the wall and the bronchus area have very high contrast since air 

has low CT values and the wall has much higher CT values comparatively. 

Instead of extracting the wall of the bronchus as curved surfaces, the inside 

area of the bronchus is extracted as three dimensional thin volumetric areas. 

The extracted areas should be in tree shape. Based on the simple fact that 

the bronchus area is simply connected, the extraction procedure is performed 

by tracing voxels with relatively low CT values corresponding to air. The 

process is controlled so as not to proceed across voxels with relatively high CT 

values corresponding to the wall. The results of region growing strongly depend 

upon the choice of the acceptance condition and the initial point. Therefore, a 

suitable start point of tracing and the criterion to merge a new area should be 

selected carefully. 

27 
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I 
Decision of a Start Point 

T: 
Decision of the Optimized Threshold Value 

t 

Final Extraction of the Bronchus Area 

t 
3D Image of the Bronchus Area ^^^^^^^^^^^^ 

Figure 5.1: The Outline of the Bronchus Area Extraction Algorithm 

5.2 Outline of the Automated Extraction Algorithm 

Given a CT image, the automated bronchus extraction algorithm produces 

three dimensional image of the bronchus area. Processes of the algorithm 

include decision of a start point, decision of the optimized threshold value, 

and final extraction of the bronchus area. The outline of the bronchus area 

extraction is shown in Fig. 5.1. 

5.2.1 Selection of a Start Point 

In a typical image of lung, we have different regions of interest (ROI) of almost 

circular/elliptical, which correspond to the cross-sections of the tree branches 

41]. We want to retrieve an inside point of bronchus that is a point among 

the cross-sections of the bronchus area as an initial point for region growing. 

Moreover, an inside point of trachea, which is located near the center of the 

image, is chosen in order to obtain a better result. In order to meet all these 

criteria, a start point retrieval algorithm based on genetic algorithm (GA) is 

proposed. The detailed description of the algorithm will be presented in section 
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5.3. 

5.2.2 Three Dimensional Region Growing Method 

Given a start point, the region growing method checks its neighbors to deter-

mine whether they are belonging to the same region. If they are determined 

to be one of its connected area, their neighbors will be checked. The process 

is recursively executed until no more new neighbor is merged. For a three 

dimensional space, the six neighbors of a point are to be checked. The three 

dimensional painting algorithm [35] is applied with some modifications for op-

timization purpose and will be described in section 5.4. 

5.2.3 Optimization of the Threshold Value 

Before applying the above three dimensional painting algorithm, the threshold 

value for distinguishing the bronchus wall area from the inside of the bronchus 

area must be carefully chosen. If the threshold value is too low, the extracted 

bronchus area will be underestimated. On the other side, if it is too high, the 

extracted bronchus area will not be accurate enough to represent the actual 

bronchus. However, based on the feature of the extracted area number of 

different threshold values, we can determine the optimal threshold value. It 

will be explained in the section 5.5. 

5.3 Retrieval of Start Point Algorithm Using Genetic Al-

gorithm 

In the extraction of bronchus from three dimensional CT images of lung, the 

most common and effective method is three dimensional region growing. Given 

a start point, the algorithm traces voxels with relatively low CT values corre-

sponding to air without proceeding across voxels with relatively high CT values 
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corresponding to the wall. It is obvious that a suitable start point should be 

selected carefully. 

The start point determination method, which is based on a cost-minimization 

approach, is implemented by using genetic algorithm (GA) [47] to accurately 

locate a start point for the region growing. A start point should be an inside 

point of trachea and near the center of the human body. In addition, it should 

have reasonable connected region number. To simplify the problem, we trans-

form the problem from three dimensional to two dimensional. Furthermore, we 

assume that the images are axial and the first slice can cut the main bronchus. 

We determine the start point by considering the first slice only. 

5.3.1 Introduction to Genetic Algorithm 

Genetic Algorithm [47] can be applied to any problem that has a large search 

space. It searches directly in the space of individuals, with the goal of find-

ing one that maximizes/minimizes the fitness function. The search can be in 

parallel because each individual in the population can be seen as a separate 

search. It is hill-climbing because we are making small genetic changes to the 

individuals and using the best resulting offspring. We should concentrate on 

the most promising individuals, but if we ignore the low-scoring ones, we risk 

getting stuck on a local maximum. The fitness function depends on the prob-

lem, but in any case, it is a function that takes an individual as input and 

returns a real number as output. In the “classic" genetic algorithm approach, 

an individual is represented as a string over a finite alphabet. Each element of 

the string is called a gene. The selection strategy is usually randomized, with 

the probability of selection proportional to fitness. Usually, selection is done 

with replacement, so that a very fit individual will get to reproduce several 

times. Reproduction is accomplished by cross-over and mutation. First, all 

the individuals that have been selected for reproduction are randomly paired. 

Then for each pair, a cross-over point is randomly chosen. Each gene can be 
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altered by random mutation to a different value, with small independent prob-

ability. Like neural networks, genetic algorithms are easy to apply to a wide 

range of problems. Furthermore, genetic algorithms can be incredibly efficient 

if programmed correctly. 

5.3.2 Problem Modeling 

We want to extract the three dimensional structure of bronchus in lung area 

by the region filling method. In this method, it is important to obtain a good 

start point so that we can extract the necessary information effectively and 

efficiently. 

Simply speaking, coordinates of the start point serve as the inputs of our 

cost function, and the problem here is to find the point which has the minimized 

cost. A point consists of a;-coordinate and y-coordinate data which form a tuple 

(x, y). The possible value of x is within the range of zero to the width of the 

given image. The possible value of y is within the range of zero to the height 

of the given image. Therefore, we have a (width x height) solution space. For 

example, the sample space of a 256 x 256 image has 65536 combinations. Our 

problem that has a large search domain is suitable to be tackled by genetic 

algorithm. 

For the purpose of constructing our model, we introduce the chromosome 

encoding and the fitness function. A chromosome is represented by two genes. 

The first gene is represented by the a;-coordinate while the second gene is rep-

resented by the y-coordinate. Therefore, two genes are represented as a point. 

There are two cost factors: the connected region cost and the near center cost. 

Each cost has its corresponding cost weight which controls the relationship 

with the costs. 

As mentioned above, a proper start point should have reasonable connected 

region. It should have less than 0.5% of the total area. For example, in a 

256 X 256 image, it should not have connected area which is greater than 300. 
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The first cost is the difference between the reasonable connected area and the 

connected area determined by applying a four-direction flood filling algorithm 

from the given point. Therefore, the first cost is | reasonable-connected-area — 

connected-area-deter mined\. 

The second cost is the distance from the current point to the center point 

of the image. The center point of the image is calculated as (dimensional 

dimensiouy/2). Therefore, the distance is ^{x — centerxY + (y — centery)"^. 

The corresponding weights are determined by the fact that the ratio of first 

cost to the second cost is 100:1. Since it is a cost minimization problem, the 

two costs are divided by the corresponding maximum possible values. The 

maximum value of the first cost is the total area, which is the dimension of 

a;-direction multiplies the dimension of y-direction. The maximum value of the 

second cost is the distance from any corner to the center point. Therefore, 

the first weight is 100/[dimensiorix x dimensiony), and the second weight is 

1/^{dimensional/2y + (dimensiony/2)'^. For a 256 x 256 image, the two weights 

are 100/65536 and 1/181 respectively. 

The fitness function of a given population (x, y) is 

2 

The connected cost is 

A^i = \reasonable-connected-area — connected—area—determined 

The weight constant of connected cost is 

— m 
(dimensiorix x dimensioUy) 

The near center cost is 

"2 = [x - center^y + (y - centeryY 
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The weight constant of near center cost is 

1 
= I . 

/ ( dimensioux ) 2 | ( dimenstouy ) 2 

5.3.3 Algorithm for Determining a Start Point 

1. Generate initial populations (7^=100) 

2. do { 

3. Perform mutation with 0.05 probability 

4. Perform crossover with 0.05 probability 

5. Evaluate the fitness of each population 

6. Rank the populations 

7. Keep the best n populations 

8. } while (termination is FALSE) 

9. Output the best one 

5.3.4 Genetic Operators 

The population size is 100. Since the potential candidates are located near the 

center of the image, the initial population is selected uniformly from the center 

region of the image. 

A simple mutation operation can free a chromosome from a local max-

imum. The mutation operation is performed by picking up a chromosome 

randomly. We can create the four additional chromosomes by the following 

method: adding the first gene by one, adding the second gene by one, sub-

tracting the first gene by one and subtracting the second gene by one. The 

mutation probability is 0.05. Given population size is 100, there are 5 nrnta-

tion operations and each produces four children. Therefore, 20 children are 

produced. 
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The crossover operation can generate more diversified offspring. To perform 

the crossover operation, two chromosomes are picked up randomly and then 

their genes are exchanged. The crossover point is located between the first gene 

and the second gene. The probability of crossover is 0.05. For a population size 

of 100, 5 crossover operations are performed and each produces two children. 

In each round 10 children are added to the population. 

After the mutation and crossover operations are completed, all the chromo-

somes in the population that includes the 30 children, which have just been 

added to the population, are ranked by the fitness function. Only the first best 

n chromosomes in the population are kept for next generation. The algorithm 

terminates when the generation number exceeds the maximum generation num-

ber. 

5.4 Three Dimensional Painting Algorithm 

Three dimensional painting algorithm [35] is a three dimensional region growing 

method [59] and it paints all the voxels that have lower CT values of the given 

threshold value to the same color starting from the given initial point. The 

painted voxels are corresponded to the connected bronchus area. The algorithm 

is performed sequentially, line-by-line mode along axes in three dimensional 

space to reduce the computation time. Starting at the given initial point given 

that must be an inside point of the bronchus area, it searches all its adjacent 

points to determine whether they have the CT values lower than the given 

threshold value. If the visited voxel has a CT value lower than the given 

threshold value, it is recognized as an inside point of bronchus. 

5.4.1 Outline of the Three Dimensional Painting Algorithm 

1. Load the original image on F = fij^ 

2. Insert the start point to Q (a FIFO type Queue) 



Chapter 5 Automated Extraction of Bronchus Area 35 

3. While {Q is not empty) { 

4. Get the first point from Q and store it to (x, y, z) 

5. while {fxyz < threshold) 

6. X = X — 1] 

7. px 二: x]py = y-p^ = 2：; 

8. length=Q; 

9. while {fxyz < threshold) { / / count the length to paint 

10. paint Qxyz / / t h e output image, initial all are non-painted 

11. length~\~~\~', 
} 

12. X =p^ ;y = p y - l ] z = p^] 

13. if ( {fxyz < threshold) and [gxyz not paint) and ((x, y, z) not in Q)) 

14. insert (x, y, z) to Q 

15. 

16. for ( i=0 to length) { 

17. if { {fx+i,y,z > threshold) and [f^y^ < threshold) 

18. and {g^yz not paint) and ((x, y, z) not in Q ) ) 

19. insert {x^ y^ z) to Q 

20. X++； 
} 

21. 二 Px;y 二 Py + = 

22. repeat step 10-12 

23. x = p ^ ; y = py-z = p ^ - 1; 

24. repeat step 10-12 

25. X =p^ ;y = py-z = p^ + 1; 

26. repeat step 10-12 
} 

Given an input image, initial point and threshold value, the algorithm starts 

with putting the initial point in a First-In-First-Out (FIFO) type queue. While 

the queue is not empty, the following operations are performed. Firstly, it gets 
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a point from the queue as a reference point and scans left to the first point 

which is needed to be painted along the x-axis. Starting from the leftmost 

point, it paints all the following points that have CT value lower than the 

threshold value along the a:-axis and the number of painted points is recorded. 

Then, it determines all the changing points by scanning the points above the 

reference point in the ？/-direction with the recorded painted length and add 

them to the queue. A changing point is a point that has the CT value lower 

than the threshold value and one of its next point along the x-axis has the 

CT value higher than the threshold value. All the changing points that above 

and below the reference point in the y-direction and 2:-direction are obtained 

and added again. To optimize the algorithm, any point that is already in the 

queue will not be added to the queue. Every point should be distinct in the 

queue at a time, i.e., no point should be repeated in the queue. The algorithm 

terminates when the queue is empty. 

5.5 Optimization of the Threshold Value 

An optimal threshold value is the CT value that can distinguish the bronchus 

wall area from the inside of the bronchus area. It can decide whether a current 

voxel should be merged into the colored area or not. It is desirable that the 

threshold value is as high as possible for extracting region objects with mini-

mum number of misrecognition. However, if the threshold value is higher than 

the optimal one, the extracted region may grow over the bronchus wall and the 

whole lung area will be extracted as the bronchus area in the worst case. This 

phenomenon is called，explosion.. Since the lung volume is much larger than 

the bronchus volume, the number of extracted voxels of the explosion case is 

much larger than that of the normally extracted bronchus area. 

We start the painting with a relatively low threshold value. Number of 

voxels extracted as the bronchus area during the operation is counted. The 

painting is iterated with another higher threshold value by increasing the pre-
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vious threshold value with an appropriate increment. After we complete the 

experiments, a threshold value that just before the point on which the number 

of voxels extracted is increased explosively is regarded as the optimal threshold 

value, i.e., it is just before the point which has the maximum rate of change 

of the slope of the graph plotting number of voxels extracted against threshold 

value. We can obtain the result by calculating the difference between two ad-

jacent second derivatives of the curve and the point which has the maximum 

value regarded as the optimal threshold value. 



Chapter 6 

Automatic Centerline 
Determination Algorithm 

Our automatic centerline determination algorithm is composed of two main 

components. Fig. 6.1 shows the work flow of our algorithm. The first compo-

nent is end points retrieval algorithm which converts segmented lung airway tree 

volume data into a set of end points. The second component is graph based 

centerline algorithm. The algorithm reads the end points and it yields a distance 

map which shows all shortest paths from the start point to those end points. 

Those end points can be used to construct a set of centerlines of the bronchus. 

6.1 Distance Transformations 

A distance transformation [3] [4] is an operation that converts a binary image to 

a grey-level image where all pixels have a value corresponding to the distance to 

the nearest feature pixel. Computing the distance from a pixel to a set of feature 

pixels is essentially a global operation which are prohibitively costly. Therefore, 

algorithms should consider only small neighborhood at a time and still maintain 

a reasonable approximation to the Euclidean distance. Distance transform, 

(DT), based on the idea of global distances in the image which are approximated 

38 
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Tree Segmented Volum̂^̂ Ĵ̂Ĵ^̂^̂^̂^̂^̂  

！ 
End Points Retrieval 

Graph based Centerline Algorithm 

Figure 6.1: Outline of the Automatic Centerline Determination Algorithm 

by propagating local distances, i.e., distances between neighboring pixels. This 

propagation can be done either in parallel or sequentially. An original binary 

image consists of feature pixels with the initial value zero, and non-feature 

pixels with the initial value infinity, i.e., a suitably large number. All DTs can 

be described in graphical form as "masks". The D T masks are not linear filters. 

The constants are the local distances that are propagated over the image. The 

size of the neighborhood can vary. 

The computation of the DT is either parallel or sequential. In the parallel 

case the center of the mask is placed over each pixel in the image. The local 

distance in each mask-pixel is added to the value of the corresponding image 

pixel. The new value of the image pixel is the minimum of all the sums. The 

process is repeated until no pixel value changes, i.e., the number of iterations is 

proportional to the largest distance in the image. The sequential algorithm also 

starts from the zero/infinity image. The symmetrical parallel mask is split into 

two masks. The masks are passed over the image once each: the forward one 

from left to right, and from top to bottom, and the backward one from right 
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to left and from bottom to top. The new value of the “ central" image pixel is 

minimum of the sums of the image transform is computed. The final DT result 

is exactly the same whether the parallel or sequential method is used. 

Three-dimensional elements are usually called voxels (volume elements). 

Each voxel has 26 neighbors which can be classified into three categories. The 

first, closest, kind of neighbors is the six ones joined to the voxel by a plane, 

the second kind is the 12 neighbors joined by a line, and the third kind is the 

eight neighbors joined by only a point. The three different local distances to 

the different kinds of neighbors are denoted by di,d2, and 而 .T h e algorithms 

can be illustrated by masks in three dimensions which marks are now parts of 

a 33 cube in Fig. 6.2. The two planes of each mask are placed close together 

in the figure. Two passes over the volume are needed. The forward mask is 

moved over the volume from left to right, top to bottom, and front to back. 

The backward mask is moved in the opposite way. In each position, the sum 

of the local distance in each mask-voxel and the value of the voxel it covers is 

computed, and the new value of the zero voxel is the minimum of these sums. 

The three dimensional sequential DT algorithm is: 

distance Jrans for mation^3D(){ 

Forward: 

for k = 1 to z-res 

for J — 1 to yjres 

for i = 1 to xjres 

= minimum(Vi+i，j+rn,k+n + (i forward—mask(J,rn,n)), 

(/, m, n) G forward mark 

Backward: 

for k = zjres to 1 

for j = y_res to 1 

for i = xjres to 1 

^hj.k = mi7limum(jUi+i,j+rn,k+n + dbackward-maskij, TU, n)), 
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！®̂ ^̂  

Figure 6.2: Masks for the three dimensional distance transform algorithm 

(/，m, n) e backward mark 

} 

where xjres^ yjres and zjres represent the resolutions of the image in x^ y 

and 之 directions; ”i，j，k is the value of the voxel in position [i,j, k) in the object 

volume; (/, m, n) is the position in the mask, i.e. (0,0,0) represents the center of 

the mask and djorward-maskiU rn, n) and (hackward-maskij, rn, n) are the constants 

from the mask, i.e. rfi, d) and ds. The values of di, d � a n d ds are set to one 

to infinity depending what kind of DT. If it is set to infinity, it means that 

the corresponding mask-voxel is omitted from the mask. It is often desirable 

to use only integers. A very good integer approximation of the optimal local 

distances is di = 3, c?2 = 4, and ds = 5. This chamfer 3-4-5 distance is used in 

our algorithm. 

6.2 End Points Retrieval 

Assume that the slices of the volume data are in axial format, we first determine 

all the center points of every region in each slice. In each slice, every pixel is 

scanned once to perform region growing searching. Segmented volume data 

can be divided into categories, feature or non-feature pixel. The feature pixels 
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LinkCenterPoint(list L){ 
1. While list L not empty{ 
2. Extract the first member p of the list L 
3. Locate all unlinked center points {ci, C2,... c^} in the previous and next 

slices of p 
4. Calculate the distance from {ci, C2,... to p as [di, d>2, ...dn 
5. Sort the center points [ci, C2,.. . c j by the corresponding [(ii, (̂ 2，…心 

6. if di < distance—threshold 
7. link up p to ci 
8. insert ci into list L 
9. if d2 < distance-threshold 
10. link up p to C2 
11. insert c飞 into list L 
12. if di or 0̂2 > distance-threshold and < possible —distance Jhreshold 
13. if p not yet appear in the linked list L 
14. insert p into the list L in a suitable position 
15. else link up p to the corresponding point (ci or C2) 

} 

} 

Figure 6.3: Center Points Linking Algorithm 

represent the lung tree airway extracted. While the non-feature pixels represent 

those remaining areas. When a feature pixel is being visited, region growing 

is started from the pixel and search its eight neighbors recursively. Pixels are 

marked when they have been visited. Those unmarked feature pixels will start 

region growing to form other regions. After the whole slice is scanned, a few 

regions should be extracted. The center of mass of each region is determined 

and it is treated as the center point of that region. 

After the center points of all slices are determined, they will be linked up 

by our center points linking algorithm which is shown in Fig. 6.3. Based on 

the bifurcation characteristics of lung tree volume, we link up those center 

points starting from the main bronchus to tiny airway tips. By the algorithm 

in section 5.3 [26] which adopts genetics algorithm to determine the start point, 

a seed point which belongs to the main bronchus is generated. The center point 

of the corresponding region that contains the seed point is then used as the 
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initial point in the center points linking algorithm. 

The initial point is inserted into a linked list which will contain subsequent 

center points for processing. Let L be the linked list, p be the first element of 

the list and {ci, C2,.. .c^} be the set of unlinked center points which are in the 

previous or next slices of p. Distance between p and all elements in {ci, c〗，...Cn} 

will be calculated so that any point will be linked up to p if it is close to p. 

Let XI and xi+i be two center points in I仇 and I + slices respectively. 

There are two threshold values distance-threshold and possible^distanceJhreshold 

used in our algorithm which measure the closeness between two points. If 

the distance between xi and xi+i is not larger than distance-threshold and 

xi has less than two children, xi is linked to which represents that xi 

is the parent of If the distance between xi and xi^i is larger than 

possible-distance-threshold, xi and do not have child-parent relationship. 

If the distance falls between distance—threshold and possible-distance Jhreshold, 

they may have child-parent relationship and further test is needed. In this case, 

xi is inserted into the list L so that all its preceding points in the list have the 

same slice number but with smaller minimum distance. When xi is extracted 

again and it has one child or less, xi is linked to xi^i if xi^i has not yet been 

selected from other points. Then xi is the parent of xi+i. If xi^i is a child point 

of xi, it is then inserted into the end of L so that its children will be found later. 

Every point should only have one parent. Once it is selected from a point, the 

child-parent relationship is established and no other point can be its parent 

afterwards. 

The center points linking algorithm is shown in Fig. 6.3. After the algorithm 

is completed, a binary tree which links up all necessary center points is yielded. 

In the binary tree, end points are the points which do not have any child. It 

implies that they are corresponded to the lung airway tree tiny tips. Since the 

binary tree is created, those end points can be easily extracted by the traversal 

of the tree. 
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6.3 Graph Based Centerline Algorithm 

Based on chamfer distance transform and Dijkstra's single source shortest path 

algorithm [57] [7], Blezek [2] applies a centerline algorithm to virtual endoscopy. 

However, he mainly concerns one-start-point-one-end-point endoscopy such as 

colonary and user is required to supply the start and end points. Virtual 

bronchoscopy which has many branches cannot directly apply his algorithm. 

Automatic algorithm is preferred. Therefore, modifications are accomplished. 

Our centerline algorithm first calculates a three dimensional chamfer 3-4-5 

distance map of the volume data which is a two-pass procedure. All voxels in 

the interior of the object are labelled with the distance to the nearest back-

ground voxel. In other word, a voxel in the center interior of the object should 

have a larger distance value as it is farther apart from the background compar-

ing with those boundary voxels. 

V{X, y, Z) = (Vrna:u - Voriginal�X, y, z)Y 

From the distance map, the maximum distance value Vmax is determined. 

All voxel distance values are squared after subtracted from Vmax to achieve 

that more interior voxels have smaller distance values and more near boundary 

voxels have larger distance values relatively. Thus, voxel has zero distance 

value is as far from the boundaries of the object as possible. The squaring is 

performed to encourage the path to maintain a medial path. 

A weighted directed graph G = {V, E), where V is the set of vertices and 

E is the set of edges in the graph is constructed. All voxels are considered 

as nodes (vertices). Edges are created between a vertex and its 26-connected 

neighbours. The weight of a edge is assigned as the distance value of the voxel 

in in-direction. For example in Fig. 6.4, the weight of edge (Vb, Vi) is four which 

is the distance value calculated of the corresponded voxel of Vi. 

A general method solving the single-source shortest-path problem is known 
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Figure 6.4: A two dimensional graph example. The values in the brackets are the 
corresponding distance value of the voxels. 

as Dijkstra's algorithm. It is a prime example of greedy algorithms. Greedy 

algorithms generally solve problems in stages by doing what appears to be the 

best thing at each stage. Similarly Dijkstra's algorithm proceeds in stages. 

In each stage, Dijkstra's algorithm selects a vertex v which has the smallest 

distance among all the unknown vertices, and declares that the shortest path 

from source to the vertex v is known. The remainder of a stage consists of 

updating the values of the neighbours of the vertex v. A priority queue Q that 

contains all the unknown vertices keyed by their distance values is maintained. 

It is practical to implement the priority queue Q with a binary heap [57] [7 . 

The resulting algorithm is sometimes called the modified Dijkstra algorithm. 

Binary heaps have two properties, namely, a structure property and a heap-

order property. A heap is a binary tree that is completely filled, with the 

possible exception of the bottom level, which is filled from left to right. Such a 

tree is known as a complete tree. It can be represented in an array and no links 

are necessary. For any element in array position i’ the left child is in position 

22, the right child is in the cell after the left child {2i + 1)，and the parent 

is in position i/2. Thus not only links are not required, but the operations 
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dijkstra(G, StartPt){ 

1. initial distance[i\ 二 oo and previous vertices are NULL 
2. set distance[StartPt] = 0 
3. build a binary minimum heap which is keyed to distance[ 
4. while heap is not empty { 
5. retrieve the minimum item v from the heap 
6. for each adjacent w to v 
7. if w not out of bound and w is a. feature point 
8. update w distance and previous vertex if required 
9. update heap if w information is modified 

} 

} 

Figure 6.5: Modified Dijkstra Shortest Path Algorithm 

required to traverse the tree are extremely simple and likely to be very fast on 

most computers. The heap-order property allows operations to be performed 

quickly. In a heap, for every node X, the key in the parent of X is smaller than 

or equal to the key in X，with the exception of the root which has no parent. 

By the heap-order property, the minimum element can always be found at the 

root. Thus, we can retrieve the minimum element quickly. 

When the Dijkstra algorithm as shown in Fig. 6.5 is completed, the previ-

ous vertex in the shortest path from the source vertex StartPt to each vertex 

is determined. The previous vertex should be a 26-neighbour of the current 

vertex. Therefore, three dimensional 26-connected chains are generated from 

the source vertex StartPt to each feature vertex. To improve the efficiency of 

the procedure, only those feature vertices are considered. If the vertices are 

non-feature (background) one, their previous vertex should be remained NULL 

which is not changed since initialization. 

In principle, the required centerline can be constructed by extracting the 

shortest path between the source point and the end points. It can be accom-

plished by our algorithm which traces each end points back to source point. In 

addition, all visited voxels will be marked and will never be visited again so as 

to speed up the whole tracing process. Combining all visited voxels forms the 
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resultant centerline of the object. The algorithm for tracing the centerline is 

given as follows: 

trace_centerlineQ{ 

initialize center line (f) as FALSE 

for each current-endpoint G endpointsJist{ 

current — current-endpoint 

while current is not NULL{ 

if center line (cur rent) == TRUE 

break 

else 

centerline [current) = TRUE 

current — current — previous jpt 

} 
} 

} 

In the algorithm, centerline(i) is used to record the tracing state of the 

corresponding voxel i. During the tracing process, if the state is set to be 

TRUE, it means that the voxel i is traced and is marked as a part of the 

overall centerline. Once the voxel which has TRUE state is set, it will not be 

traced again and it will not change state afterwards. If it is in FALSE state, 

it does not necessarily mean that it does not belong to the overall centerline. 

It only means that it is not included as a part of the centerline up to the 

current stage. If centerline[i) remains in FALSE state eventually, the voxel i is 

regarded as a non-centerline voxel. After the process terminates, the resultant 

centerline can be reconstructed by using those TRUE-stEite voxels. 



Chapter 7 

Experiments and Discussion 

Various sets of experiments are performed so as to prove the accuracy and 

efficiency of our proposed algorithms. All experiments are performed on Sun 

UltraSparc 5/270 workstation with Solaris 2.6 OS, 512MB RAM and 100Mbps 

network speed. 

7.1 Experiment of Automated Determination of Bronchus 

Algorithm 

The automated extraction of bronchus algorithm is executed with real three 

dimensional CT image data. The image set contains 184 images where each 

of them is a 256x256 8-bit grey-scale image. In addition, a reduced resolution 

image set which is composed of 64 128x128 8-bit grey-scale images is prepared 

for comparison purpose. 

In the start point retrieval algorithm, the threshold value is set to be 70. 

Given the population size is 100, the probability for performing mutation and 

crossover is 0.05. About 20 generations, the population starts to converge. Af-

ter another 40 generations, the population converges to a small region. The 

algorithm terminates when the generation number reaches the maximum pop-

ulation number which is 100. The resultant point, which corresponds to the 

48 
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best chromosome in the population, is found to be within the required bronchus 

area. 

Different threshold values are applied to the three dimensional region grow-

ing algorithm. We test all possible threshold values starting from the lowest 

value to the highest value (i.e., 0 to 255). Fig. 7.1 and Fig. 7.2 are the corre-

sponding extraction volume results after they are applied to the two data sets. 

In Fig. 7.1, there are two increments in the graph. The first one which has 

more dramatic change at threshold 71 is caused by the great volume difference 

between the bronchus volume and the lung volume. The second increment 

which is located at the threshold value 150 is due to the excessive high in-

tensity background volume surrounding the lung. However, in Fig. 7.2, the 

graph of the small data set data only gives one dramatic increment at thresh-

old value 66. It does not have any second increment which is caused by the 

background region. It can be explained as the excess background region of 

the small data set is already cropped away during the reducing process. The 

optimal thresholds are found to be 71 and 66 for the large and the small data 

sets respectively at which they give dramatic increments. Fig. 7.3 and Fig. 7.4 

are the corresponding computation time of the above cases. 

It is observed that the two time graphs are decreased gradually starting 

from around threshold value 150. Before that values, the curve matches the 

extracted voxel number graphs in Fig. 7.1 and Fig. 7.2. The more voxel number 

is extracted, the more time is required. However, for the threshold value larger 

than 150, the number of extracted voxels are mostly related to the background 

volume and consequently less changing points are produced during the three 

dimensional region growing. A changing point in the three dimensional painting 

algorithm is a point that has the CT value lower than the threshold value and 

one of its neighbor along the x-axis has the CT value higher than the threshold 

value. The time required for the three dimensional painting algorithm is related 

to the total number of changing points. Larger number of changing points 

means that more execution time is required in order to complete the process 
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Extracted Voxel Number VS Threshold Value (Large Data Set) 
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Figure 7.1: Extracted Voxel Number in Large Data Set (256x256x184) 

as more points are manipulated for producing the region growing. When the 

threshold value is near to the background intensity, it includes most voxels in 

the data set and only little amount of remaining voxels have larger threshold 

values than it. As a result, there are lesser changing points and faster execution 

time when the threshold value is closer to the maximum threshold value (i.e. 

255). 

The extracted bronchus areas are visualized with three dimensional texture 

mapping technique [32], which is a direct data visualization technique that is 

similar to ray casting. Three dimensional textures are a logical extension of two 

dimensional textures. In three dimensional textures, texels become unit cubes 

in texel space. The three dimensional texture is used as a voxel cache, and it 

processes two dimensional layer each time by all rays simultaneously. Fig. 7.5 

and Fig. 7.6 show the images of the reconstructed bronchus. The bronchus are 

extracted satisfactorily. 

Although the two data sets used in experiments represent the same lung 
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Extracted Voxel Number VS Threshold Value (Small Data Set) 
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Figure 7.2: Extracted Voxel Number in Small Data Set (128x128x64) 
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Figure 7.3: The Computation Time in Large Data Set (256x256x184) 
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Computation time in second VS Threshold (128x128x64 Small Data Set) 
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Figure 7.4: The Computation Time in Small Data Set (128x128x64) 

Figure 7.5: The Reconstructed Bronchus (Small Data Set 128x128x64) 
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Figure 7.6: The Reconstructed Bronchus (Large Data Set 256x256x128) 
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image, the reconstructed bronchus (as shown in Fig. 7.5 and Fig. 7.6) of the 

smaller data set is less accurate and it has less tree branches. Limitation of 

resolution accounts for it. When the resolution decreases, it has the advantage 

of saving memory and execution time. On the other hand, its representative 

power is also decreased. The resultant medical visualization depends on the 

acquired image data. 

To increase the efficiency of the extraction algorithm, we provide a much 

more accurate threshold value to the start point retrieval algorithm, or, if we 

know the start point, we can skip this process and directly proceed to the next 

procedure. Since the trachea has high contrast, we can figure out its location 

in the image without any difficulty. In addition, in the optimal threshold deter-

mination process, we can speed it up by giving a range of potential threshold 

values for the algorithm to perform testing instead of running with all possible 

threshold values. 

7.2 Experiment of Automatic Centerline Determination 

Algorithm 

The automatic centerline determination algorithm is implemented and tested 

on real three dimensional CT lung data and five mathematical phantoms. Seven 

sets of lung airway tree segmented data are generated by the method mentioned 

in chapter 5 [26]. Among the seven image sets, a reduced resolution image set 

that is composed of 64 images, where each of them is a 128x128 8-bit grey-scale 

image, is prepared for comparison. Other six image sets contain around 185 

images where each of them is a 256x256 8-bit grey-scale image. 

Several mathematical phantoms are generated to evaluate the performance 

of centerline determination algoirthm in different typical circumstances. They 

are generated by using the known related centerline and radii information. The 

first phantom is a simple cylinder which is shown in Fig. 7.7(a) with a constant 
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radius of 10 units. The basic unit of a three dimensional volume is a voxel. It is 

used to evaluate the simplest case. Fig. 7.7(b) shows a helix phantom with 20 

units thick which is winding a 20-unit radius cylinder. Another helix phantom 

in Fig. 7.7(c) is with the same thickness and it is winding a prism having radii 

from 20 units to 38 units. The two helix phantoms are used to model the 

twisting case. Although lung airways do not have exteme twisting structures, 

they have curve structures. The fourth phantom in Fig. 7.7(d) is created by 

the centerline information derived from a real lung dataset. It has constant 

thickness of ten units. The final phantom, which simulates airway phantom, in 

Fig. 7.7(e) is generated and based on typical lung airway tree structure. It has 

airways from generation one to generation five. In real airway tree, the thickness 

of the airway is related to the corresponding generation number. When the 

generation number increases, the corresponding airways become thinner. To 

simulate this converging thickness property, different generation airways are 

assigned with various thickness. The radii are 10, 8, 6, 4 and 3 units for 

airways of generations 1, 2, 3, 4 and 5, respectively. Table 7.2 shows the 

detailed information. 

All experiments are performed on Sun UltraSparc 5/270 workstation with 

Solaris 2.6 OS, 512MB RAM and 100Mbps network speed. Tables 7.1 and 7.2 

present the running time of the algorithm for the data set and phantom data 

set correspondingly. The time is approximately linear to the number of object 

voxels, distance-threshold and possible—distanceJhreshold are set to be 3 and 26 

respectively in the end points retrieval algorithm. User can alter these two 

distance thresholds whenever necessary. Accuracy evaluation of the algorithm 

is performed by using the mathematical phantoms with known centerline in-

formation. Table 7.3 shows the distance error results for various phantoms. 

Distance error is measured by the distance from a voxel in the generated cen-

terline to the nearest voxel in the original centerline on the same slice in axial 

format. The distance unit is voxel. As the true centerline is non-discrete in 

value, it may cover the path between voxels. On the other hand, the generated 
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(a) Simple Cylinder Phantom (b) Helix Phantom 

(c) Helix with Vairous Radii Phantom (d) Lung Airway Phantom 
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(e) Simulated Lung Airway Phantom 

Figure 7.7: Mathematical Phantoms 
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centerline uses integer to represent the corresponding voxel coordinates within 

the volume, which is discrete. It can be expected that some errors are caused 

by it. The average error of the five phantoms is less than 1.1 voxel which in-

dicates that the generated centerline does not critically depart from the real 

centerline. The two helix datasets have a maximum error of 5.34 voxels which 

may refer to the twisting structure. Because of the varying branching angles 

and thickness, the airway simulated phantom has maximum error of seven vox-

els. If two true centerline voxels in two continuous slices are departed from a 

few voxels, some inbetween voxels are included in the generated centerline so 

as to maintain the connectivity of the generated centerline. The newly added 

inbetween voxels have some voxels distance to the real centerline voxels. An 

example is illustrated in Fig. 7.9. It shows five slices with fixed y-coordinate. 

Each cell is a voxel. The color voxels are belonging to a part of volume. The 

red voxels are the true centerline voxels. The yellow voxels are the newly added 

centerline voxels with the error distance voxels stated inside the cells. In this 

example, the maximum distance error is at least three voxels. Fig. 7.8 is the 

visualized comparison between the real centerline and the generated centerline 

of various phantoms. It is visualized by using MATLAB. The green lines are 

the original centerline whereas the red lines form the new generated centerline. 

The figure shows that the red lines and green lines have similar shapes. 

For a 12MB lung airway tree volume data, it spends about 4 seconds to 

generate over 90 end points. The graph based centerline algorithm takes about 

10 seconds to complete, and one third of the execution time is contributed to 

the completion of the modified Dijkstra shortest path algorithm. One of the 

results in Blezek [2] which consists of 99054 object voxels with a 256x256x256 

volume size requires 20 seconds to complete. In addition, the algorithm in 

Blezek [2] requires user to input a start point and an end point to his shortest 

path searching algorithm. On the contrary, our algorithm includes end points 

searching function that it even does not require user to input any start point. 

In the case of similar object voxel number, our algorithm requires 15 seconds 
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Data Volume Object End DT Dijkstra E n d C e n t e r 
Size (Voxels) Voxels Point Time(s) Time(s) Point -line 

Time(s) Voxels Voxels 
setl "^6x256x185 一54398 U 5.79 3.85 “ 91 
set2 128x128x64 —9657 0.53 0.43 47 ~ 
set3 256x256x185 ~60Q25 ~JJ2 5.7 3.69 “ 93 1 3 5 ^ 
set4 "^56x256x180 72378 4.3 5.7 4.42 129 "l784 
set5 "^56x256x185 98885 4.43 5.99 4.95 162 —1664 
set6 256x256x180 91697 4.42 5.98 5.36 206 2565 
set? 256x256x200 99094 4.88 6.61 5.78 98 1466 

Table 7.1: CPU Running Time of End Points Retrieval Algorithm, Distance Trans-
form and Dijkstra Shortest Path Algorithm Applying to Real CT Datasets 

Phantom Data Volume Size Object Voxels Time(s) Endpoint Centerline 
(voxels) Voxels Voxles 

Cylinder "Y56x256xl85 5 9 5 W 16.46 1 179 ~ 
Helix "T56X256X185 1573W 24.1 1 414 — 
HelixSpecial "¥56x256x185 . 217601 28.02 — 1 597 ~ 
Airway 256x256x185 . 73778 17.3 — 41 1041 — 
AirwaySimulated 200x200x185 46923 10.27 8 379 — 

Table 7.2: CPU Running Time of Various Phantoms 

which includes end points searching, distance transform and the Dijkstra's 

shortest path searching. 

The extracted centerline is visualized with three dimensional texture map-

ping techniques [32] which is a direct data visualization technique that is similar 

to ray casting. Three dimensional textures are a logical extension of two di-

mensional textures. In three dimensional textures, texels become unit cubes in 

texel space. The three dimensional texture is used as a voxel cache, processes 

Phantom Maximum Error Minimum Error Average Error Standard 
(voxels) (voxels) (voxels) Deviation 

(voxels) 
Cyliner ~0 0 0 Q 
Helix —5 0 0.67 0.66 
HelixSpecial 0 0 2 oJb 
Airway — 0 0.85 0?^ 
AirwaySimulated ~T~ _ 0 0.51 OM 

Table 7.3: Distance Error of Various Phantoms in voxels 
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(a) Simple Cylinder Phantom (b) Helix Phantom •••• 
^ H H 

(c) Helix with Vairous Radii Phantom (d) Lung Airway Phantom 

(e) Simulated Lung Airway Phantom 

Figure 7.8: Visualization of Two Sets of Centerline in Various Phantoms 
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Figure 7.9: Explanation of distance error. The grey voxels are a part of volume. The 
red voxels stand for the true centerline voxels. The yellow voxels are the generated 
centerline voxels with distance error value inside the voxels. 

two dimensional layer each time by all rays simultaneously. Fig. 7.10 shows the 

images of the reconstructed centerlines. The centerlines are represented by red 

lines. Segmented lung data is visualized in Fig. 7.10(a) and (d). The lung data 

in Fig. 7.10(b) and (c) is not segmented. By setting proper colour map value, 

the non-airways lung volume (i.e. lung muscle volume) is viewed as transpar-

ent to allow the user to observe the airways more clearly. The centerlines are 

extracted satisfactorily. 
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• • • B H 
(a) Transparent Lung Tree Airway Data and Cen- (b) Transparent Lung Volume Data and Centerline 
terline Generated Generated 

H H H H B H H H H H H H B H H l ^ ^ n H ^ H l B ^ ^ B B r a H H H 
(c) Visualization of Lung Volume in Cutbox View � Visualization of Segmented Lung Tree in Cut-

box View 

Figure 7.10: Various Visualization Results 



Chapter 8 

Conclusion 

Using virtual reality becomes more popular in the medical imaging commu-

nity. One major advantage of using virtual reality system is that it provides an 

initial assessment of the condition of patients. Furthermore, it takes less cost 

and risk. Bronchoscopy is a medical diagnosis for evaluating the endobronchial 

anatomy. Virtual bronchoscopy combines volumetric imaging and virtual real-

ity technology. It decreases discomfort and inconvenience, considerably lower 

cost and risks. Simulation technology makes it possible for navigation to ex-

perience adverse scenarios without risk to human life or damage to expensive 

equipment. In addition, it is useful for training medical students or physicians 

to achieve better surgery skills. 

We introduce our proposed procedure for automated extraction of bronchus 

area and determination of centerline of lung airway from three dimensional 

CT images for three dimensional virtual bronchoscopy. We apply the proposed 

extraction procedure which is based on genetic algorithm and region growing 

approaches to real three dimensional CT images. The experimental results 

show the ability of the algorithm to extract bronchus area and the algorithm 

works satisfactorily. 

An automatic centerline determination algorithm from CT images for three 

dimensional virtual bronchoscopy is presented. The end points retrieval al-

62 
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gorithm extracts end points of the lung airway tips. Distance transform and 

modified Dijkstra shortest path algorithm are then applied in the centerline al-

gorithm which yields the centerline of the bronchoscopy. Our test cases include 

various CT image data sets. For a typical 256x256x180 segmented lung tree 

airway volume data, it requires around 15 seconds for the completion of the 

centerline determination procedure. To evaluate its accuracy, some artificial 

volume data with known centerline information are generated. The calculated 

centerline is very simliar to the real centerline and it proves the accuracy of 

our algorithm. 
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