632 research outputs found

    Multiple feature-enhanced synthetic aperture radar imaging

    Get PDF
    Non-quadratic regularization based image formation is a recently proposed framework for feature-enhanced radar imaging. Specific image formation techniques in this framework have so far focused on enhancing one type of feature, such as strong point scatterers, or smooth regions. However, many scenes contain a number of such features. We develop an image formation technique that simultaneously enhances multiple types of features by posing the problem as one of sparse signal representation based on overcomplete dictionaries. Due to the complex-valued nature of the reflectivities in SAR, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field in terms of multiple features, which turns the image reconstruction problem into a joint optimization problem over the representation of the magnitude and the phase of the underlying field reflectivities. We formulate the mathematical framework needed for this method and propose an iterative solution for the corresponding joint optimization problem. We demonstrate the effectiveness of this approach on various SAR images

    Depth Superresolution using Motion Adaptive Regularization

    Full text link
    Spatial resolution of depth sensors is often significantly lower compared to that of conventional optical cameras. Recent work has explored the idea of improving the resolution of depth using higher resolution intensity as a side information. In this paper, we demonstrate that further incorporating temporal information in videos can significantly improve the results. In particular, we propose a novel approach that improves depth resolution, exploiting the space-time redundancy in the depth and intensity using motion-adaptive low-rank regularization. Experiments confirm that the proposed approach substantially improves the quality of the estimated high-resolution depth. Our approach can be a first component in systems using vision techniques that rely on high resolution depth information

    Sparsity-driven sparse-aperture ultrasound imaging

    Get PDF
    We propose an image formation algorithm for ultrasound imaging based on sparsity-driven regularization functionals. We consider data collected by synthetic transducer arrays, with the primary motivating application being nondestructive evaluation. Our framework involves the use of a physical optics-based forward model of the observation process; the formulation of an optimization problem for image formation; and the solution of that problem through efficient numerical algorithms. Our sparsity-driven, model-based approach achieves the preservation of physical features while suppressing spurious artifacts. It also provides robust reconstructions in the case of sparse observation apertures. We demonstrate the effectiveness of our imaging strategy on real ultrasound data

    Sparse representation-based SAR imaging

    Get PDF
    There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, we develop an image formation method which formulates the SAR imaging problem as a sparse signal representation problem. Sparse signal representation, which has mostly been exploited in real-valued problems, has many capabilities such as superresolution and feature enhancement for various reconstruction and recognition tasks. However, for problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since we are usually interested in features of the magnitude of the SAR reflectivity field, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimization problem over the representation of magnitude and phase of the underlying field reflectivities. We develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimization problem. Our experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high quality SAR images as well as exhibiting robustness to uncertain or limited data

    Sparse representation-based synthetic aperture radar imaging

    Get PDF
    There is increasing interest in using synthetic aperture radar (SAR) images in automated target recognition and decision-making tasks. The success of such tasks depends on how well the reconstructed SAR images exhibit certain features of the underlying scene. Based on the observation that typical underlying scenes usually exhibit sparsity in terms of such features, we develop an image formation method which formulates the SAR imaging problem as a sparse signal representation problem. Sparse signal representation, which has mostly been exploited in real-valued problems, has many capabilities such as superresolution and feature enhancement for various reconstruction and recognition tasks. However, for problems of complex-valued nature, such as SAR, a key challenge is how to choose the dictionary and the representation scheme for effective sparse representation. Since we are usually interested in features of the magnitude of the SAR reflectivity field, our new approach is designed to sparsely represent the magnitude of the complex-valued scattered field. This turns the image reconstruction problem into a joint optimization problem over the representation of magnitude and phase of the underlying field reflectivities. We develop the mathematical framework for this method and propose an iterative solution for the corresponding joint optimization problem. Our experimental results demonstrate the superiority of this method over previous approaches in terms of both producing high quality SAR images as well as exhibiting robustness to uncertain or limited data
    corecore