6,201 research outputs found

    A survey of non-prehensible pneumatic manipulation surfaces : principles, models and control.

    No full text
    International audienceMany manipulation systems using air flow have been proposed for object handling in a non-prehensile way and without solid-to-solid contact. Potential applications include high-speed transport of fragile and clean products and high-resolution positioning of thin delicate objects. This paper discusses a comprehensive survey of state-of-the-art pneumatic manipulation from the macro scale to the micro scale. The working principles and actuation methods of previously developed air-bearing surfaces, ultra-sonic bearing surfaces, air-flow manipulators, air-film manipulators, and tilted air-jet manipulators are reviewed with a particular emphasis on the modeling and the control issues. The performance of the previously developed devices are compared quantitatively and open problems in pneumatic manipulation are discussed

    Coherent manipulation of atomic qubits in optical micropotentials

    Get PDF
    We experimentally demonstrate the coherent manipulation of atomic states in far-detuned dipole traps and registers of dipole traps based on two-dimensional arrays of microlenses. By applying Rabi, Ramsey, and spin-echo techniques, we systematically investigate the dephasing mechanisms and determine the coherence time. Simultaneous Ramsey measurements in up to 16 dipole traps are performed and proves the scalability of our approach. This represents an important step in the application of scalable registers of atomic qubits for quantum information processing. In addition, this system can serve as the basis for novel atomic clocks making use of the parallel operation of a large number of individual clocks each remaining separately addressable.Comment: to be published in Appl. Phys.

    2-DOF Contactless Distributed Manipulation Using Superposition of Induced Air Flows.

    No full text
    International audienceMany industries require contactless transport and positioning of delicate or clean objects such as silicon wafers, glass sheets, solar cell or flat foodstuffs. The authors have presented a new form of contactless distributed manipulation using induced air flow. Previous works concerned the evaluation of the maximal velocity of transported objects and one degreeof- freedom position control of objects. This paper introduces an analytic model of the velocity field of the induced air flow according to the spatial configuration of vertical air jets. Then two degrees-of-freedom position control is investigated by exploiting the linearity property of the model. Finally the model is validated under closed-loop control and the performances of the position control are evaluated

    Finite Controllability of Infinite-Dimensional Quantum Systems

    Full text link
    Quantum phenomena of interest in connection with applications to computation and communication almost always involve generating specific transfers between eigenstates, and their linear superpositions. For some quantum systems, such as spin systems, the quantum evolution equation (the Schr\"{o}dinger equation) is finite-dimensional and old results on controllability of systems defined on on Lie groups and quotient spaces provide most of what is needed insofar as controllability of non-dissipative systems is concerned. However, in an infinite-dimensional setting, controlling the evolution of quantum systems often presents difficulties, both conceptual and technical. In this paper we present a systematic approach to a class of such problems for which it is possible to avoid some of the technical issues. In particular, we analyze controllability for infinite-dimensional bilinear systems under assumptions that make controllability possible using trajectories lying in a nested family of pre-defined subspaces. This result, which we call the Finite Controllability Theorem, provides a set of sufficient conditions for controllability in an infinite-dimensional setting. We consider specific physical systems that are of interest for quantum computing, and provide insights into the types of quantum operations (gates) that may be developed.Comment: This is a much improved version of the paper first submitted to the arxiv in 2006 that has been under review since 2005. A shortened version of this paper has been conditionally accepted for publication in IEEE Transactions in Automatic Control (2009

    3-DOF potential air flow manipulation by inverse modeling control.

    No full text
    International audiencePotential air flows can be used to perform nonprehensile contactless manipulations of objects gliding on airhockey table. In this paper, we introduce a general method able to perform 3-DOF position control of an object with potential air flow manipulators. This approach is based on an inverse modeling control scheme to perform closed-loop position servoing. We propose to use a linear programming algorithm to determine which sinks have to be activated in order to produce the suitable potential air flow to obtain the desired object motion. This approach is then validated on an experimental manipulator

    A Stark decelerator on a chip

    Get PDF
    A microstructured array of 1254 electrodes on a substrate has been configured to generate an array of local minima of electric field strength with a periodicity of 120 ÎŒ\mum about 25 ÎŒ\mum above the substrate. By applying sinusoidally varying potentials to the electrodes, these minima can be made to move smoothly along the array. Polar molecules in low-field seeking quantum states can be trapped in these traveling potential wells. Recently, we experimentally demonstrated this by transporting metastable CO molecules at constant velocities above the substrate [Phys. Rev. Lett. 100 (2008) 153003]. Here, we outline and experimentally demonstrate how this microstructured array can be used to decelerate polar molecules directly from a molecular beam. For this, the sinusoidally varying potentials need to be switched on when the molecules arrive above the chip, their frequency needs to be chirped down in time, and they need to be switched off before the molecules leave the chip again. Deceleration of metastable CO molecules from an initial velocity of 360 m/s to a final velocity as low as 240 m/s is demonstrated in the 15-35 mK deep potential wells above the 5 cm long array of electrodes. This corresponds to a deceleration of almost 10510^5 gg, and about 85 cm−1^{-1} of kinetic energy is removed from the metastable CO molecules in this process.Comment: 17 pages, 6 figure
    • 

    corecore