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Abstract
COMMUNITY is a formal approach to software architecture. It has a precise, yet intuitive
mathematical semantics based on category theory. It supports, at the methodological level,
a clear separation between computation, coordination, and distribution (including mobil-
ity). It provides a simple state-based language, inspired by Unity, for describing compo-
nent behaviour. Finally, it addresses composition as a first class concern and accounts for
the emergence of global system properties from interconnections. This paper describes the
approach and tool support by modelling essential aspects of the GSM handover protocol.
We also sketch a framework that we are implementing for the distributed execution of such
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specifications, using Klava, a Java library for mobile agent systems based on tuple spaces
by our project colleagues from Firenze.

Key words: Architecture, composition, (dynamic) configuration,
connector, coordination, distribution, mobility, superposition.

1 Introduction

COMMUNITY provides, like Darwin [10], Wright [1], or LEDA [3], among others,
a formal approach to software architecture. It has several advantages over other
approaches, the main one being a precise mathematical semantics: architectures are
not just depicted through lines and boxes; they are diagrams in the sense of category
theory [5], involving explicit superposition and refinement relationships between
architectural components. This graphical semantics (in both the mathematical and
visual sense) mirrors closely and intuitively the design of the architecture. The
categorical semantics has also allowed us to study connectors in a deep, rigorous,
and language-independent way [6]. In particular, we have defined higher-order
connectors and shown how they can be used to put together complex interactions
(e.g., an encrypted compressed asynchronous communication) from simpler ones
in a systematic way [9].

In addition, COMMUNITY describes component behaviour with a parallel pro-
gram design language that is at a higher level of abstraction and is more convenient
to use than the process calculi employed by most formal approaches to software ar-
chitecture. The combination of this state-based language with the graph-based se-
mantics of architecture allowed us to define run-time reconfiguration in an intuitive
and formal way using typed graph transformation rules. The typing corresponds to
a simple notion of architectural style that is preserved during reconfiguration [16].

Like most architectural approaches, COMMUNITY enforces a strict separation
between computation and coordination. More recently, we have extended the ap-
proach with a small set of semantic concepts and syntactical constructs in order
to include a distribution dimension that is kept separate from the other two [8].
The granularity of distribution is very fine in order to provide maximum flexibil-
ity: the execution of an action may be distributed over many different locations; at
each location, it performs whatever computations are prescribed according to the
available resources, and communicates with its environment through the communi-
cation channels that are in touch with the location. Changes to locations correspond
to mobility of data or code. So far we have illustrated our approach with small ex-
amples. The goal of this paper is to show how it applies to larger examples taken

? This is an extended version of a short paper presented at WICSA’04) [14]
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from real applications in which distribution and mobility are key concerns. For this
purpose, we chose to model the GSM handover protocol. Due to space constraints,
we only show a fragment; the complete details are given in [12].

In order to show how all the features of COMMUNITY can be used in practice,
we have been developing in the last few years a workbench [13] as a proof of
concept of the formal framework. The Workbench provides a graphical integrated
development environment to write, run, and debug designs and to draw software
architectures (configurations). This paper provides a more detailed description of
the tool than previously available, in particular of the features recently added to
cover the mobility dimension. These features are explored in the modelling of the
GSM handover.

The structure of this paper is as follows. We start with the description of the
handover protocol as we use it. In Section 3 we present an informal review of COM-
MUNITY. Formal definitions can be found in the papers cited above. Examples are
taken from the case-study. Next, we describe the COMMUNITY Workbench and the
architecture description language. In Section 5 we show how the handover protocol
can be modelled with COMMUNITY and tested with the workbench. We finish the
paper with some concluding remarks.

2 Handover Protocol

As an example of mobile network, we consider the Public Land Mobile Network
that implements the world-wide adopted GSM network—a living and evolving
wireless communications standard. Specifically, we concentrate on the handover
process [15], which is what controls the dynamic topology of the network.

In order to illustrate the approach as clearly as possible, we concentrate on the
following nodes of the GSM network:
• Mobile Station (MS): This node is made up of the Subscriber Identification

Module (SIM) and the Mobile Equipment. The SIM is a separate physical entity
containing all information regarding the subscription. The Mobile Equipment is
the piece of hardware that enables radio communication with the system.

• Base Station System: This node is composed of some Base Transceiver Stations
(BTS) and one Base Station Controller (BSC). The BTS is the radio equipment
whose main task is the radio communication with the MS’s. Each BTS covers
a cell with transmitted radio wave. The BSC controls the communication and
supervises the behaviour of all its underlying BTS’s.

• Mobile Services Switching Center (MSC): This node sets up, supervises, and
releases calls of some BSC’s. It connects the calls within the GSM network
and/or actuates as a gateway to the Public Switched Telephone Network or to
some other networks.

The handover is a process required for ensuring the continuity of a call of a MS
moving across a BTS cell boundary; without such a process the communication
could be terminated because of the limited range of the BTS. As described in [15],
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the purpose of the handover procedure is to move data and control channels of the
call from the BSC currently communicating with the MS (what we call the ‘old’
BSC) to a BSC in another cell (the ‘new’ BSC). When the MS is busy (during a
call), the decision about which cell is the best for the dedicated connection is done
by the BTS and the BSC. This procedure consists in evaluating the received radio
signal measurements from the MS.

In the GSM network, there are three types of handover depending on the BTS’s
involved [17]:
• Intra-BSC Handover: In this case the handover process concerns two BTS’s

belonging to the same BSC.
• Inter-BSC Handover: The handover process concerns two BTS’s but of two

different BSC’s controlled by the same MSC.
• Inter-MSC Handover: The handover process in this case is between two BTS’s

belonging to different BSC’s controlled by different MSC’s.

Fig. 1. Handover procedure

In this paper, we focus on the Inter-BSC handover process (see Figure 1) due
to the fact that this type of handover is simpler than the third one but nevertheless
involves all the steps required in a complete handover process. These steps can be
described as follows:
• Handover request : The old BSC detects the necessity of the handover with

the last received information from its BTS’s, suspends the transmission of all
messages except for the radio resource management sub-layer messages with the
MS, and sends the message ‘handover request’ to the MSC. The MSC forwards
this message to the new BSC (step 1.a).

• Handover command : The new BSC prepares its BTS for receiving the new
MS (step 1.b). Then, the new BSC initiates the handover by transmitting the
handover command message to the MS through the old BSC (step 2). This step
permits the MS to locate the radio channel of the new BTS/BSC.

4



Oliveira

• Handover bursts : Upon receipt of the handover command message, the MS
disconnects the old radio channels and initiates the establishment of lower layer
connections in the new radio channels. In order to establish these connections
the MS sends a handover burst message to the new BSC (step 3) and, when
successful, the transmission suspended with the old BSC is re-established again
between the MS and the new BSC through its BTS.

• Handover complete : Finally the MS sends the handover complete message to
the old BSC through the new BSC (step 4). By receiving this message, the old
BSC resumes all normal operations and releases the old radio channels on its
BTS (step 5).

3 COMMUNITY

COMMUNITY [5] is a parallel program design language initially developed to show
how programs fit into Goguen’s categorical approach to General Systems Theory.
The language and its framework have been extended to provide a formal platform
for architectural design of open, reactive, and reconfigurable systems.

COMMUNITY designs are in the style of UNITY programs [4], but they also
combine elements from IP [7]. However, COMMUNITY has a richer coordination
model and, even more important, it requires interaction between components to be
made explicit. In this way, the coordination aspects of a system can be separated
from the computational ones and externalized, making explicit the gross configu-
ration of the system in terms of its components and the interactions between them.
Each configuration can be transformed into a single, semantically equivalent, de-
sign that captures the behaviour of the whole system as it emerges from the com-
ponents and their interconnections.

In order to model systems that are location-aware, a recent extension [8] of
COMMUNITY was developed that adopts an explicit representation of the space
within which movement takes place, but does not assume any specific notion of
space. In this way, Computation, Coordination, and Distribution/Mobility are ex-
plicitly separated as architectural dimensions. The remaining of this section ex-
plains how this separation is achieved.

In COMMUNITY, every design is described in terms of a set of channels (de-
clared as input, output or private) and a set of actions (shared or private).
• Input channels are used for reading data from the environment; the design has no

control on the values received in such channels. Output and private channels are
controlled locally by the design. Output channels allow the environment to read
their values.

• Shared actions represent possible interactions between the design and the envi-
ronment; private actions represent internal computations in the sense that their
execution is uniquely under control of the design.

The computational aspects are described in COMMUNITY through the transforma-
tions operated by the actions over the channels. Each action is composed by a guard
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and a set of assignments over the private and output channels. A collection of data
types is used for structuring the data that the channels transmit and for defining the
operations that perform the computations required on the assignments. If an action
has no assignments, we represent its body by the keyword skip. Figure 2 shows
the design of the mobile station (cellular phone) for the handover case study. This
design has, two input channels (inMsg1, inMsg2), two output channels (outMsg1,
outMsg2), and two pairs of actions for communication (send1 and receive1, send2
and receive2). These channels and actions will be used to the communication with
the current and the candidate BSCs. To reflect the fact that a sending should always
precede a receipt we add a private channel (sc). This private channel is used in the
guards of both actions (switching between true and false). The expression “X oneof
T” assigns a random value of type “T” to channel “X”.

In order to reflect the separation between computation and coordination, the
definition of individual components of a system is completely separated from the
definition of the interactions between these components. The model of interaction
between designs is based on action synchronization and exchange of data through
input and output channels. These are standard means of interconnecting software
components. What distinguishes COMMUNITY from other parallel program design
languages is the fact that such interactions between components have to be made
explicit by providing the corresponding name bindings; no implicit interaction can
be inferred from the use of the same name in different designs. We can witness
three kinds of interaction between two components:

(i) A connection of an input channel of one design with an output channel of the
other;

(ii) A connection of an input channel of one design with an input channel of the
other;

(iii) Synchronization between one action from each design.

COMMUNITY was extended having in mind the need to provide support for
the description of the distribution and mobility aspects of systems in a way that
is completely separated from the computational and interaction aspects. In or-
der to support this three-way separation of concerns, designs were extended to be
location-aware by associating their “constituents”—private and output channels,
and actions—with “containers” that can move to different positions. Hence the
unit of mobility, that is the smallest constituent of a system that is allowed to move,
is fine-grained.

More precisely, designs have a set of location variables over a special type Loc
that describes the possible values that constitute the “space of mobility”. The data
sort Loc models the positions of the space in a way that is considered adequate
for the particular application domain in which the system is or will be embedded.
Each output channel, private channel, and action, is assigned to a set of location
variables:
• Each local channel x is associated with a location variable l. We make this as-

signment explicit by writing x@l in the declaration of x. The value of l indicates
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the current position of the space where the values of x are made available. A
modification in the value of l entails the movement of x as well as of the other
channels and actions located at l;

• Each action g is associated with a set of location variables meaning that the
execution of action g is distributed over those locations. In other words, the
execution of g consists of the synchronous execution of the parts of it in each of
these locations.

Location variables can be declared as input or output in the same way as channels.
Input location variables are read from the environment and cannot be modified by
the design and, hence, the movement of any constituent located at an input location
variable is under the control of the environment. Output location variables can only
be modified locally through assignments performed within actions and, hence, the
movement of any constituent located at an output location variable is under control
of the design. In Figure 2 there is an output location variable lms, and the movement
of the local channels and the actions are under control of the design. The private
action move changes the value of the location variable.

Fig. 2. A Distributed Design

Figure 3 shows the details of an interaction, where input channels and input
locations are depicted by inward triangles, output channels and output locations
by outward triangles, and actions by circles. Note that only input/output channels
and shared actions appear, because private channels and private actions are not
used in interactions. In the Figure we show the interaction between the MS and
ms measure designs. For instance this interaction consists only to the connection
between two location variables (respectively lms and lm) and it means that the
ms measure is always co-located with the MS. In Section 5.4 this is explained in
more details.

Due to the introduction of the distribution/mobility dimension two new binary
interactions emerge:
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Fig. 3. Interactions

• A connection of an input location variable of one design with an output location
variable of another;

• A connection of an input location variable of one design with an input location
variable of another.

The relevant properties of the mobility space introduced upon are captured by two
binary relations over the domain. First the relation touch defines that two posi-
tions in the space are “in touch” with each other. Coordination among components
takes place only when all the locations of all the actions involved in a synchro-
nization are “in touch”. We assume that touch is reflexive and symmetric. The
second relation reach means that one position is reachable from another, and is
assumed to be reflexive. Movement to a new position is possible only when this
position is reachable from the current one, i.e., a location variable can take a new
value if this value is of a location reachable from the current position represented
by the current value of the location variable. Figure 4 shows the definitions used
for the case study: locations are represented by pairs of integers; two locations are
in touch if they are adjacent; any location is reachable from any other. To define
the relations we use mathematical expressions. For instance ‘|’ is the disjunction
and ‘&’ the conjunction. Due to the relation ‘in touch’ being symmetric and re-
flexive the workbench rewrites the correspondent expression in the second part of
the editor (Reflexivity for the relation ‘Reach’).

q a 2a parte é o fecho reflexivo (e simetrico) da definição do utilizador
The semantics of a system configuration can be obtained through the colimit

of the system, which corresponds to computing the parallel composition of the
processes and interactions involved. By internalizing all the interactions, the col-
imit delivers a design for the system as a whole. More generally, colimits in COM-
MUNITY are obtained as follows:
• Channels and locations involved in each i/o-communication established by the
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Fig. 4. Locations

configuration are amalgamated.
• Every set of actions that are synchronized is represented by a single action whose

occurrence captures the joint execution of the actions in the set. The transfor-
mations performed by the joint action are distributed over the locations of the
synchronized actions. Each located action is specified by the conjunction of the
specifications of the local effects of each of the localized actions.

We show in Figure 5 part of the colimit generated for the case study (see Sec-
tion 5). In particular, the figure shows an action clean 1handoverCommand 13
distributed over two locations, given by location variables lms 0 and lmsc 13.

The three following rules express the restrictions on the interactions that make
an architecture a well-formed configuration and for which the existence of colimits
can be ensured:
• An output channel or location of a component cannot be connected with output

channels or locations of the same or other components (even indirectly);
• Private channels and private actions cannot be involved in the connections.
• Indirect synchronization of actions belonging to the same design is forbidden,

because this entails their execution at the same time.

4 COMMUNITY Workbench

The COMMUNITY Workbench [13] implements directly over Java the construc-
tions of coordination and distribution that give semantics to COMMUNITY as an
architectural description language. Although COMMUNITY is independent of the
actual data types used, the Workbench provides a fixed set of types: integer and
real numbers, booleans, lists, arrays, records, and enumerations. The workbench
also includes an export utility to save the whole architecture or just some connec-
tors as a textual specification that can be easily read and understood without the
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Fig. 5. Colimit

tool as will be explained in the next section. The workbench is available from the
COMMUNITY web site (www.fiadeiro.org/jose/CommUnity).

The current version of the tool (1.2) allows the user to:

(i) Specify the Loc type and the relations touch and reach: The location type
is defined in terms of the pre-defined types (e.g., as a record of two integers
to represent a 2 dimensional space). The relations are defined as boolean
expressions with both parameters of location type.

(ii) Write COMMUNITY designs: The user may write new designs or edit existing
ones.

(iii) Define graphically architectural connectors: In connector diagrams the user
may do the same he can do in the architecture diagram (see step IV below),
except for adding and deleting connectors. In the diagram of a connector, each
node is uniquely numbered and must be an instance of an existing design.
Connectors must have a star topology, the glue being in the center.

(iv) Define graphically the architecture, with connectors, and calculate its colimit:
In the architecture, the user may add and delete nodes, arcs and connectors,
drag nodes around to change the diagram layout, double-click on an arc or
select some nodes to invoke a graphic link editor to visualize and/or to set the
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Fig. 6. Refinement in the Workbench

interactions between the selected nodes. The user can make direct connections
between channels and locations as well as synchronizations between actions
of different nodes. The editor presents to the designer all the actions, input
and output channels of the selected nodes as was shown in Figure 3. The
workbench detects invalid bindings—(in)direct sharing of output channels or
location variables, or synchronization of actions of the same node. The user
may add the connectors created in step III to the main architecture. This is
done by explicitly defining which components refine which roles of the added
connectors. Figure 6 shows how the instance of the MS design refines the
msroleinfo role of the BTS connector (to be explained in Section 5), i.e., how
the channels and actions of the role are mapped to those of the component.
Notice that, whereas in the composition of components output channels are
connected to input channels, in refinement output channels must be mapped
to output channels. Components are represented by rectangles, connectors by
oval shapes, and direct links by lines with small black squares.

(v) Run a design (in particular the colimit of the configuration): Before running
a design, the user has to provide the initial values for all channels and location
variables, and to choose which channels, location variables and actions should
be traced. In Figure 7 we show the initialization window. By default, numbers
are initialized with zero, booleans with false, and only output channels and
location variables are traced. The trace gives great flexibility to test several
scenarios. Shared actions can be explicitly selected for execution by the user
or automatically by the tool, in fair or random mode. Private actions are al-
ways selected in a fair mode. There are also three choices for the value of
any input channel that is not connected to an output channel: 1-The same as
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Fig. 7. Initialisation

in the previous execution step; 2-A random value; 3-Set by the user. During
the trace the user can track the location variables: after each step, the current
value of each location variable is shown, as well as the touch and reach
relations between the location variables. We show in Figure 8 a possible state
of the location variables when running the case-study. The black arrows show
that the target location is reachable from the source location and the white
lines show the locations are in touch.

Fig. 8. Locations Track

CommUnity architectures and connectors described in the WB can be saved as
textual specifications. The language that is used is like most Software Architecture
approaches. We propose an Architecture Description Language to describe COM-
MUNITY architectures. This language is inspired mainly by Armani [11]. More
precisely, the template of our architecture language is as shown in Figure 9. For
illustration, the connectors presented in this paper are described using this notation
(More precisely the subsection 5.3).

5 Handover in COMMUNITY

We will now produce the conceptual model, following the description of the han-
dover protocol given in Section 2. The proposed development consists of five
phases to be applied in the order shown in Figure 10:

(i) Architectural entities We operate a decomposition of the system in terms of
designs and interactions (links and/or connectors). A black-box computational
entity is represented as a single design, and a relationship between designs is
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architecture name {
loc = data type
bt (x,y) = boolean expression over x and y
reach (x,y) = boolean expression over x and y
components

design name 1
design name N

connectors
connector name {

glue
design name

roles
design roleName 1
design roleName K

configuration
instd 1, instd L: designName
attachments {

instd I.idI - instd J.idJ
}

}
configuration

instd 1, instd M: designName
instc 1, instc P: connectorName
attachments {

instd I.idI - instd J.idJ
}
refinement instc I.roleName to instd J {

idI to idJ
}

}

Fig. 9. Architecture Specification Template

Fig. 10. Development

represented through an interaction.

(ii) Computation We describe in detail each identified design from the previous
phase. That is, the private as well as the shared constituents (input/output/private

13



Oliveira

channels and shared/private actions) are completely specified.

(iii) Coordination Each identified interaction has to be classified either as a simple
link between two designs or a connector, which can includes some behaviour.
In order to specify a connector the behaviour should be encapsulated in a glue,
and a role has to be defined for each type of participant. In some cases it is
necessary to go back to the computation phase based on intermediate results
from this phase.

(iv) Distribution This phase starts by checking the possible topological distribu-
tion for each design and glue resulting from the previous phases. In case of re-
quired distribution, the corresponding design or glue has to be extended/adapted
with appropriate location variables and actions dealing with them (e.g., to ex-
press mobility). Due to the new requirements some existent actions can also
be distributed over locations. Finally, to handle the topological distribution
of the real system, new connectors dealing only with locations can be created
from scratch.

(v) Execution The architecture is executed with different initial values in order to
test it. In the current version of the workbench, the execution of the specified
architecture is centralized, in the sense that it is simulated by the execution
of the generated colimit. In the future we will make available a distributed
execution mode: the location values will be mapped to physical hosts and the
physical mobility will be real (for more details see Section 5.5).

In the following we describe the handover process using COMMUNITY and the
workbench, applying the development steps described above. For this description
we assume a small system with only one MS, two BTS/BSC’s and one MSC, as it is
sufficient for reflecting all features of a typical handover. Moreover, in our system
specification we assume that the MS is continuously communicating with a BSC,
because if the MS is idle no handover would be required. The handover is triggered
by the current BSC, and it initiates the process. In our model the relation touch
plays an important role. That is, the MS moves around and it can only receive the
measurements from both BTS’s when it is in touchwith them. Then each time the
MS receives both measurements, it sends them to the current BSC, which verifies
if it controls the BTS closest to the MS. If this is not the case it begins the handover
process. Although the handover process can fail in a real system, we assume no
failure for this model because our goal is to model the architecture, focuses on the
separation of dimensions. The externalization of the measurements’ process and
the handover to connectors shows to be a first good step, because for example it
permits us to detect where the model must explicitly evolve to include scalability.
The evolution of the model to include failure is a possibility for future work.

5.1 Architecture entities

By analyzing the case study, we discover two different kinds of computation for
each entity—namely communication and measurements, and we propose therefore
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to distinguish them in different elements in the architecture. Afterwards we named
as layers the two different kinds of computation.
• MS: We describe the MS with two designs. The first one, denoted MS, in-

cludes the computation related to the communication. The second one, denoted
ms measure, encapsulates the computation reflecting the reception and sending
of any measurements.

• BSC: Similarly, we capture the BSC using two designs, denoted by BSC and
bsc measure.

• MSC: We propose just one design, named MSC, to deal with the communica-
tion.

• BTS: Three connectors are associated with this entity, that we refer to as BTS,
bts measure, and btsmeasure. The distinction between the last two connectors
will be described in the subsection 5.3.

• Handover: In order to externalize the handover process, we define this entity as
an interaction represented by a connector called Handover.

Figure 11 depicts the organization of the different entities of the Handover ar-
chitecture. The elements of the architecture are disposed in order to visualize the
two layers referred before. Above are all the components and connectors related to
the treatment of the measurements.

Fig. 11. The architecture in the Workbench

5.2 Computation

As stated before, this phase details each of the previously identified computational
entities, the designs. We only show and discuss the details of the ms measure
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and the bsc measure designs. To describe each design, we refer to the syntax of
COMMUNITY (see Section 3). The design MS is already explained in section 3
and shown in Figure 2.

ms measure:
The ms measure receives the measurements from the two BTS’s through the

connectors btsmeasure’s, then sends them to the current BSC (respective bsc measure).
For this purpose, it uses one input channel (dist1 and dist2) for each btsmeasure,
and one output channel (dist1dist2) to make the measurements available. Like the
MS design, for each of the two considered BSCs we have one action for sending
the measurements (sendbsc1 and sendbsc2) and another one for receiving them (re-
ceive d1 and receive d2). Finally, for controlling the sequence of its actions, some
private channels are required (the ready and counter channels). For executing the
action sendbsc1 or sendbsc2 the private channels ready1 and ready2 must have the
value true. This only happens if the ms measure has received both measurements
executing the actions receive d1 and receive d2. But the ms measure must avoid to
receive a measurement twice, so the counter’s are used for that purpose. If action
receive d1 (and the same for receive d2) is executed twice before the other one,
then action clean is executed and the counter and ready channels are re-initialized.
This leads to the COMMUNITY design shown in Figure 12.

bsc measure:
The bsc measure receives the measurements from its corresponding BTS (trough

the respective connector bts measure), then verifies if the best measurement corre-
sponds to its BTS. The result of the verification is send to the component BSC. For
this purpose, it uses one input channel (distdist2) and one action (receive distdist2)
to receive the measurements. The result is made available with the output chan-
nel newId. As for the ms measure this design results from the abstraction of the
treatment of the measurements and the communication into different components.
And finally the bsc measure has an boolean input channel communication that is
used as guard to the action which is used to receive the measurements. There is no
sense to receive the measurements if this BSC is not the current one used on the
communication.

5.3 Coordination

This phase details each of the interactions identified in Section 5.1. That is, for each
connector, its glue, roles, and attachments are completely defined. We show and
discuss the details of the BTS entity. The separation of the two layers is represented
by different connectors.

BTS:
This is a binary connector relating the MS instance to a BSC instance. The glue

part of this connector is a design with two input channels (inMsg and outMsg) for
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Fig. 12. The MS Measure in the Workbench

the incoming messages and outgoing messages during the communication, and two
actions for transferring the messages (transferIn, transferOut). The roles of this
connector are very simple designs, each having two channels and two actions to be
refined with component instances of the architecture (see below). After declaring
one instance of the glue (btsI) and one instance for each role (msroleinfoI, bscrole-
infoI), the attachment part defines the interactions of the glue channels and actions
with those in both roles. For example, the output channel outMsg (resp. inMsg) has
to be linked with the msroleinfoI instance through inMsg (resp. outMsg) and with
the bscroleinfoI through outMsg (resp. inMsg). The same linking is to be applied
between the transfer, send, and receive actions.

connector BTS {
glue

design bts
in inMsg, outMsg : array(5, int)
do transferIn : skip
[] transferOut : skip

roles
design msroleinfo
in inMsg : array(5, int)
out outMsg : array(5, int)
do send : skip
[] receive : skip
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design bscroleinfo
in inMsg, outMsg : array(5, int)
do transferIn : skip
[] transferOut : skip

configuration
btsI: bts
msroleinfoI: msroleinfo
bscroleinfoI: bscroleinfo

attachments {
btsI.outMsg - msroleinfoI.inMsg
btsI.inMsg - msroleinfoI.outMsg
btsI.transferOut - msroleinfoI.send
btsI.transferIn - msroleinfoI.receive
btsI.inMsg - bscroleinfoI.inMsg
btsI.outMsg - bscroleinfoI.outMsg
btsI.transferIn - bscroleinfoI.transferIn
btsI.transferOut - bscroleinfoI.transferOut

}
}

In order to use this connector with the MS and BSC designs, the role msrole-
infoI and the role bscroleinfoI are refined with a MS design instance and a BSC
design instance, respectively. Part of the refinement is shown in Figure 6.

refinement bts.msroleinfoI to MS {
inMsg to inMsg1
outMsg to outMsg1
send to send1
receive to receive1

}
refinement bts.bscroleinfoI to BSC {

inMsg to inMsg
outMsg to outMsg
transferIn to transferIn
transferOut to transferOut

}

Handover:
This connector externalizes all the handover process. It has three actions re-

lated to the handover process. The actions handoverReqBSC1 and handoverRe-
qBSC2 initiate the handover. The action handoverCommand can be selected after
the execution of one of the previous actions, because the output channel hand used
in the guard remains true. This action is the handover core of our model, because
it makes an exchange of values between the two BSC’s through the two output
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channels communicationBSC1 and communicationBSC2.

5.4 Distribution

As the topological distribution is obviously crucial in this application, any attempt
to abstract it away would not be realistic. Following our development steps, on
the basis of the resulting specification, we propose to enrich it with the required
distribution features. We consider as illustration two designs and two connectors,
namely the ‘Mobile’ MS, and the ‘Location-aware’ ms measure, bts measure and
btsmeasure. We recall that Figure 4 shows the definition of type Loc and its binary
relations adopted for this case study.

Mobile MS:
This design has already been shown in Figure 2. All its constituents, channels

and actions move together around in a random way.

ms measure:
Due to the fact that ms measure is always co-located with MS, this design has

an input location variable (lm) that is connected to the output location variable of
the MS, as shown in Figure 3. Moreover, all its channels and actions are at location
lm, in the same way as for the MS.

btsmeasure:
This unary connector sends to ms measure the measurement based on the loca-

tion of its glue and the location it receives from the ms measure (which is the same
as the MS location), but only when their location variables are “in touch ”. The
glue of the connector is composed of: an output location variable holding its loca-
tion, an input location variable for reading the current location of the ms measure
when in touch, and an action with an adequate output channel for sending the
computed distance to the ms measure.

bts measure and Handover:
The connector bts measure has an input location variable in its glue, that must

be initialized with the value of the output location variable of the glue of the last
connector, because they are related to the same BTS entity. When the MS is “in
touch” with the last connector, it must be in touch with the related one. The han-
dover connector has one output location variable and all the constituents are located
in the respective location variable.

5.5 Execution

In the current version of the workbench, the execution phase is centralized, in the
sense that it is simulated by the execution of the generated colimit. Figure 7 shows
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the editor where the channels and locations can be initialized before the user can
test the desired scenario. In the same editor he can choose which channels he wants
to see evolving during the execution steps. While the colimit’s execution is traced,
the state of the system after each execution step can be analyzed with the current
values of the channels.

We now present a summary of the architecture for distributed execution that we
are currently implementing in the Workbench, based on the Klava package [2]. This
library for mobile agent systems based on tuple spaces contains some facilities for
specifying hosts, and logical and physical locations. The communication between
hosts is encapsulated in a sub-layer, and because of that, we can abstract from the
communication implementation layer. The Klava package has support for nodes
that are located on the hosts and support for execution of processes on the nodes.

The specification of the architecture is distributed over a set of hosts, where we
give an important role to one host, called the global host, which has the centralized
knowledge of the architecture in COMMUNITY.

We define a mapping from the location values of the location types to the exis-
tent hosts. The touch and reach relations are implemented directly in Java over
the location type.

The global host stores the connections (shared channels and synchronized ac-
tions) of the COMMUNITY architecture, the values of the location variables, and all
channels that are not located at any location variable. The global host also stores
the input channels that are not connected to any output channel. Moreover, it has
a process, “globalInterpreter”, runnning. This process knows all the COMMUNITY

architecture and uses a fair algorithm for deciding which actions it will try to exe-
cute at each step.

We assume a fixed number of hosts. Each host stores all channels and actions
located in location variables whose values map to that host.

All hosts (including the global one) have a running process denoted “localInter-
preter”. This process is in a loop, waiting for messages from the “globalInterpreter”
which ask for values of local channels, for the verification of guards of the local ac-
tions, or for the execution of local actions. We are implementing the necessary
sequential steps for the communication between the global and the other hosts, and
we use the facilities of Klava of mobility of tuples between hosts for moving the
channels and actions during the execution of the system.

6 Concluding Remarks

In this paper, we have illustrated how COMMUNITY supports architectural mod-
elling of applications that need to be location aware. The semantic and syntactic
primitives of COMMUNITY were shown to be expressive enough to model mobile
systems as we know them in reality. The Workbench proved useful in detecting
some errors in our initial, hand-written models. In particular, the trace facilities
and the graphical depiction of the co-located channels and actions, and of the cur-
rent “in touch” relationships, were found to be quite useful to animate the model
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and to find deadlocks. In summary, we feel that COMMUNITY and the Workbench
are useful to anyone wishing to define and animate executable architectural models
of distributed and mobile systems at a higher level of abstraction than other formal
approaches based on process calculi.

Currently we can only simulate the execution of the generated colimit. But soon
we expect to test, with the case-study model, the distributed execution implemen-
tation, in order to make the approach scalable.
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