33 research outputs found

    SWIFT: Scalable Wasserstein Factorization for Sparse Nonnegative Tensors

    Full text link
    Existing tensor factorization methods assume that the input tensor follows some specific distribution (i.e. Poisson, Bernoulli, and Gaussian), and solve the factorization by minimizing some empirical loss functions defined based on the corresponding distribution. However, it suffers from several drawbacks: 1) In reality, the underlying distributions are complicated and unknown, making it infeasible to be approximated by a simple distribution. 2) The correlation across dimensions of the input tensor is not well utilized, leading to sub-optimal performance. Although heuristics were proposed to incorporate such correlation as side information under Gaussian distribution, they can not easily be generalized to other distributions. Thus, a more principled way of utilizing the correlation in tensor factorization models is still an open challenge. Without assuming any explicit distribution, we formulate the tensor factorization as an optimal transport problem with Wasserstein distance, which can handle non-negative inputs. We introduce SWIFT, which minimizes the Wasserstein distance that measures the distance between the input tensor and that of the reconstruction. In particular, we define the N-th order tensor Wasserstein loss for the widely used tensor CP factorization and derive the optimization algorithm that minimizes it. By leveraging sparsity structure and different equivalent formulations for optimizing computational efficiency, SWIFT is as scalable as other well-known CP algorithms. Using the factor matrices as features, SWIFT achieves up to 9.65% and 11.31% relative improvement over baselines for downstream prediction tasks. Under the noisy conditions, SWIFT achieves up to 15% and 17% relative improvements over the best competitors for the prediction tasks.Comment: Accepted by AAAI-2

    PANTHER: Pathway Augmented Nonnegative Tensor factorization for HighER-order feature learning

    Full text link
    Genetic pathways usually encode molecular mechanisms that can inform targeted interventions. It is often challenging for existing machine learning approaches to jointly model genetic pathways (higher-order features) and variants (atomic features), and present to clinicians interpretable models. In order to build more accurate and better interpretable machine learning models for genetic medicine, we introduce Pathway Augmented Nonnegative Tensor factorization for HighER-order feature learning (PANTHER). PANTHER selects informative genetic pathways that directly encode molecular mechanisms. We apply genetically motivated constrained tensor factorization to group pathways in a way that reflects molecular mechanism interactions. We then train a softmax classifier for disease types using the identified pathway groups. We evaluated PANTHER against multiple state-of-the-art constrained tensor/matrix factorization models, as well as group guided and Bayesian hierarchical models. PANTHER outperforms all state-of-the-art comparison models significantly (p<0.05). Our experiments on large scale Next Generation Sequencing (NGS) and whole-genome genotyping datasets also demonstrated wide applicability of PANTHER. We performed feature analysis in predicting disease types, which suggested insights and benefits of the identified pathway groups.Comment: Accepted by 35th AAAI Conference on Artificial Intelligence (AAAI 2021

    Wellness Representation of Users in Social Media: Towards Joint Modelling of Heterogeneity and Temporality

    Get PDF
    The increasing popularity of social media has encouraged health consumers to share, explore, and validate health and wellness information on social networks, which provide a rich repository of Patient Generated Wellness Data (PGWD). While data-driven healthcare has attracted a lot of attention from academia and industry for improving care delivery through personalized healthcare, limited research has been done on harvesting and utilizing PGWD available on social networks. Recently, representation learning has been widely used in many applications to learn low-dimensional embedding of users. However, existing approaches for representation learning are not directly applicable to PGWD due to its domain nature as characterized by longitudinality, incompleteness, and sparsity of observed data as well as heterogeneity of the patient population. To tackle these problems, we propose an approach which directly learns the embedding from longitudinal data of users, instead of vector-based representation. In particular, we simultaneously learn a low-dimensional latent space as well as the temporal evolution of users in the wellness space. The proposed method takes into account two types of wellness prior knowledge: (1) temporal progression of wellness attributes; and (2) heterogeneity of wellness attributes in the patient population. Our approach scales well to large datasets using parallel stochastic gradient descent. We conduct extensive experiments to evaluate our framework at tackling three major tasks in wellness domain: attribute prediction, success prediction, and community detection. Experimental results on two real-world datasets demonstrate the ability of our approach in learning effective user representations

    Regularized and Smooth Double Core Tensor Factorization for Heterogeneous Data

    Full text link
    We introduce a general tensor model suitable for data analytic tasks for heterogeneous data sets, wherein there are joint low-rank structures within groups of observations, but also discriminative structures across different groups. To capture such complex structures, a double core tensor (DCOT) factorization model is introduced together with a family of smoothing loss functions. By leveraging the proposed smoothing function, the model accurately estimates the model factors, even in the presence of missing entries. A linearized ADMM method is employed to solve regularized versions of DCOT factorizations, that avoid large tensor operations and large memory storage requirements. Further, we establish theoretically its global convergence, together with consistency of the estimates of the model parameters. The effectiveness of the DCOT model is illustrated on several real-world examples including image completion, recommender systems, subspace clustering and detecting modules in heterogeneous Omics multi-modal data, since it provides more insightful decompositions than conventional tensor methods

    Structured representation learning from complex data

    Full text link
    This thesis advances several theoretical and practical aspects of the recently introduced restricted Boltzmann machine - a powerful probabilistic and generative framework for modelling data and learning representations. The contributions of this study represent a systematic and common theme in learning structured representations from complex data
    corecore