29 research outputs found

    Maximum Matching in Turnstile Streams

    Get PDF
    We consider the unweighted bipartite maximum matching problem in the one-pass turnstile streaming model where the input stream consists of edge insertions and deletions. In the insertion-only model, a one-pass 22-approximation streaming algorithm can be easily obtained with space O(nlogn)O(n \log n), where nn denotes the number of vertices of the input graph. We show that no such result is possible if edge deletions are allowed, even if space O(n3/2δ)O(n^{3/2-\delta}) is granted, for every δ>0\delta > 0. Specifically, for every 0ϵ10 \le \epsilon \le 1, we show that in the one-pass turnstile streaming model, in order to compute a O(nϵ)O(n^{\epsilon})-approximation, space Ω(n3/24ϵ)\Omega(n^{3/2 - 4\epsilon}) is required for constant error randomized algorithms, and, up to logarithmic factors, space O(n22ϵ)O( n^{2-2\epsilon} ) is sufficient. Our lower bound result is proved in the simultaneous message model of communication and may be of independent interest

    Space Lower Bounds for Graph Stream Problems

    Full text link
    This work concerns with proving space lower bounds for graph problems in the streaming model. It is known that computing the length of shortest path between two nodes in the streaming model requires Ω(n)\Omega(n) space, where nn is the number of nodes in the graph. We study the problem of finding the depth of a given node in a rooted tree in the streaming model. For this problem we prove a tight single pass space lower bound and a multipass space lower bound. As this is a special case of computing shortest paths on graphs, the above lower bounds also apply to the shortest path problem in the streaming model. The results are obtained by using known communication complexity lower bounds or by constructing hard instances for the problem. Additionally, we apply the techniques used in proving the above lower bound results to prove space lower bounds (single and multipass) for other graph problems like finding min sts-t cut, detecting negative weight cycle and finding whether two nodes lie in the same strongly connected component.Comment: Published in the conference on. Theory and Applications of Models of Computation (TAMC) 2019 pp 635-64

    On The Communication Complexity of Linear Algebraic Problems in the Message Passing Model

    Full text link
    We study the communication complexity of linear algebraic problems over finite fields in the multi-player message passing model, proving a number of tight lower bounds. Specifically, for a matrix which is distributed among a number of players, we consider the problem of determining its rank, of computing entries in its inverse, and of solving linear equations. We also consider related problems such as computing the generalized inner product of vectors held on different servers. We give a general framework for reducing these multi-player problems to their two-player counterparts, showing that the randomized ss-player communication complexity of these problems is at least ss times the randomized two-player communication complexity. Provided the problem has a certain amount of algebraic symmetry, which we formally define, we can show the hardest input distribution is a symmetric distribution, and therefore apply a recent multi-player lower bound technique of Phillips et al. Further, we give new two-player lower bounds for a number of these problems. In particular, our optimal lower bound for the two-player version of the matrix rank problem resolves an open question of Sun and Wang. A common feature of our lower bounds is that they apply even to the special "threshold promise" versions of these problems, wherein the underlying quantity, e.g., rank, is promised to be one of just two values, one on each side of some critical threshold. These kinds of promise problems are commonplace in the literature on data streaming as sources of hardness for reductions giving space lower bounds

    Towards Tight Bounds for the Streaming Set Cover Problem

    Full text link
    We consider the classic Set Cover problem in the data stream model. For nn elements and mm sets (mnm\geq n) we give a O(1/δ)O(1/\delta)-pass algorithm with a strongly sub-linear O~(mnδ)\tilde{O}(mn^{\delta}) space and logarithmic approximation factor. This yields a significant improvement over the earlier algorithm of Demaine et al. [DIMV14] that uses exponentially larger number of passes. We complement this result by showing that the tradeoff between the number of passes and space exhibited by our algorithm is tight, at least when the approximation factor is equal to 11. Specifically, we show that any algorithm that computes set cover exactly using (12δ1)({1 \over 2\delta}-1) passes must use Ω~(mnδ)\tilde{\Omega}(mn^{\delta}) space in the regime of m=O(n)m=O(n). Furthermore, we consider the problem in the geometric setting where the elements are points in R2\mathbb{R}^2 and sets are either discs, axis-parallel rectangles, or fat triangles in the plane, and show that our algorithm (with a slight modification) uses the optimal O~(n)\tilde{O}(n) space to find a logarithmic approximation in O(1/δ)O(1/\delta) passes. Finally, we show that any randomized one-pass algorithm that distinguishes between covers of size 2 and 3 must use a linear (i.e., Ω(mn)\Omega(mn)) amount of space. This is the first result showing that a randomized, approximate algorithm cannot achieve a space bound that is sublinear in the input size. This indicates that using multiple passes might be necessary in order to achieve sub-linear space bounds for this problem while guaranteeing small approximation factors.Comment: A preliminary version of this paper is to appear in PODS 201

    Streaming Lower Bounds for Approximating MAX-CUT

    Full text link
    We consider the problem of estimating the value of max cut in a graph in the streaming model of computation. At one extreme, there is a trivial 22-approximation for this problem that uses only O(logn)O(\log n) space, namely, count the number of edges and output half of this value as the estimate for max cut value. On the other extreme, if one allows O~(n)\tilde{O}(n) space, then a near-optimal solution to the max cut value can be obtained by storing an O~(n)\tilde{O}(n)-size sparsifier that essentially preserves the max cut. An intriguing question is if poly-logarithmic space suffices to obtain a non-trivial approximation to the max-cut value (that is, beating the factor 22). It was recently shown that the problem of estimating the size of a maximum matching in a graph admits a non-trivial approximation in poly-logarithmic space. Our main result is that any streaming algorithm that breaks the 22-approximation barrier requires Ω~(n)\tilde{\Omega}(\sqrt{n}) space even if the edges of the input graph are presented in random order. Our result is obtained by exhibiting a distribution over graphs which are either bipartite or 12\frac{1}{2}-far from being bipartite, and establishing that Ω~(n)\tilde{\Omega}(\sqrt{n}) space is necessary to differentiate between these two cases. Thus as a direct corollary we obtain that Ω~(n)\tilde{\Omega}(\sqrt{n}) space is also necessary to test if a graph is bipartite or 12\frac{1}{2}-far from being bipartite. We also show that for any ϵ>0\epsilon > 0, any streaming algorithm that obtains a (1+ϵ)(1 + \epsilon)-approximation to the max cut value when edges arrive in adversarial order requires n1O(ϵ)n^{1 - O(\epsilon)} space, implying that Ω(n)\Omega(n) space is necessary to obtain an arbitrarily good approximation to the max cut value
    corecore