2,984 research outputs found

    Superposition as a logical glue

    Full text link
    The typical mathematical language systematically exploits notational and logical abuses whose resolution requires not just the knowledge of domain specific notation and conventions, but not trivial skills in the given mathematical discipline. A large part of this background knowledge is expressed in form of equalities and isomorphisms, allowing mathematicians to freely move between different incarnations of the same entity without even mentioning the transformation. Providing ITP-systems with similar capabilities seems to be a major way to improve their intelligence, and to ease the communication between the user and the machine. The present paper discusses our experience of integration of a superposition calculus within the Matita interactive prover, providing in particular a very flexible, "smart" application tactic, and a simple, innovative approach to automation.Comment: In Proceedings TYPES 2009, arXiv:1103.311

    Characterization of quantum states in predicative logic

    Full text link
    We develop a characterization of quantum states by means of first order variables and random variables, within a predicative logic with equality, in the framework of basic logic and its definitory equations. We introduce the notion of random first order domain and find a characterization of pure states in predicative logic and mixed states in propositional logic, due to a focusing condition. We discuss the role of first order variables and the related contextuality, in terms of sequents.Comment: 14 pages, Boston, IQSA10, to appea

    Self dual models and mass generation in planar field theory

    Full text link
    We analyse in three space-time dimensions, the connection between abelian self dual vector doublets and their counterparts containing both an explicit mass and a topological mass. Their correspondence is established in the lagrangian formalism using an operator approach as well as a path integral approach. A canonical hamiltonian analysis is presented, which also shows the equivalence with the lagrangian formalism. The implications of our results for bosonisation in three dimensions are discussed.Comment: 15 pages,Revtex, No figures; several changes; revised version to appear in Physical Review

    Modelling the GSM handover protocol in CommUnity

    Get PDF
    CommUnity is a formal approach to software architecture. It has a precise, yet intuitive mathematical semantics based on category theory. It supports, at the methodological level, a clear separation between computation, coordination, and distribution (including mobility). It provides a simple state-based language for describing component behaviour that is inspired by Unity and Interacting Processes. It also addresses composition as a first class concern and accounts for the emergence of global system properties from interconnections. This paper describes the approach and available tool support by modelling essential aspects of the GSM handover protocol. We also sketch a framework that we are implementing for the distributed execution of such specifications using Klava, a Java library for mobile agent systems based on tuple spaces

    Wilson Line Picture of Levin-Wen Partition Functions

    Full text link
    Levin and Wen [Phys. Rev. B 71, 045110 (2005)] have recently given a lattice Hamiltonian description of doubled Chern-Simons theories. We relate the partition function of these theories to an expectation of Wilson loops that form a link in 2+1 dimensional spacetime known in the mathematical literature as Chain-Mail. This geometric construction gives physical interpretation of the Levin-Wen Hilbert space and Hamiltonian, its topological invariance, exactness under coarse-graining, and how two opposite chirality sectors of the doubled theory arise.Comment: Final published version; Appendix adde
    corecore