5 research outputs found

    Dynamic Reconstruction of Complex Planar Objects on Irregular Isothetic Grids

    Get PDF
    International audienceThe vectorization of discrete regular images has been widely developed in many image processing and synthesis applications, where images are considered as a regular static data. Regardless of final application, we have proposed in [14] a reconstruction algorithm of planar graphical elements on irregular isothetic grids. In this paper, we present a dynamic version of this algorithm to control the reconstruction. Indeed, we handle local refinements to update efficiently our complete shape representation. We also illustrate an application of our contribution for interactive approximation of implicit curves by lines, controlling the topology of the reconstruction

    Unsupervised Polygonal Reconstruction of Noisy Contours by a Discrete Irregular Approach

    Get PDF
    International audienceIn this paper, we present an original algorithm to build a polygonal reconstruction of noisy digital contours. For this purpose, we first improve an algorithm devoted to the vectorization of discrete irregular isothetic objects. Afterwards we propose to use it to define a reconstruction process of noisy digital contours. More precisely, we use a local noise detector, introduced by Kerautret and Lachaud in IWCIA 2009, that builds a multi-scale representation of the digital contour, which is composed of pixels of various size depending of the local amount of noise. Finally, we compare our approach with previous works, by con- sidering the Hausdorff distance and the error on tangent orientations of the computed line segments to the original perfect contour. Thanks to both synthetic and real noisy objects, we show that our approach has interesting performance, and could be applied in document analysis systems

    Revisiting Digital Straight Segment Recognition

    Full text link
    This paper presents new results about digital straight segments, their recognition and related properties. They come from the study of the arithmetically based recognition algorithm proposed by I. Debled-Rennesson and J.-P. Reveill\`es in 1995 [Debled95]. We indeed exhibit the relations describing the possible changes in the parameters of the digital straight segment under investigation. This description is achieved by considering new parameters on digital segments: instead of their arithmetic description, we examine the parameters related to their combinatoric description. As a result we have a better understanding of their evolution during recognition and analytical formulas to compute them. We also show how this evolution can be projected onto the Stern-Brocot tree. These new relations have interesting consequences on the geometry of digital curves. We show how they can for instance be used to bound the slope difference between consecutive maximal segments

    Supercover model and digital straight line recognition on irregular isothetic grids

    No full text
    On the classical discrete grid, the analysis of digital straight lines (DSL for short) has been intensively studied for nearly half a century. In this article, we are interested in a discrete geometry on irregular grids. More precisely, our goal is to define geometrical properties on irregular isothetic grids that are tilings of the Euclidean plane with different sized axis parallel rectangles

    Supercover model, digital straight line recognition and curve reconstruction on the irregular isothetic grids

    No full text
    International audienceOn the classical discrete grid, the analysis of digital straight lines (DSL for short) has been intensively studied for nearly half a century. In this article, we are interested in a discrete geometry on irregular grids. More precisely, our goal is to define geometrical properties on irregular isothetic grids that are tilings of the Euclidean plane with different sized axis parallel rectangles. On these irregular isothetic grids, we define digital straight lines with recognition algorithms and a process to reconstruct an invertible polygonal representation of an irregular discrete curve
    corecore