12 research outputs found

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    Spatio-temporal integral equation methods with applications

    Get PDF
    Electromagnetic interactions are vital in many applications including physics, chemistry, material sciences and so on. Thus, a central problem in physical modeling is the electromagnetic analysis of materials. Here, we consider the numerical solution of the Maxwell equation for the evolution of the electromagnetic field given the charges, and the Newton or Schr\\"odinger equation for the evolution of particles. By combining integral equation techniques with new spectral deferred correction algorithms in time and hierarchical methods in space, we develop fast solvers for the calculation of electromagnetism with relaxations of the model in different scenarios. The dissertation consists of two parts, aiming to resolve the challenges in the temporal and spatial direction, respectively. In the first part, we study a new class of time stepping methods for time-dependent differential equations. The core algorithm uses the pseudo-spectral collocation formulation to discretize the Picard type integral equation reformulation, producing a highly accurate and stable representation, which is then solved via the deferred correction technique. By exploiting the mathematical properties of the formulation and the convergence procedure, we develop some new preconditioning techniques from different perspectives that are accurate, robust, and can be much more efficient than existing methods. As is typical of spectral methods, the solution to the discretization is spectral accurate and the time step-size is optimal, though the cost of solving the system can be high. Thus, the solver is particularly suited to problems where very accurate solutions are sought or large time-step is required, e.g., chaotic systems or long-time simulation. In the second part, we study the hierarchical methods with emphasis on the spatial integral equations. In the first application, we implement a parallel version of the adaptive recursive solver for two-point boundary value problem by Cilk multithreaded runtime system based on the integral equation formulation. In the second application, we apply the hierarchical method to two-layered media Helmholtz equations in the acoustic and electromagnetic scattering problems. With the method of images and integral representations, the spatially heterogeneous translation operators are derived with rigorous error analysis, and the information is then compressed and spread in a fashion similar to fast multipole methods. The preliminary results suggest that our approach can be faster than existing algorithms with several orders of magnitude. We demonstrate our solver on a number of examples and discuss various useful extensions. Preliminary results are favorable and show the viability of our techniques for integral equations. Such integral equation methods could well have a broad impact on many areas of computational science and engineering. We describe further applications in biology, chemistry, and physics, and outline some directions for future work.Doctor of Philosoph

    The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications

    Get PDF
    International audienceHybrid High-Order (HHO) methods are new generation numerical methods for models based on Partial Differential Equations with features that set them apart from traditional ones. These include: the support of polytopal meshes including non star-shaped elements and hanging nodes; the possibility to have arbitrary approximation orders in any space dimension; an enhanced compliance with the physics; a reduced computational cost thanks to compact stencil and static condensation. This monograph provides an introduction to the design and analysis of HHO methods for diffusive problems on general meshes, along with a panel of applications to advanced models in computational mechanics. The first part of the monograph lays the foundation of the method considering linear scalar second-order models, including scalar diffusion, possibly heterogeneous and anisotropic, and diffusion-advection-reaction. The second part addresses applications to more complex models from the engineering sciences: non-linear Leray-Lions problems, elasticity and incompressible fluid flows

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    A C0 Finite Element Method For The Biharmonic Problem In A Polygonal Domain

    Get PDF
    This dissertation studies the biharmonic equation with Dirichlet boundary conditions in a polygonal domain. The biharmonic problem appears in various real-world applications, for example in plate problems, human face recognition, radar imaging, and hydrodynamics problems. There are three classical approaches to discretizing the biharmonic equation in the literature: conforming finite element methods, nonconforming finite element methods, and mixed finite element methods. We propose a mixed finite element method that effectively decouples the fourth-order problem into a system of one steady-state Stokes equation and one Poisson equation. As a generalization to the above-decoupled formulation, we propose another decoupled formulation using a system of two Poison equations and one steady-state Stokes equation. We solve Poisson equations using linear and quadratic Lagrange\u27s elements and the Stokes equation using Hood-Taylor elements and Mini finite elements. It is shown that the solution of each system is equivalent to that of the original fourth-order problem on both convex and non-convex polygonal domains. Two finite element algorithms are, in turn, proposed to solve the decoupled systems. Solving this problem in a non-convex domain is challenging due to the singularity occurring near re-entrant corners. We introduce a weighted Sobolev space and a graded mesh refine Algorithm to attack the singularity near re-entrant corners. We show the regularity results of each decoupled system in both Sobolev space and weighted Sobolev space. We derive the H1H^1 and L2L^2 error estimates for the numerical solutions on quasi-uniform and graded meshes. We present various numerical test results to justify the theoretical findings. Given the availability of fast Poisson solvers and Stokes solvers, our Algorithm is a relatively easy and cost-effective alternative to existing algorithms for solving the biharmonic equation
    corecore