4 research outputs found

    Fuzzy classification with distance-based depth prototypes: High-dimensional unsupervised and/or supervised problems

    Get PDF
    Supervised and unsupervised classification is crucial in many areas where different types of data sets are common, such as biology, medicine, or industry, among others. A key consideration is that some units are more typical of the group they belong to than others. For this reason, fuzzy classification approaches are necessary. In this paper, a fuzzy supervised classification method, which is based on the construction of prototypes, is proposed. The method obtains the prototypes from an objective function that includes label information and a distance-based depth function. It works with any distance and it can deal with data sets of a wide nature variety. It can further be applied to data sets where the use of Euclidean distance is not suitable and to high-dimensional data (data sets in which the number of features is larger than the number of observations , often written as ). In addition, the model can also cope with unsupervised classification, thus becoming an interesting alternative to other fuzzy clustering methods. With synthetic data sets along with high-dimensional real biomedical and industrial data sets, we demonstrate the good performance of the supervised and unsupervised fuzzy proposed procedures.This research was partially supported: II by the Spanish ‘Ministerio de Economia y Competitividad’ (PID2019-106942RB-C31). CA by grant 2021SGR01421 (GRBIO) from the Departament de Economia i Coneixement de la Generalitat de Catalunya, Spain. II, CA and BS by the Spanish ‘Ministerio de Economia Competitividad’ (PID2021-122402OB-C21)

    Fuzzy classification with distance-based depth prototypes: High-dimensional unsupervised and/or supervised problems

    Full text link
    Supervised and unsupervised classification is crucial in many areas where different types of data sets are common, such as biology, medicine, or industry, among others. A key consideration is that some units are more typical of the group they belong to than others. For this reason, fuzzy classification approaches are necessary. In this paper, a fuzzy supervised classification method, which is based on the construction of prototypes, is proposed. The method obtains the prototypes from an objective function that includes label information and a distance-based depth function. It works with any distance and it can deal with data sets of a wide nature variety. It can further be applied to data sets where the use of Euclidean distance is not suitable and to high-dimensional data (data sets in which the number of features is larger than the number of observations , often written as >> ). In addition, the model can also cope with unsupervised classification, thus becoming an interesting alternative to other fuzzy clustering methods. With synthetic data sets along with high-dimensional real biomedical and industrial data sets, we demonstrate the good performance of the supervised and unsupervised fuzzy proposed procedures

    Fuzzy clustering with entropy regularization for interval-valued data with an application to scientific journal citations

    Get PDF
    In recent years, the research of statistical methods to analyze complex structures of data has increased. In particular, a lot of attention has been focused on the interval-valued data. In a classical cluster analysis framework, an interesting line of research has focused on the clustering of interval-valued data based on fuzzy approaches. Following the partitioning around medoids fuzzy approach research line, a new fuzzy clustering model for interval-valued data is suggested. In particular, we propose a new model based on the use of the entropy as a regularization function in the fuzzy clustering criterion. The model uses a robust weighted dissimilarity measure to smooth noisy data and weigh the center and radius components of the interval-valued data, respectively. To show the good performances of the proposed clustering model, we provide a simulation study and an application to the clustering of scientific journals in research evaluation
    corecore