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As computational research has grown, simulation has become a standard tool
in many fields of academic and industrial areas. For example, computational fluid
dynamics (CFD) tools in acrospace and research facilities are widely used to evaluate
the aerodynamic performance of aircraft or wings. Weather forecasts are highly de-
pendent on numerical weather prediction (NWP) model. However, it is still difficult
to simulate the complex physical phenomena of a wide range of length and time scales
with modern computational resources. In this study, we develop a robust, efficient

and high-order accurate numerical methods and techniques to tackle the challenges.

First, we use high-order spatial discretization using (hybridized) discontinuous
Galerkin (DG) methods. The DG method combines the advantages of finite volume
and finite element methods. As such, it is well-suited to problems with large gra-
dients including shocks and with complex geometries, and large-scale simulations.
However, DG typically has many degrees-of-freedoms. To mitigate the expense, we

use hybridized DG (HDG) method that introduces new “trace unknowns” on the mesh
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skeleton (mortar interfaces) to eliminate the local “volume unknowns” with static con-
densation procedure and reduces globally coupled system when implicit time-stepping
is required. Also, since the information between the elements is exchanged through
the mesh skeleton, the mortar interfaces can be used as a glue to couple multi-phase
regions, e.g., solid and fluid regions, or non-matching grids, e.g., a rotating mesh
and a stationary mesh. That is the HDG method provides an efficient and flexible

coupling environment compared to standard DG methods.

Second, we develop an HDG-DG IMEX scheme for an efficient time integrating
scheme. The idea is to divide the governing equations into stiff and nonstiff parts,
implicitly treat the former with HDG methods, and explicitly treat the latter with
DG methods. The HDG-DG IMEX scheme facilitates high-order temporal and spatial
solutions, avoiding too small a time step. Numerical results show that the HDG-DG
IMEX scheme is comparable to an explicit Runge-Kutta DG scheme in terms of
accuracy while allowing for much larger timestep sizes. We also numerically observe
that IMEX HDG-DG scheme can be used as a tool to suppress the high-frequency
modes such as acoustic waves or fast gravity waves in atmospheric or ocean models.
In short, IMEX HDG-DG methods are attractive for applications in which a fast and

stable solution is important while permitting inaccurate processing of the fast modes.

Third, we also develop an EXPONENTIAL DG scheme for an efficient time
integrators. Similar to the IMEX method, the governing equations are separated
into linear and nonlinear parts, then the two parts are spatially discretized with
DG methods. Next, we analytically integrate the linear term and approximate the
nonlinear term with respect to time. This method accurately handles the fast wave
modes in the linear operator. To efficiently evaluate a matrix exponential, we employ

the cutting-edge adaptive Krylov subspace method.
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Finally, we develop a sliding-mesh interface by combining nonconforming treat-
ment and the arbitrary Lagrangian-Eulerian (ALE) scheme for simulating rotating
flows, which are important to estimate the characteristics of a rotating wind turbine
or understanding vortical structures shown in atmospheric or astronomical phenom-
ena. To integrate the rotating motion of the domain, we use the ALE formulation to
map the governing equation to the stationary reference domain and introduce mortar
interfaces between the stationary mesh and the rotating mesh. The mortar structure

on the sliding interface changes dynamically as the mesh rotates.
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Chapter 1

Introduction

The computing power has exponentially grown ever since ENTAC, the first
computer was developed. The initial effort to improve its performance has been
focused on a single CPU, e.g., increasing clock speed, but nowadays the extreme scale
computing power comes from a massively parallel computing system. Due to the
trend of modern computer design, numerical methods and algorithms are required to

support parallel computing to some extent.

Meanwhile, as computational research has grown, simulation has become a
standard tool in many fields of academic and industrial areas. For example, compu-
tational fluid dynamics (CFD) tools in acrospace and research facilitates are widely
used to evaluate the aerodynamic performance of aircraft or wings. Weather forecasts
are highly dependent on numerical weather prediction (NWP) model. However, it is
still difficult to simulate the complex physical phenomena of a wide range of length

and time scales with modern computational resources.

The high-order discontinuous Galerkin (DG) method—originally developed
[I71, 125], 103] for the neutron transport equation—has been studied extensively for
virtually all types of partial differential equations (PDEs) [63] 222] 9] [49, [10] 132,
14) [73), 163, 200, 81, 226]. This is due to the fact that DG combines advantages of
finite volume and finite element methods. As such, it is well-suited to problems with
large gradients including shocks and with complex geometries, and large-scale simu-

lations demanding parallel implementations. In particular, for numerical modeling of



magma dynamics, the DG methods have been used to study the interaction between
the fluid melt and the solid matrix [201], 200], and to include a porosity-dependent
bulk viscosity and a solid upwelling effect [I86]. Another example is the shallow water
equations that describe the motion of a thin layer of incompressible and inviscid fluid.
Because they capture essential dynamical characteristics such as nonlinear advection
and gravity waves in geophysical flows, they are widely used in oceanography and at-
mospheric sciences. For the modeling of geophysical flows, spatial discretization using
high order discontinuous Galerkin (DG) finite element methods have been of consid-
erable interest [152, 133] (30}, 89, [87] due to their flexibility in dealing with complex
geometries, high order accuracy, compact stencil, upwind stabilization, etc [52]. In
spite of these advantages, DG methods for steady-state and/or time-dependent prob-
lems that require implicit time-integrators are more expensive in comparison to other

existing numerical methods, since DG typically has many more (coupled) unknowns.

As an effort to mitigate the computational expense associated with DG meth-
ods, the hybridized (also known as hybridizable) discontinuous Galerkin (HDG) meth-
ods are introduced for various types of PDEs including Poisson-type equation [47, [48],
110}, [155] 441 [66], Stokes equation [46, [157], Euler and Navier-Stokes equations, wave
equations [161], 147, [159, [129] 158, 092, b5, [175], to name a few. In [30, B2, 134],
an upwind HDG framework was introduced that provides a unified and systematic

construction of HDG methods for a large class of PDEs.

To fully discretize a time-dependent partial differential equation (PDE), tem-
poral discretization is also necessary. Explicit time integrators such as Runge-Kutta
methods are popular due to their simplicity and ease in computer implementation.
However, fast waves, such as acoustic/gravity waves, limit the time-step size severely
for high-order DG methods (see, e.g., [89]). For long-time integration, which is not

uncommon in geophysical fluid dynamics, this can lead to an excessive number of



time steps, and hence substantially taxing computing and storage resources. On
the other hand, fully-implicit methods could be expensive, especially for nonlinear
PDEs for which Newton-like methods are required. Semi-implicit time-integrators
have been designed to balance the time-step size restriction due to fast waves and
the computational expense required by nonlinearities [12], 42 [165]. In the context of
low-speed fluid flows, including Euler, Navier-Stokes, and shallow water equations,
implicit-explicit (IMEX) DG methods have been proposed and proven to be much
more advantageous than either explicit or fully-implicit DG methods |70, [174]. The
common feature of these methods is that they employ implicit time-stepping schemes
for the linear part of the PDE under consideration that contains the fastest waves, and
explicit time-integrators for the (resulting) nonlinear part for which the fastest waves
are removed. Unlike standard operator splitting methods, this class of IMEX schemes
facilitate high-order solutions both in time and space. In particular, they provide the
flexibility in employing separate high-order discretization methods for the fast linear
and for the slow nonlinear operators. There have been studies recently concerning the
stability and convergence analysis in the context of discontinuous Galerkin coupled
with IMEX methods. In particular, the local discontinuous Galerkin (LDG) based
IMEX schemes have been discussed for a linear convection-diffusion system [212] and

for a nonlinear convection-diffusion system [61) 213].

Alternatively, exponential time integrators have been received attention due
to the positive characteristics such as stability and accuracy. The methods have
been applied to various types of PDEs including linear advection-diffusion equations
[36], Schrodinger equation [37], Maxwell equations [27, 25], magnetohydrodynamics
(MHD) equations [203], Euler equations [I31], incompressible Navier-Stokes equations
[113], compressible Navier-Stokes equations [I87, 130], shallow water equations [43],

to name a few.



Exponential time integrators is similar to IMEX methods. The exponential
integrators also split the governing equation into linear and nonlinear parts. However,
the way to treat the linear part is different. Exponential time integrators exactly in-
tegrate the linear part by multiplying an integrating factor. As a result, one should
cope with a matrix exponential. Compared to other nonlinear solvers, exponential
time integrators are attractive because it does not require any linear solve. A Newton-
Krylov method, for example, needs a series of linear solve. Thus, for good scalability
and efficiency, a good preconditioner is necessary, but developing an efficient precon-
ditioner is not a trivial task. Especially, showing excellent scalability is challenging.
On the other hand, Exponential time integrators are completely free from a linear
solve. From the perspective of parallel computing, this method has the potential to
be scalable in large-scale simulations. However, there is still a price to pay. Expo-
nential integrators need to compute a matrix exponential, which is computationally

demanding for large-scale simulation.

Many researchers have done various studies to deal with the challenge, one
way is to use Krylov subspace, where a large matrix is projected onto a small Krylov
subspace so that computing the matrix exponential becomes less expensive. To
improve the Krylov subspace projection-based algorithm, rational Krylov method
[145, 170], restart Krylov method [198 2], block Krylov method [26] [112], adaptive
Krylov method [162] are proposed. Lately, [82] and [I133] enhance the computational
efficiency of the adaptive Krylov method by replacing the Arnoldi procedure [11]
with the incomplete orthogonalization procedure [119, 210]. The work in [202] shows
that the exponential propagation iterative (EPI) schemes can be efficient instead of
a Newton-Krylov method without a good preconditioner for a large-scale stiff prob-
lem. The work in [43] observes the second-order EPI2 gave comparable results to the

explicit fourth-order Runge-Kutta (RK4). For elastodynamic problems, exponential



time integrators outperform the backward Euler integrators [144] [143].

Another important topic is mesh refinement methods [140], 114, 60] for acceler-
ating large-scaling simulations. The idea is to initially compute a solution on a coarse
grid and then to increase spatial resolution in the region of interests. In finite-element
context, we can either increase the solution order (known as p-refinement) or add more
elements by subdividing elements on a coarse grid (known as h-refinement). The re-
finements require communications from a coarse grid to a fine grid (refining), and
from a fine grid to a coarse grid (coarsening), which are realized through a numerical

flux in the (H) DG spatial discretization.

The mesh refinement technique can be utilized to simulate rotating flows by
combining with the Arbitrary Lagrangian-Eulerian (ALE) method [62]. Rotating
flows is important across a wide range of applications such as atmospheric and oceanic
circulations, hurricane flows, jet engines, wind turbines, vacuum cleaners and so on.
For example, for wind turbine applications, it is essential to predict the wake structure
accurately and efficiently in a large-scale wind energy project because the wake effects
can cause power loss. Many researchers have been simulated the rotating flows using
various methods: DG-Fourier solver with sling meshes [71], the sliding-mesh spectral
difference [233], the DG-ALE combined with Ly projection [106], the space-time DG
with Ly projection [218], finite volume (FV) with sliding mesh [195], the DG with an

overset grid [I09] to name a few.

1.1 Outline

Our main objective in this thesis is to develop a robust, efficient and high-order

accurate numerical methods to tackle the challenges.

We first start with the HDG methods for linear degenerate elliptic equations



in Chapter [2| which is arising from the two-phase flows such as mantle convection
or glacier dynamics. Since the HDG method provides mortar interfaces on the mesh
skeleton, the mortar structure can be used as adhesives to couple the multi-phase
regions. We show that the proposed HDG method is well-posed by using an energy
approach. We derive a priori error estimates for the method on simplicial meshes in
both two- and three-dimensions. Several numerical results are presented to confirm
the theoretical estimates. We enhance the HDG solutions by post-processing. In
Chapter (3], we propose an IMEX HDG-DG framework for shallow water and Euler
systems. We start by decomposing the original flux into a linear part (obtained
from linearizing the flux at the lake at rest condition) containing the fast wave and
a nonlinear part for which the fastest wave is removed. We spatially discretize the
former using an HDG method, and the latter using a DG approach. We show various
numerical examples to demonstrate the performance of our methods. In Chapter {4 we
develop EXPONENTIAL DG scheme, where exponential time integrators are applied
to the DG spatial discretization. By adding and subtracting a linear flux based on a
flux Jacobian at continuous level, we split a governing equation into stiff and nonstiff
terms. Then the system is spatially discretized with the DG method. For accurate
and efficient evaluation of matrix exponential, we have used the adaptive Krylov
subspace method [162] and its variant [82] and [133]. Numerical results demonstrate
that EXPONENTIAL DG methods provide stable solutions with larger timestep sizes
as well as promising scalable results. In Chapter , we develop a (H) DG sliding-mesh
interface for simulating rotating flows by combining a curved noncorforming mesh
treatment and ALE formulations. We numerically demonstrate that our approach of
sliding-mesh interfaces gives stable and high-order accurate solutions for convection,
convection-diffusion and Euler equations. Finally, in Chapter [6] we summarize our

work in this thesis and also provide possible directions for future research.



Chapter 2

Degenerate Elliptic equations

In this chapter E] , we develop a high-order hybridized discontinuous Galerkin
(HDG) method for a linear degenerate elliptic equation arising from a two-phase
mixture of mantle convection or glacier dynamics. We show that the proposed HDG
method is well-posed by using an energy approach. We derive a prior: error estimates
for the method on simplicial meshes in both two- and three-dimensions. The error
analysis shows that the convergence rates are optimal for both the scaled pressure
and the scaled velocity for non-degenerate problems and are sub-optimal by half
order for degenerate ones. Several numerical results are presented to confirm the
theoretical estimates. We also enhance the HDG solutions by post-processing. The
superconvergence rates of (k+2) and (k+ 2) are observed for both a non-degenerate
case and a degenerate case away from the degeneracy. Degenerate problems with
low regularity solutions are also studied, and numerical results show that high-order

methods are beneficial in terms of accuracy.

2.1 Introduction

The Earth’s core is hotter than the Earth’s surface, which leads to thermal
convection in which the cold mantle is dense and sinks while the hot mantle is light and

rises to the surface. The induced current, i.e., mantle convection, moves slowly and

! The contents of this chapter are largely based on the published manuscript [I04]. The con-
tributions of the author in the article ranged from numerical implementation of the algorithm,
participation in the theoretical analysis and writing the manuscript.



cools gradually. The evolution and circulation of the mantle induce plate tectonics,
volcanic activity, and variation in crustal chemical composition. Therefore, the study
of mantle dynamics is critical to understanding how the planet functions [95]. Glacier
dynamics, on the other hand, describes the movement of glaciers and ice sheets.
Glaciers and ice sheets interact with the atmosphere, the oceans, and the landscape
[41], which could lead to a large impact on weather and climate change [107]. Though
mantle convection and glacier dynamics are different in nature, their dynamics can
be mathematically modeled by the Stokes equations combined with a Darcy equation

accounting for melt.

In this study, we are interested in developing numerical methods for both
glacial dynamics and mantle convection described by a similar two-phase mathemat-
ical model, as we now briefly discuss. In glacial dynamics, the mixture of ice and
water is observed near the temperature at the pressure-melting point, which is in a
phase-transition process |76, [I3]. In mantle dynamics, a partially molten rock is gen-
erated by supplying heat or reducing the pressure. In both cases, the relative motion

between the melt and the solid matrix is modeled by two-phase flow [I41].

We adopt the mathematical model in [142] [T4T) 188 189, 18, 17, B38]. In
particular, the mixture parameter of fluid melt and solid matrix is described by the
porosity ¢—the relative volume of fluid melt with respect to the bulk volume—which
separates the solid single-phase (¢ = 0) and fluid-solid two-phase (¢ > 0) regions
[6]. The partially molten regions are governed by Darcy flow through a deformable
solid matrix which is modeled as a highly viscous Stokes fluid [97, 38]. We use the
subscript f and s to distinguish between the fluid melt and solid matrix, and boldface
lowercase letters for vector-valued functions. We denote by v; and v, the velocities

of fluid and solid, py and p, the pressures, p; and ps the densities, p1y and p, the



viscosities, and oy and o, the stresses. Darcy’s law [56], [141] states

v —v) =" (w5 ). (2.1)
wy

where k(¢) is the permeability with x(0) = 0 and g is the gravity. We assume that
the solid matrix is more viscous than the fluid melt (; < p,) so that the fluid and

the solid stresses can be modeled as

op i = —hsl, (2.2)

2
Os .= —ﬁsj —+ Hs (VVS —+ VVZ) - g,usv : Vsjy (23>

where J is the second order identity tensor. The mixture of the melt and the solid

matrix obeys the Stokes equation [18| 38|
V- (gop+ (1= ¢)os) + (dps + (1 = d)ps) g = 0. (2.4)

The mass conservations of the fluid melt and the solid matrix are given as

141, 18]
a(g’;(b) + V- (provy) =0, (2.5)
9es1=9) (1= d)v.) = 0. (2.6)

ot

Applying a Boussinesq approximation (constant and equal densities for non-buoyancy

terms) to ([2.5)—(2.6)), the total mass conservation of the mixture can be written as
V(g (1— 6)va) = 0. 2.7

The pressure jump between the melt and the matrix phases (the compaction relation)

is given by [193, [17]

(ﬁs _ﬁf> =——V v, (2.8)



The coupled Darcy-Stokes system (2.1)), (2.4)), (2.7) and (2.8) describes the

motion of the mantle flow (and glacier dynamics). The challenge is when ¢ = 0.
Since solid matrix always exists, the Stokes part is well-posed, but the Darcy part is

degenerate when ¢ = 0.

In this chapter, we shall focus on addressing the challenge of solving the linear
degenerate elliptic equation arising from the Darcy part of the system. With a change

of variables, (2.1) and a combination of (2.7)—(2.8]) become

V+d(¢)?(Vp-g) =0, inQ, (2.9a)
V-V+ep =¢rf, inQ, (2.9b)
¢p = ¢2gp, onTDp, (2.9¢)

where 0 C R%*™ dim = 2 or 3, is an open and bounded domain, I'p = 0 the
Dirichlet boundary, gp the Dirichlet data, n the outward unit normal vector, v =
¢(vy — v;) the Darcy velocity, p = py the fluid pressure, § = psg, f = B3Py, f1s = 1
and d(¢) = \/@ Though d is a function of ¢, we shall write d instead of d (¢) for

the simplicity of the exposition.

The boundary value problem has been studied in [7], where the scaled
velocity and pressure were proposed in order to obtain well-posedness. For numerical
implementation, a cell-centered finite difference method [8] and a mixed finite element
method [7] have been studied. The results showed that the numerical schemes are
stable and have an optimal convergence rate for smooth solutions. However, these

schemes are low order accurate approaches.

The main goal of this chapter is to develop a high-order HDG scheme for
the linear degenerate elliptic equation . In section we briefly discuss the
scaled system for . In section , we derive the HDG formulation for the scaled
system based on the upwind HDG framework. The key feature is that we have
modified the upwind HDG flux to accommodate the degenerate regions. When the

porosity vanishes, the resulting HDG system becomes ill-posed because the upwind

10



parameter associated with the HDG flux disappears. To overcome the difficulty, we
introduce a generalized stabilization parameter that is an extension of the upwind
based stabilization parameter. It has positive values on the degenerate interfaces.
Next, we show the well-posedness and error analysis of the HDG system under the
assumption that the grid well matches with the intersection between the fluid melt and
the solid matrix. In section [2.4] various numerical results for the scaled system will
be presented to confirm the accuracy and robustness of the proposed HDG scheme.

Finally, we conclude the chapter and discuss future research directions in section [2.5

2.2 Handling the degeneracy

Let (-, ), be the L? inner-product on €, and (-, ), be the L? inner-product
on 9. We denote the L? norm by |||, = (-, )é on 2 and by [|-]|5q = (-, )gﬂ on 0.
We also define the weighted L? norm on 9Q by ||-|5q, . = (|7, )gg = ([o0 |7‘|(')2d$)%.
For any s # 0, we denote the H* (D)-norm as [|-[|, p, for example, H'H%,BQ is the norm

of Hz (09).

2.2.1 The scaled system

When the porosity becomes zero, the system (2.9) degenerates. However, we
can still investigate how the solutions behave as the porosity vanishes. According to

[7], a priori energy estimates for the system (2.9)) read as

a5l + 022

V9 < e (llanll g + lglla + 171l) - (210)

For some constant ¢ > 0. Note that we may lose control of the pressure p as the
porosity approaches zero. This is because the fluid pressure p is not defined in the

solid regions.

To have the control of the pressure, following [7], we define the scaled velocity

11



and the scaled pressure as u = d~'v and p = (b% P, respectively.
The system (12.9) becomes

u+ dv (¢*%p> —dg,  inQ, (2.11a)
¢IV - (du)+p = f, inQ, (2.11b)
p=gp, onlp. (2.11c)

Here, we interpret the differential operators in (2.11)) as

1 1 3 1
AV (¢72p) = —50~2dVep+ ¢~2dVp, (212)
¢ 2V - (du) = ¢ 2Vd-u+ ¢ 2dV - u, (2.13)
where we assume that
¢ 2d € L™(9), (2.14a)
¢2Vd € (L®(Q))4™, (2.14b)
¢~ 2dV ¢ € (L®(Q))4m. (2.14c)

With the assumption (2.14]), the scaled system does not degenerate. If the

porosity vanishes, then d(¢) = 0, which leads to u =0 and p = f.

The energy estimates for the scaled system (2.11)) read as

lellg +11pllg + |63 - ()| < e (lgnl, b0 + I1d8llo+ 1fl0),  (215)

for some constant ¢ > 0 [7]. We clearly see that we have control of the scaled pressure

p even when the porosity becomes zero.

2.2.2 Upwind-based HDG flux

With some simple manipulation, the scaled system (2.11]) can be rewritten as
u— ¢ IVdp+ V- (gb-%dpj) dg, in Q, (2.16a)

%¢—3dv¢-u+p+v- (gff%du) —f Q. (2.16D)

12



We cast the scaled system (2.16)) into the conservative form
V- -Fr)+9r=£f inQQ, (2.17)

where we have defined the scaled velocity u := (uy, u9, u3), the solution vector r :=

(uy, us, ug, p), the source vector f := (dgy, dgs, dgs, f), the flux tensor

p 0 O
Fim (P, FFy) =F(r) =g ta| ¥ 2 Y (2.18)
: s ,I's) : 0 0 P .
u;y U2 Us
and
—¢p32d
A 1
. P oy 2.19
J 0 0 1 —¢25d (2.19)
_3 194 _3 106 _3 .94
3072d5E 50T dE oTidy 1
We define the normal vector n := (ny, ng, n3) and the flux Jacobian
, 0 0 0 m
OFy, _1 0 0 0 ng
A=) mgr=07d| o o o | (2.20)
k=1
ny Mo N3 0
which has four eigenvalues (—qﬁ_%d, 0,0, qb_%d) and distinct eigenvectors
—n1 —MNo —ns3 s
. D) . 1 . 0 - Mo
W1 = g ,W2 = 0 ,W3 = ny s and W4 = ns (221)
1 0 0 1

The system ([2.17]) can be considered as a steady state hyperbolic system [205].
Finally, following the upwind HDG framework in [30] we can construct the upwind

HDG flux with scalar p and vector u trace unknowns as

nip i (p+ (u—1)-n)

F(E)-n=g¢2d Zzg =) -n+ M|(r— 1) = ¢ 2d Ziggigﬁ:ﬁ;ﬁ; :
a-n u-n-+(p—p)

(2.22)
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where © = (Uy, U9, U3, p), |A| := W|D|W ™! D is the diagonal matrix of eigenvalues of
Wi, Wy, W3 and Wy, and W is the matrix of corresponding eigenvectors. Following
[30], we can compute - n as a function of p, and hence & - n can be eliminated. The
upwind HDG flux can be then written in terms of p as

mp

F#)-n=¢2d Zzg . (2.23)

u-n-+(p—p)

2.3 HDG formulation

2.3.1 Finite element definitions and notations

We denote by €, := UYe K; the mesh containing a finite collection of non-
overlapping elements, K, that partition Q. Here, h is defined as h := max;c(,.. v,y diam (K).
Let 0§, := {OK : K € Q,} be the collection of the boundaries of all elements. Let
us define &, 1= €% U €7 as the skeleton of the mesh which consists of the set of all
uniquely defined faces/interfaces, where €9 is the set of all boundary faces on 9, and

o = &\ &7 is the set of all interior interfaces. For two neighboring elements K+ and
K~ that share an interior interface e = K+NK~, we denote by ¢= the trace of the solu-
tions on e from K*. We define n~ as the unit outward normal vector on the boundary
0K~ of element K, and n™ = —n~ the unit outward normal of a neighboring el-
ement K. On the interior interfaces e € €9, we define the mean/average operator
{{v}}, where v is either a scalar or a vector quantify, as {{v}} := (v- +v*) /2, and
the jump operator [v - n] := v -n* +v~-n~ On the boundary faces e € €2, we define

the mean and jump operators as {{v}} :=v, [v]:=v.

Let P* (D) denote the space of polynomials of degree at most k on a domain

D. Next, we introduce discontinuous piecewise polynomial spaces for scalars and

14



vectors as

Vi () = {v e L* () : v|, € P*(K),VK € Q4 },
A (&) = {X e L (&4) : A, € PF(e), Ve € &},
Vi () = {v € [L ()] : v, € [PF(E)]" VK € i},

Ay (En)i={Xe [L*(EN]" : A, € [PF(e)]" Ve € &}

and similar spaces V}, (K), Ay (e), V, (K), and Ay, (e) by replacing €2, with K and
&, with e. Here, m is the number of components of the vector under consideration.

We define the broken inner products as (-, -)q. = > xeq, () and (-, 1) 5q, =

ZaKeth (*,)or» and on the mesh skeleton as (-, '>8h = Eeeﬁh (-,-),. We also define

: 2\3 2 \3
the associated norms as [|-||g, = (ZKEQh %) % [llaq, = (ZKth |1l5%) 7, and
1
3

20, -

. 2
the weighted norm [|[|,q, . = (ZKGQh \|.||3K,T) (recall [|-[l .. =

2.3.2 Weak form

From now on, we conventionally use u®, p° and p°¢ for the exact solution while

u, p and p are used to denote the HDG solution.

Unlike the DG approach, in which p on an interface is computed using infor-

mation from neighboring elements that share that interface, i.e.,

b= luenl+ (o (2.24)

the idea behind HDG is to treat p as a new unknown. Testing (2.16|) or (2.17)) with
(v, q) and integrating by parts we obtain the local solver for each element by replacing

the flux (F-n, (v, q)),, with the HDG numerical flux <§" n, (V,q)>a . The local
K

15



solver reads: find (u,p,p) € Vi(K) x V,(K) x Ap(OK) such that

(u,v), — (qﬁ_%Vdp, V) p

_ (¢—%dp, V. V>K n <¢—%dp,v - n>8K = (dg, V), (2.25a)
(P, @) + (%cb‘gdw - u,q)K — ((b‘%du, Vq)K
+(¢Hd@n+(p-p).a) =k (2:25b)

for all (v,q) € Vi(K) x V,(K).

Clearly we need an additional equation to close the system since we have
introduced an additional trace unknown p. The natural condition is the conservation,
that is, the continuity of the HDG flux. For the HDG method to be conservative, it
is sufficient to weakly enforce the continuity of the last component of the HDG flux

(2.22) on each face e of the mesh skeleton, i.e.,
<[{q§’%du n+ ¢ id(p —13)]] ,q> —0, Vee &l (2.26)

On degenerate faces, where ¢ = 0, the conservation condition ([2.26]) is trivially
satisfied. These faces would need to be sorted out and removed from the system.

However, this creates implementation issues. To avoid this, we introduce a more

general HDG flux

2 dp

EFRR
Fon:= n2¢dp : (2.27)

n3¢~2dp

¢ 2du - n+7(p—p)

where 7 is a positive function on the edge. For example, we can take 7 = gb’%d for
non-degenerate faces (i.e., faces with ¢ > 0), and for degenerate ones (i.e. faces with

¢ = 0) we take 7 =y > 0. Alternatively, we can take a single value 7 = O (1/h) over

the entire mesh skeleton. We shall compare these choices in Section 2.4, With this
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HDG flux, the conservation condition ([2.26)) becomes

<[[¢—%du n+7(p —p)]] ,q> —0, Yee&, VYieAnle) (2.28)

e

On the Dirichlet boundary I'p, we impose the boundary data gp to p through the

weak form of

<7—ﬁ7 CDFD = <7_gDa C_?)FD ) v{j € Ah(rD) (229)

With the general HDG flux ([2.27) and Dirichlet boundary condition ([2.11¢),

the local equation ([2.25) now becomes

(u,v), — ((ﬁ’%Vdp, V)K — (cﬁ’%dp, V- v)K

+ <¢’5dp, V- n>aK\FD + <¢7ng, V- n>aKmrD = (dg, V), (2.30a)
1, 3 1
(P @) + (5425 dV¢ - u,q)K - (cb du, Vq)K
H{odun o —p)a)
+(¢o7tduntro—gp)q) = (f.q)x- (2.300)

The HDG comprises the local solver (2.30)), the global equation ([2.28) and
the boundary condition (2.29)). By summing (2.30) over all elements and (2.28)) over

the mesh skeleton, we obtain the complete HDG system with the weakly imposed
Dirichlet boundary condition (2.29): find (u,p,p) € Vi(Q) X Vi(Q) X An(€p) such

17



that

(W,v), — ((p*%wp, v) . (¢*%dp,vv) n <¢’%d]§,v . n>

Qn Qp O \I'p
= (dg,v)gq, — <gD,¢_5dv : n>FD . (2.31a)
(0.0)g, + (26 3av (‘éd v)
P:4)a, + | 5 ¢-u,q o ¢~ 2du, Vg o

+ <<b 2du-n+7(p—p) ,q>mh\FD
+ <¢>_%du ‘n+17p, q>F =(f,0)q, +{T90, ), , (2.31D)

—([¢7tdun+r0-p)].q)

+ <Tﬁ7 qA>FD = <TgD7 qA>FD 5 (231C)
En\I'p

for all (v,q,q) € Vp(Q) X Vi () x Ap(Er). Note that this form resembles the
weak Galerkin framework [216] 217, 232] 148]. Indeed, HDG and the weak Galerkin

method are equivalent in this case.

The HDG computation consists of three steps: first, solve the local solver for
(u,p) as a function of p element-by-element, completely independent of each other;
second, substitute (u,p) into the global equation (2.28)) to solve for p on the mesh

skeleton; and finally recover the local volume unknown (u,p) in parallel.

2.3.3 Well-posedness

Let us denote the bilinear form on the left hand side of (2.31)) as a ((u, p,p) ; (v, q, 1))
and the linear form on right hand side as ¢ ((v, g, pt)). We begin with an energy esti-

mate for the HDG solution.

Proposition 1 (Discrete energy estimate). Suppose gp € L*(T'p), f € L* (), and
d(p)g € L* (Qy). If 7 = O(1/h), then it holds that

. A 2 2 12 2 12
a((w,p,p); (w,p,p)) = |ully, +lple, + 120, + lIpllr, - + P = Pllog,\rpr (232)

< c(llgnlt, .+ Igll3, + 1713, (2.33)
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for some positive constant ¢ = ¢ (¢, d, 7, h, k). In particular, there is a unique solution

(u,p,p) to the HDG system ([2.31)).

Proof. We start with the following identities

. (qs—%wp, V)K - (¢—%dp, v V)K __ (p, IV - (dv))K, (2.34a)
@qb—%dws “u, q)K - <¢—%du, vq)K
- <¢*%v - (du) ,q>K . <q§’%du : n,q>aK. (2.34b)

Now taking v =u, ¢ = p, and ¢ = p in (2.31)) and ([2.34), and then adding all
equations in (2.31)) gives

. . 2 2 12 2 112
a((u,p,p); (u,p,p)) = HuHQh + HpHQh + ||p||FD,T + HPHFD,T + llp —pHth\FD,T =

- <9D,¢*%du : n>r —{T9p,P)p, + {790, D)p, + (dg,0)q, + (f,P)q, >

D

which, after invoking the Cauchy-Schwarz and Young inequalities, becomes

1 2 €2 12 1 ~ 112 €3 2 1 2 €4 2
o il o 5 o= Bl 5 3, + 5 il + 5 11, + 5 el

ot
2e1

€1

a((w,p.p); (u.p,p)) < = |lgpli,, - + 5 lullf, -

which yields the desired energy estimate after applying an inverse trace inequality
(c.f. Lemma (2.53))) for the second term on right hand side and choosing sufficiently

small values for €1, g9, 3 and &4. ]

Since the HDG system ([2.31)) is linear and square in terms of the HDG variables
(u,p,p), the uniqueness result in Proposition (1| implies existence and stability, and

hence the well-posedness of the HDG system.
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Lemma 1 (Consistency). Suppose (u€, p®) is a weak solution of (2.11]), which is suffi-
ciently regular. Then (ue, e, | Sh) satisfies the HDG formulation (2.31]). In partic-

ular, the Galerkin orthogonality holds, i.e.,

a ((ue - u7pe - D pe|3h - ]3) ) (V7 qa:u)) = 07 V(V, q, é) € Vh(Qh) X Vh(Qh) X Ah((c—:h)
(2.35)

The proof is a simple application of integration by parts and hence omitted.

2.3.4 Error analysis

We restrict the analyis for simplicial meshes and adopt the projection-based
error analysis in [48]. To begin, we define p¢ as the trace of p°. For any element
K, e € &, e C OK, we denote by P (ue,pe,pA@) = (IP’ue,IP)pe,Hﬁe), where II is the

standard L?-projection, a collective projection of the exact solution. Let us define

el i=u—Pu, €":=u-Pu (2.36)
I ._ e e h .__ e

g, =p" —Pp°, &) i=p—Pp, (2.37)

ebi=p —TIpe, &hi=p—T0pF, (2.38)

and then the projections Pu® and Pp® are defined by

(el V)k =0, ve[Pr(K)", (2.39a)
(e, )k =0, g€ Pra(K), (2.39b)
<a€{l ‘n+ TE;, (j>e =0, qe€Pxle), (2.39¢)

for each K € Q,, e € &, and e C 0K. Here a, to be defined below, is a positive

constant on each face e of element K.
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Lemma 2. Let 1 := 7/a.. The projections Pu® and Pp® are well-defined, and

Hs +h Hs < ch* ! HuerH,K + CthTI*( HperH,K )

ul ul
ull g ull g =

hk+1 . kb1 .
<o IVou ||k,K+Ch [F2 ||k+1,K’

o
+hH€P LK — = rmax
K

Il

max

where 7% := max Tg|,, and T4 = TK|3K\6*, where e* is the edge on which 75 is

maximuin.

The proof can be obtained from [4§].

Since the interpolation errors efl,&‘p{ and 5115 have optimal convergence order,

by the triangle inequality, the convergent rates of the total errors e, = €/, + e g, =

5£ + a‘z, and €5 = &?II; + 5]’5‘ are determined by those of the discretization errors e, 51’,}

and gg. We use an energy approach to estimate the discretization errors. To begin,

let us define

v = lletllg, + llenlig, + leplln, . + leblly, . + lleh —<all,
Eh = [|€u Qh+ p Qh+ b FD77'+ p FD77'+ “p T p O \I'p,7

Lemma 3 (Error equation). It holds that

2 _ (i1 o, h -5 -1 b, _ I -1 h
gh - <¢ 2€p7v (dsu)>ﬂhj+\<¢ 2d&?pvsu n>39h\FDl <d€uvV ((b 2€p))QE
A B <
_1 I h h -1 I h
+\<<¢ 2d — a) €y M, E) — €ﬁ>89h\rD + <(qz5 2d — a> €y - n,5p>FDJ (2.40)
D

Proof. The proof is straightforward by first adding and subtracting appropriate pro-
jections in the Galerkin orthogonality equation (2.35]), second using the definition of
the projections (2.39), and finally taking v =&, ¢ = ¢}, and § = .. O

The next step is to estimate A, B,C' and D. To that end, we define o on faces

of an element K as

1 otherwise

= { ¢73d if 972d £ 0 , (2.41)
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where gb_%d is the average of (b_%d on the element K.

Lemma 4 (Estimation for A). There exists a positive constant ¢ = ¢ (¢, d) such that

|A| < cHs

pllo, lle

ul
u Qh

Proof. We have

|A] < (8;, ~3Vd - sﬁ) + <5£, “2dV - sﬁ)
Qh Qh
Bounding the first term is straightforward:
7 -1 h -1 I h
(shomiva-et), | <elomwd] _lltl, b,

For the second term, we have

el ¢ 24V - el
(<5 )

(g{,, <¢*%d - qb’%d) v eﬁ)

< ch el [[¢Ha

Qp Qp

oIl

1 h
leallg, -

< cllepllg, [|od

‘Wl"”(ﬂh)
where we have used (2.39b)) in the first equality, the Cauchy-Schwarz inequality and
the Bramble-Hilbert lemma (see, e.g., [29]) in the first inequality, and Lemma [§] (in

the appendix) in the last inequality. Here, W1 is a standard Sobolev space. ]

Lemma 5 (Estimation for B). There exists a positive constant ¢ = ¢ (¢, d) such that

[BI < ch? [l o, et -

Proof. We have

|B| = Heﬁllaﬂh

e}, qb_%d—gb*—%d el m
(e ( Jein)

< lletllyg, |62 - 07%d

O \I'p ‘LOO(OQ;L)

< ch HW%d

‘Wl,oo(ﬂh) HgéHaﬂh HgflllHth )
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where we have used the property of L2-projection IIp¢ in the first equality, the Cauchy-
Schwarz inequality in the first inequality, and the Bramble-Hilbert lemma in the last
inequality. Now the best approximation of IIp¢ implies Hsé” o0, < Haé” o0, and ([2.56))

gives the result. O

Lemma 6 (Estimation for C'). There exists a positive constant ¢ = ¢ (¢, d) such that

€< clleullg, =g, -

Proof. We have
C] <

+ (sfl,qj’%dVeZ)Q ‘
h

<%¢3dv¢ el e’;>

Qh

The rest of the proof is similar to that of Lemma [4| by using ([2.39al). O

Lemma 7 (Estimation for D). There exists a positive constant ¢ = ¢ (¢, d) such that

|D’ < Cﬁ Hefluaﬂhﬁ_l <H€Z o ggHth\FD,q— + HEZHFDJ) ’

where

1 otherwise

5::{ h if ¢ 2d£0 VK e,
Proof. Employing similar techniques as in estimating B, we have
-1 I h h h
Lo e TN = P (e B £ W
Now using the definition of « in (2.41)) and the Bramble-Hilbert lemma,

bl <ot <05

L (09, L>(Qy)

and this ends the proof. m

Now comes the main result of this section.
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Theorem 1. Suppose u® € [H**! (Qh)}dim and p¢ € H* (Qy,). Then

lell, + llezllg, +llzlle,, - + leslle, - + 1l = 2llan, .-

R if pm2d £0 VK €

< c( u® + ||p® > X
| ||k+1,Qh [F2 ||k:+1,Qh { BEHE otherwise )

where ¢ = ¢ (¢, d, T) is a positive constant independent of h.

Proof. Using the results in Lemmas and the Cauchy-Schwarz inequality, we have

1
&2 < c(|leplle, + B Ietllne, + lletlle, + Bleklog, 1) >
1
(Ilealls, + bl + 1k = <bllngy ey + k], )
1
< c(lleslle, + B0l 0, + letlla, + Bllehllon, )" x En (2:42)

The estimate for ||5 and Hsfl”;h can be obtained directly from Lemma . Now

Al
rllq,
using Lemma [9in the appendix and approximation properties of Pu®, Pp® in Lemma

2] gives
letl0, < e (I9etllor 27 el ) Izl
K

1 e e 2
< ch? T max —— [0l 0, + 12 Nh10, ) - (2.43)
K TK

Similarly we can obtain

1 2
< ch?kt1 m}e{nx; (”ue||k+1,§2h + m[?XTI*( ||pe“k+1,9h) : (2.44)

leills
Eu 89}“7’71 i

The assertion is now ready by combining the inequalities (2.42])—(2.44)), the definition

of 3, and the Cauchy-Schwarz inequality. O

Remark 1. When the system is degenerate, but the exact solution is piecewise smooth,
the convergence rate is sub-optimal by half order. The above proof, especially inequal-

ity (2.44)), shows that this suboptimality may not be improved by using 7 = O (h™1).
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The reason is that the gain by half order from maXK% is taken away by the loss
of half order from maxg 7j. This will be confirmed in our numerical studies of the

sensitivity of 7 on the convergence rate in Section [2.4.4]

2.4 Numerical results

In this section, we present numerical examples to support the HDG approach
and its convergence analysis. For a non-degenerate case, we consider a sine solution
test, while for degenerate cases, we choose smooth and non-smooth solution tests [7].
We take the upwind based parameter 7 = qb’%d for a non-degenerate case, and the

generalized parameter

__ ¢~2d for ¢ >0,
| 1/h for ¢ =0

for degenerate cases. We also conduct several numerical computations to understand
if the stabilization parameter 7 can affect the accuracy of the HDG solution and its
convergence rate. We assume that porosity ¢ is known and d = ¢ in all the numerical
examples. The domain 2 is chosen as Q = (0, 1)%™ or Q = (—1,1)%™ which is either
uniformly discretized with n, rectangular tensor product elements in each dimension

dim

(so that the total number of elements is N, = n¢

), or N, triangular elements.
Though we have rigorous optimal convergence theory for only simplicial meshes (see
Theorem [I]), a similar result is expected for quadrilateral /hexahedral meshes (see the
numerical results in the following sections). Since rectangular meshes are convenient

for all problems in this paper with simple interfaces between the fluid melt and the

solid matrix, we use rectangular meshes hereafter, except for the test in Section [2.4.1]

2.4.1 Non-degenerate case

We consider a non-degenerate case on 2 = (0,1)? with the porosity given by

¢ = exp(2(z + y)).
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We choose the pressure to be p® = exp(—(z + y)) sin(m,mx) sin(m,my).

The corresponding manufactured scaled solutions are given as

p° = sin(my,mz) sin(m,my), (2.45a)
us = exp(x + y) sin(my,my) (sin(mymr) — mym cos(mymz)) , (2.45Db)
uy, = exp(z + y) sin(m,mz) (sin(my,my) — mym cos(my,my)) . (2.45¢)

Here, we take m, = 2 and m, = 3.

1¢ 1
0.8 ¢ ] 0.8 r
0.6 ] 0.6
04 | 1 04 |
0t — 0
0 05 1 0 05 1
(a) Rectangular elements (b) Triangular elements

Figure 2.1: Coarse grids for non-degenerate case with (a) rectangular and (b) trian-
gular elements.

Table shows h-convergence results in the L?(Qj)-norm using a sequence
of nested meshes with N, = {82,322 128?} for rectangular The corresponding coarse
meshes are shown in Figure 2.1 We observe approximately the optimal convergence

rates of (k + 1) for both scaled pressure p and scaled velocity u for both mesh types.
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Table 2.1: Non-degenerate case: the results show that the HDG solutions for scaled
pressure p and scaled velocity u converge to the exact solution with optimal order

of k + 1 for both triangular and rectangular meshes. The upwind based parameter
T = qb_%d is used.

Rectangular elements Triangular elements

e | I ple, Il |, I pla, el
error  order  error  order error  order error order

0.031 | 3.6E-02 — 8.5E-01 1.4 |0.140 6.5E-01 — 5.0E+00  —

1 0.016 | 1.2E-02 1.6 29E-01 16 |0.070 1.8E-01 1.8 14E+00 1.8
0.008 | 3.4E-03 1.8 88E-02 1.7 |0.035 4.7E-02 1.9 3.8E-01 1.9
0.031 | 1.1E-03  — 2.7TE-02  — 0.140 9.4E-02 — 8.3E-01 —

9 0.016 | 1.6E-04 2.7 43E-03 2.7 |0.070 1.2E-02 29 1.1E-01 3.0
0.008 | 2.2E-05 2.8 6.2E-04 28 |0.035 1.6E-03 3.0 1.4E-02 3.0
0.031 | 2.0E-05 — 47E-04 - 0.140 89E-03  — 6.7E-02 —
3 0.016 | 1.4E-06 3.8 3.5E-05 3.8 |0.070 59E-04 39 4.6E-03 3.9
0.008 | 9.5E-08 3.9 24E-06 3.8 |0.035 3.7TE-05 4.0 29E-04 4.0
0.031 | 3.3E-07  — 8.8E-06 — 0.140 8.0E-04  — 7.3E-03 —
4 0.016 | 1.2E-08 4.8 3.2E-07 4.8 |0.070 2.6E-05 5.0 23E-04 5.0
0.008 | 3.9E-10 4.9 1.1E-08 4.8 |0.035 8.1E-07 5.0 7.2E-06 5.0

2.4.2 Degenerate case with a smooth solution

Following [7] we consider the smooth pressure of the form p® = cos(6zy?) on

Q= (—1,1)? and the following degenerate porosity

6=1"
@+ 3y + 3)%, otherwise.

r<—2ory< -3

(2.46)

We note that ¢=2 V¢ € [L®(Q)])? for a > 2, and we take a = 2. The one-phase region
is denoted as ©; = {(z,y) : © < =2 ory < —3} with ¢ = 0, and the two-phase
region is given by Qs := {(z,y) : =2 <z < land — 3 <y < 1} with ¢ > 0. We

define the intersection of these two regions by 945 = Q1 N Qy. In Qy, the exact
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scaled pressure and scaled velocity vanish. In €y, the exact solutions are given by

3) 2 3\
P = <x + 71) (y + Z) cos(6zy?), (2.47a)
. ) 3 o 3 2a ‘ )
us =6y~ |+ 1 Y+ 1) sio (6zy?), (2.47b)
. 3 a 3 2a . )
u, = 12y |z + 1 Y+ 2 sin(6xy*). (2.47¢)

In Figure 2.2 are the contours of the pressure p and the scaled pressure p
computed from our HDG method using N, = 64? rectangular elements and solution
order k£ = 4. We observe that the pressure p changes smoothly in the two-phase region
s, but abruptly becomes zero in the one-phase region €2;. The sudden pressure jump
on the intersection €25 is alleviated with the use of the scaled pressure p.

1

1 1

0.8 08 08
0.6 06 06
0.4 04 0.4
0.2 02 0.2
0 0 0
0.2 0.2 0.2
-0.4 0.4 0.4
0.6 -0.6 -0.6
0.8 0.8 0.8
5 - -1

-1 -0.5 0 0.5 1

N
\

i
HU

\
WW

|
H

) Pressure p (b) Scaled pressure p

Figure 2.2: Degenerate case with a smooth solution: (a) contour plot of the pressure
p field and (b) contour plot of the scaled pressure p with N, = 64> and k = 4. The
pressure field changes smoothly in the two-phase region 25, but suddenly becomes
zero in the one-phase region €2;. The abrupt change near the intersection 215 between
the one- and two-phase regions is alleviated with the use of the scaled pressure p.

For a convergence study, we use a sequence of meshes with n, = {16, 32,64, 128}
and with £ = {1,2,3,4}. Here we choose an even number of elements so that the

mesh skeleton aligns with the intersection 9§2;5. As can be seen in Figure 2.3] the
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convergence rate of (k + %) is observed more or less for both the scaled pressure p
and the scaled velocity u, and this agrees with Theorem [I| for the degenerate case

with a piecewise smooth solution.

10°¢ k=t 1027

error in L2-norm
-
o
A

Figure 2.3: Degenerate case with a smooth solution: convergence study for (a) the
scaled pressure p field and (b) the scaled velocity u field. The (k + %) convergence
rates are obtained approximately for both the scaled pressure p and the scaled velocity
u.

2.4.3 Degenerate case with low solution regularity

Similar to [7], we choose the exact pressure to be p® = y(y — 3z)(z + 2)” with
B =—%or — 3, and the porosity ¢ is defined in (2.46). Similar to Section [2.4.2] we

take o« = 2. The exact solutions then read

3 S+B8 3 «
p° =y(y — 3x) (x + Z) (y + Z) , (2.48a)

c=v(soeprs(er)) ()7 (1+2) e
u = (3 — 2y) (x + Z) v (y + z>2a : (2.48¢)

The pressure and the scaled pressure fields are simulated with N, = 64% and k = 4 for

the two different cases: § = —}1 and 8 = —% in Figure As can be seen from ([2.48)|)
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and Figure 2.4 that smaller 8 implies lower solution regularity. The pressure field with

b= —% is less regular than that with § = —2. For both cases, we also observe that

1
I
the pressure p fields become stiffer (stiff “boundary layer”) near the intersection at

r= —%, while the scaled pressure p fields are much less stiff.

08

06

T55 38

” Il

‘ulHUl”HuM :2

(c) p with B = -3 (d) p with g = -3

Figure 2.4: Degenerate case with low solution regularity: simulated with N, = 642
and k = 4 are (a) pressure p for B = —3, (b) scaled pressure p for 3 = —1, (c)
pressure p with f = _717 and (d) scaled pressure p for g = —%. The pressure field

with g = —% is less regular than that with g = —}1. In both the cases, the pressure

fields have low regularity near the intersection ;5.

When 3 = —1, the scaled pressure p and the scaled velocity u reside in H*2*~¢
for e > 0 [7]. In order to see how the HDG solution behaves for this case, we perform a
convergence study with n, = {16, 32,64, 128} and k = {1, 2,4,8}. As shown in Figure
[2.5] the scaled pressure p and the scaled velocity u converge to the exact counterparts
with the rate of about 1.25. Note that though our error analysis in Section [2.3.4
considers exact solutions residing in standard Sobolev spaces with integer powers, it
can be straightforwardly extended to solutions in fractional Sobolev spaces. For this
example, the convergence rate is bounded above by 1.25 — ¢ regardless of the solution
order. However, the high order HDG solutions are still beneficial in terms of accuracy,
for example, the HDG solution with £ = 8 is 4.5 times more accurate than that with

k= 4.

When g = —%, the scaled pressure p and the scaled velocity u lie in H% 7~

for e > 0 [7]. We conduct a convergence study with n. = {16,32,64,128} and
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Figure 2.5: Degenerate case with low solution regularity: a convergence study with
= —1 for (a) the scaled pressure p field and (b) the scaled velocity u field.

k=1{1,2,4,8}. Asshown in Figure , the convergence rate of about 0.75 is observed

for both the scaled pressure p and the scaled velocity u.

Similar to the case of § = —i, high order HDG solutions, in spite of more
computational demand, are beneficial from an accuracy standpoint. For instance, the

HDG solution with k = 8 is 2.5 times more accurate than that with £ = 4.

107 ¢ 10'f
£ 102 € 10} PP
= g
i L
£ £
5 5
510% 510"
1074 b : 102 b :
102 107" 102 107
h h
(a) Convergence of p (b) Convergence of u

Figure 2.6: Degenerate case with low solution regularity: a convergence study with
= —3 for (a) the scaled pressure p field and (b) the scaled velocity u field.
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2.4.4 Sensitivity of 7 for the degenerate case with smooth solution

In this section we assess numerically whether the sub-optimality in Theorem
is sharp. To that end, we consider the degenerate example with smooth solution in

Section [2.4.2] again here. Recall that the generalized parameter 7 is given by

[ ¢72d for ¢ >0,
7= { ' for 6= 0 (2.49)

We first compare the convergence rates for three different values of v, namely v €
{1/h,1,10}, and the numerical results (not shown here) show that the convergence
rates are the same and are sub-optimal by half order. For that reason we show only
the case when v = 1/h in the fourth column of Tables[2.2]and [2.3] in which we report

the convergence rates of p and u, respectively.

We now present convergence rates for the cases where we use a single value
for 7 over the entire mesh skeleton €,. We consider three cases: 7 = (1/h,1,10).
The convergence rates of p and u for these parameters are shown in the sixth, eighth,
and tenth columns of Tables 2.2] and 2.3l The results for 7 = 1 and 7 = 10 show
the convergence rate of about (k: + %) The cases with 7 = % initially have the
convergence rate of (k+ 1) for both the scaled pressure p and the scaled velocity
u, then approach the predicted asymptotic rate of (k + %) as the grid is refined. If
we look at the value of the errors at any grid level, the cases with 7 = 1/h have
the smallest errors compared to the other cases (including the cases with 7 given in
(2.49)). It could be due to the initial higher-order convergence and/or smaller error

constants. We thus recommend that 7 = 1/h should be used.

2.4.5 Enhance accuracy by post-processing

In this section, we explore the superconvergence property for the degenerate

elliptic equations. It is well-known that the HDG methods have a superconvergence
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Table 2.2: Degenerate case with a smooth solution: the errors [p® — pl|, and the
convergence rates for the scaled pressure. Four cases are presented: 7 given ([2.49)),
r=4%1 7=1and =10

ho

L h T:{f;h%d e = T=1 =10
error order error order error order error order
0.125 | 7.53E-01 - 1.75E-01 — 2.61E-+00 — 3.83E-01 —
1 0.063 | 2.19E-01  1.78 | 4.11E-02 2.09 | 4.81E-01 244 | 1.23E-01 1.64
0.031 | 7.32E-02 1.58 | 9.14E-03 2.17 | 1.42E-01 1.76 | 4.10E-02 1.58
0.016 | 2.40E-02 1.61 | 2.31E-03 1.99 | 5.00E-02 1.51 | 1.31E-02 1.64
0.125 | 1.00E-01 - 3.31E-02 — 1.64E-01 — 6.44E-02 -
9 0.063 | 1.82E-02  2.47 | 3.32E-03 3.32 | 3.28E-02 232 | 1.12E-02 2.53
0.031 | 3.08E-03  2.56 | 3.89E-04 3.09 | 6.32E-03 2.38 | 1.79E-03 2.64
0.016 | 4.91E-04 2.65 | 6.16E-05 2.66 | 1.15E-03 245 | 2.71E-04 2.72
0.125 | 1.02E-02 - 2.82E-03 — 1.82E-02 — 5.78E-03 —
3 0.063 | 8.53E-04 3.57 | 1.6bE-04 4.09 | 1.71E-03 3.42 | 4.68E-04 3.63
0.031 | 6.86E-05 3.64 | 1.10E-05 3.91 | 1.54E-04 3.47 | 3.63E-05 3.69
0.016 | 5.24E-06  3.71 | 8.46E-07 3.70 | 1.32E-05 3.55 | 2.69E-06 3.75
0.125 | 7.24E-04 - 2.45E-04 — 1.18E-03 — 4.61E-04 -
4 0.063 | 3.70E-05 4.29 | 7.20E-06 5.09 | 6.74E-05 4.13 | 2.30E-05 4.33
0.031 | 1.62E-06  4.52 | 2.17TE-07 5.05 | 3.29E-06 4.36 | 9.60E-07 4.58
0.016 | 6.56E-08  4.62 | 8.53E-09 4.67 | 1.51E-07 4.45 | 3.73E-08 4.69

property [51], i.e., the post-processed solution p* converges faster than p. For the

standard elliptic system, a post-processed solution p* has (k 4 2) convergence rate.

For degenerate equations, the convergence rate, as shown in the numerical results,

is dictated by the regularity of the degenerate solutions. For that reason, it is not

meaningful to post-process the solution over the entire domain §2. However, over sub-

domains with positive porosity, the solution has higher regularity and thus the post-

processed counterpart is expected to exhibit super-convergence. To this end, we seek

a new approximation p* € P*¥1(K) by minimizing Hu — %qﬁ’%dvm) + ¢’%de*
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Table 2.3: Degenerate case with a smooth solution: the errors [[u® —ull,, and the

convergence rates for the scaled velocity. Four cases are presented: 7 given ([2.49)),

T =

1

7=1and 7 = 10.

ho

-

o |l me = r=1 r=10
error order error order error order error order
0.125 | 1.25E+01 — 7T42E+00 - 1.52E+01 - 1.03E+01  —
1 0.063 | 5.71E+00 1.13 | 2.23E+00 1.73 | 7.36E+00 1.04 | 4.48E+00 1.20
0.031 | 2.39E+00 1.26 | 5.66E-01 1.98 | 3.33E+00 1.14 | 1.78E4+00 1.33
0.016 | 9.37E-01  1.35 | 1.51E-01 1.91 | 1.45E+00 1.20 | 6.66E-01  1.42
0.125 | 2.91E+00 — 1.66E+00  — 3.6bE+00  — | 2.36E+00 —
9 0.063 | 6.00E-01 228 | 2.37TE-01 2.80 | 836E-01 2.13 | 4.57E-01 2.37
0.031 | 1.15bE-01 238 | 3.58E-02 2.73 | 1.82E-01 2.20 | 8.25E-02 2.47
0.016 | 2.08E-02 247 | 595E-03 2.59 | 3.77E-02 227 | 1.41E-02 2.55
0.125 | 2.55E-01 — 1.24E-01 — 3.60E-01 — 1.88E-01 —
3 0.063 | 2.64E-02 3.28 | 949E-03 3.71 | 4.00E-02 3.17 | 1.89E-02 3.32
0.031 | 2.54E-03  3.37 | 6.95E-04 3.77 | 4.23E-03 3.24 | 1.76E-03  3.42
0.016 | 2.32E-04 346 | 544E-05 3.68 | 4.24E-04 3.32 | 1.57E-04 3.49
0.125 | 2.95E-02 — 1.71E-02 — | 3.615E-02 — 2.44E-02 —
4 0.063 | 1.72E-03  4.10 | 6.53E-04 4.71 | 2.348E-03 3.944 | 1.34E-03 4.18
0.031 | 8.59E-056 4.32 | 227TE-05 4.84 | 1.321E-04 4.152 | 6.36E-05  4.40
0.016 | 3.99E-06 4.43 | 8.74E-07 4.70 | 6.999E-06 4.238 | 2.81E-06 4.50
over an element K, which leads to the following local equations:
1
(Vp*,Vw), = — (gb%d_lu, Vw)K - 3 (ng_Ingp, Vw)K , (2.50a)
P Dg =@ Vg, (2.50b)

for all w € PH¥F1(K). Since the resulting linear system has k + 2 equations and
any one of (2.50a)) is a linear combination of the others, we remove one of the rows
of the linear system of (2.50al) in order to obtain a unique solution. Similarly, we

utilize the post-processing technique for the unscaled fluid pressure p. We seek a new
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approximation p* € P¥*1(K) by minimizing |ju — dV§*||* over an element K, which

leads to the following local equations:

(VP", Vw), = — (d"'u, Vw) ., (2.51a)

(7" Dk = (. Dk, (2.51b)

for all w € PHI(K).

Table shows h-convergence results for the non-degenerate case in Section
with (mg, m,) = (1,2) using a series of nested meshes, N, = {82,162, 32%}, for
rectangular elements. We observe that both the post-processed scaled pressure p* and
the post-processed fluid pressure p* converge faster than the scaled pressure p and
the fluid pressure p. The convergence rates of both the p* and p* are approximately

(k +2), except when k = 1.

Next, we examine if the post-processing technique can be utilized in a degen-
erate case. To address the question, we first define a subdomain Q C Q, which is a
two-phase region and is “far” enough from the degenerate regions so that the solutions
are less affected by the degeneracy. We perform several convergence studies for the
degenerate cases in Section and Section [2.4.3| using a sequence of nested meshes,

N, = {162,322 642}, for rectangular elements.

Table shows h-convergence results for the degenerate case with the smooth
solution in Section over Q € [—0.5,1]2. In general, both the post-processed
solutions p* and p* converge faster than the solutions p and p. When k > 1, the
convergence rates for the post-processed solutions p* and p* are (k + %), one order

faster than p and p.

For the degenerate case with low solution regularity in Section 2.4.3 the HDG

solution already attains the maximal convergence order. It is thus not meaningful
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to post-process the solution over the whole domain as there will be no gain in the
convergence rate. Instead, we conduct post-processing studies over ) € [—0.5,1])% and
Qe [0, 1]% where the solution is expected to be more regular, and hence allowing the

post-processing procedure to achieve a better convergence rate.

In Table with g = —%, the convergence rate for the scaled pressure p
is approximately (k 4+ 1) when k£ < 2, but it starts to degrade to 2.3 as the order
k increases. This numerically implies that the exact solution p¢ over Q resides in
H?5=¢ (Q) (i.e., it has a higher regularity than over the whole domain). When the
convergence rate of p reaches the maximum possible, there is no improvement for the

post-processed counterpart.

Another observation is that the post-processed solution over the sub-domain
still provides a benefit in terms of accuracy to a certain extent. In Table [2.6] and [2.7]
the post-processed scaled pressure p* has a smaller error than the scaled pressure p.
However, the difference between p* and p becomes negligible as the solution order
increases. A similar behavior is also seen for the post-processed fluid pressure p* and

the fluid pressure p.

2.4.6 Non-degenerate case in three dimensions

We consider finally a non-degenerate case on € = (0,1)® with the positive

porosity ¢ = exp(2(z +y + z)). Let the pressure

p° = sin(mymx) sin(my,my) sin(m,mz) exp (—(x +y + 2)) .
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Table 2.4: Non-degenerate case: the errors and the convergence rates for the scaled
pressure p, the post-processed scaled pressure p*, the fluid pressure p, and the post-
processed fluid pressure p*. The post-processed solutions show asymptotically (k + 2)
convergence rates for k > 1.

Eon ¢ — pll, I ="l 1% — Bll, 17 =11l

error order error order error order error

order

0.1250 | 1.508E-01 — 5.852E-02 — 6.476E-02 — 2.822E-02
1 0.0625 | 5.014E-02 1.589 | 1.245E-02 2.233 | 2.005E-02 1.692 | 5.928E-03
0.0312 | 1.497E-02 1.743 | 2.647E-03 2.234 | 5.706E-03 1.813 | 1.253E-03

0.1250 | 1.337E-02 — 5.001E-04 — 4.612E-03 — 1.970E-04
2 0.0625 | 2.053E-03 2.703 | 3.386E-05 3.884 | 6.805E-04 2.761 | 1.174E-05
0.0312 | 2.912E-04 2.818 | 2.275E-06 3.896 | 9.361E-05 2.862 | 7.182E-07

0.1250 | 6.595E-04  — 1.263E-05 — 2.608E-04  — 3.761E-06
3 0.0625 | 4.815E-05 3.776 | 4.484E-07 4.816 | 1.819E-05 3.842 | 1.232E-07
0.0312 | 3.289E-06 3.872 | 1.523E-08 4.880 | 1.209E-06 3.911 | 3.987E-09

0.1250 | 3.109E-05 — 4.289E-07  — 1.083E-05 — 1.194E-07
4 0.0625 | 1.113E-06 4.804 | 7.568E-09 5.825 | 3.731E-07 4.859 | 1.940E-09
0.0312 | 3.762E-08 4.886 | 1.276E-10 5.890 | 1.231E-08 4.922 | 3.110E-11

2.251
2.242

4.068
4.031

4.932
4.950

5.944
5.963

The corresponding manufactured scaled solutions are given as

¢¢ = sin(m,mx) sin(m,my) sin(m,mz), (2.52a)
ul = exp(z + y + z) sin(my,my) sin(m,nz) (sin(mymz) — my,m cos(m,mx)), (2.52b)
uf, = exp(x + y + z) sin(m,mx) sin(m,mz) (sin(myry) — mym cos(mymy)), (2.52c)
ul = exp(x + y + 2) sin(m,mx) sin(my,my) (sin(m,nz) — m,mcos(m,mz)). (2.52d)

Table shows h-convergence results in the L?(;)-norm using a sequence of
nested meshes with n, = {8,12,16,20}. Here we take m, = m, = m, = 1 and use

the upwind based parameter 7 = gzﬁ_%d. We observe the convergence rates between

(k: + %) and (k + 1) for both scaled pressure p and scaled velocity u. Recall that the
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Table 2.5: Degenerate case with a smooth solution: the errors and the convergence
rates for the scaled pressure p, the post-processed scaled pressure p*, the fluid pres-
sure p, and the post-processed fluid pressure p*. The errors are computed over the
subdomain () € [—0.5,1]%. The post-processed solutions show asymptotically (k -+ %)
convergence rates for k > 1.

Eh p¢ = pll 1p° =", 1p° = pll, 19° — p*l,
error order error order error order error order
0.0625 | 7.659E-01 - 2.301E-01 — 2.264E-01 — 9.357E-02 —

1 0.0312 | 2.211E-01 1.792 | 5.174E-02 2.153 | 6.588E-02 1.781 | 2.052E-02
0.0156 | 7.361E-02 1.587 | 1.135E-02 2.188 | 2.085E-02 1.660 | 4.512E-03

0.0625 | 1.005E-01 — 6.934E-03 — 2.742E-02 — 2.829E-03
2 0.0312 | 1.818E-02 2.467 | 5.790E-04 3.582 | 4.617E-03 2.570 | 2.049E-04
0.0156 | 3.077E-03 2.563 | 4.939E-05 3.551 | 7.517E-04 2.619 | 1.522E-05

0.0625 | 1.007E-02 — 2.697E-04  — 2.689E-03  — 9.138E-05
3 0.0312 | 8.422E-04 3.579 | 1.620E-05 4.512 | 2.174E-04 3.629 | 3.697E-06
0.0156 | 6.758E-05 3.639 | 7.168E-07 4.498 | 1.703E-05 3.674 | 1.597E-07

0.0625 | 7.239E-04  — 2.446E-05 — 1.921E-04  — 5.478E-06
4 0.0312 | 3.672E-05 4.301 | 6.056E-07 5.336 | 8.891E-06 4.434 | 1.279E-07
0.0156 | 1.592E-06 4.528 | 1.400E-08 5.435 | 3.704E-07 4.585 | 2.928E-09

2.189
2.185

3.788
3.750

4.627
4.533

5.421
5.449

optimal convergence rate of k + 1 is proved for only simplices, though similar results
for quadrilaterals and hexahedra are expected. Indeed, Table shows that as the

solution order increases, the convergence rate is above k + %

2.5 Discussions

In this chapter, we developed numerical methods for both glacier dynamics
and mantle convection. Both phenomena can be described by a two-phase mixture
model, in which the mixture of the fluid and the solid is described by the porosity ¢

(i.e., ¢ > 0 implies the fluid-solid two-phase and ¢ = 0 means the solid single-phase
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Table 2.6: Degenerate case with low solution regularity for g = —3: the errors and the
convergence rates for the scaled pressure p, the post-processed scaled pressure p*, the
fluid pressure p, and the post-processed fluid pressure p*. The errors are computed
over the subdomain Q € [—0.5, 1]2.

Eh Ip° = pll 1p° = p*|l, 1p° — pll, 15° — p*l,
error order error order error order error order
0.0625 | 5.982E-02 - 1.588E-02 — 6.842E-02 — 4.649E-02 —

1 0.0312 | 1.711E-02 1.806 | 3.798E-03 2.064 | 1.808E-02 1.920 | 1.168E-02
0.0156 | 4.627E-03 1.887 | 9.559E-04 1.990 | 4.674E-03 1.952 | 2.938E-03

0.0625 | 2.679E-03 — 1.641E-04 — 5.039E-03 — 1.644E-03
2 0.0312 | 3.654E-04 2.874 | 1.971E-05 3.058 | 5.641E-04 3.159 | 1.068E-04
0.0156 | 4.821E-05 2.922 | 3.479E-06 2.502 | 6.806E-05 3.051 | 8.619E-06

0.0625 | 7.697E-05 — 1.337E-05 — 1.761E-04  — 4.230E-05
3 0.0312 | 5.928E-06 3.699 | 3.020E-06 2.146 | 1.207E-05 3.867 | 5.301E-06
0.0156 | 6.829E-07 3.118 | 5.954E-07 2.343 | 1.253E-06 3.267 | 1.027E-06

0.0625 | 4.568E-06 — 4.249E-06 — 9.124E-06 — 7.593E-06
4 0.0312 | 8.400E-07 2.443 | 8.381E-07 2.342 | 1.470E-06 2.634 | 1.458E-06
0.0156 | 1.689E-07 2.314 | 1.689E-07 2.311 | 2.920E-07 2.331 | 2.920E-07

1.992
1.992

3.944
3.632

2.996
2.367

2.381
2.320

region). The challenge is when the porosity vanishes because the system degenerates,
which make the problem difficult to solve numerically. To address the issue, following
[7], we start by scaling variables to obtain the well-posedness. Then we spatially
discretize the system using the upwind HDG framework. The key feature is that
we have modified the upwind HDG flux to accommodate the degenerate (one-phase)
region. When the porosity vanishes, the unmodified HDG system becomes ill-posed
because the stabilization parameter associated with the HDG flux disappears. For
this reason, we introduce the generalized stabilization parameter that is composed
of the upwind based parameter 7 = ¢’%d in the two-phase region and a positive

> () in the one-phase region. This enabled us to develop a high-

-1
parameter 7 =
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Table 2.7: Degenerate case with low solution regularity for g = —3: the errors and the
convergence rates for the scaled pressure p, the post-processed scaled pressure p*, the
fluid pressure p, and the post-processed fluid pressure p*. The errors are computed
over the subdomain Q € [0, 1]?

- = =T, 7=l =7,
error order error order error order error order
0.0625 | 4.630E-02 — 1.061E-02 — 2.127E-02 — 7.002E-03 -

1 0.0312 | 1.352E-02 1.776 | 2.237TE-03 2.246 | 6.038E-03 1.817 | 1.413E-03
0.0156 | 3.710E-03 1.865 | 5.230E-04 2.097 | 1.640E-03 1.881 | 3.148E-04

0.0625 | 2.210E-03  — 9.474E-05 — 1.034E-03  — 4.804E-05
2 0.0312 | 3.055E-04 2.854 | 7.706E-06 3.620 | 1.388E-04 2.898 | 3.983E-06
0.0156 | 4.061E-05 2.912 | 6.422E-07 3.585 | 1.817E-05 2.933 | 3.595E-07

0.0625 | 6.260E-05 — 1.584E-06 — 3.369E-05  — 8.669E-07
3 0.0312 | 4.235E-06 3.886 | 1.202E-07 3.721 | 2.176E-06 3.952 | 1.028E-07
0.0156 | 2.791E-07 3.924 | 2.114E-08 2.507 | 1.409E-07 3.949 | 1.987E-08

0.0625 | 1.172E-06 — 1.523E-07  — 8.112E-07  — 1.426E-07
4 0.0312 | 4.882E-08 4.586 | 2.980E-08 2.354 | 3.792E-08 4.419 | 2.820E-08
0.0156 | 6.110E-09 2.998 | 5.978E-09 2.317 | 5.703E-09 2.733 | 5.646E-09

2.309
2.166

3.592
3.470

3.076
2.371

2.338
2.321

order HDG method for a linear degenerate elliptic equation arising from a two-phase

mixture of both glacier dynamics and mantle convection.

We have shown the well-posedness and the convergence analysis of our HDG
scheme. The rigorous theoretical results tell us that our HDG method has the con-
vergence rates of (k + 1) for a non-degenerate case and (k: + %) for a degenerate case

with a piecewise smooth solution.

Several numerical results confirm that our proposed HDG method works well
for linear degenerate elliptic equations. For the non-degenerate case, we obtain the

(k + 1) convergence rates of both the scaled pressure p and the scaled velocity u
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Table 2.8: Non-degenerate case in three dimensions: the results show that the HDG

solutions for scaled pressure p and scaled velocity u converge to the exact solutions
. . . 1 .

with the rate in above k + %.The upwind based parameter 7 = ¢~ 2d is used.

L h ||pe_pH2 ||116—u||2
error order error order

0.1250 | 2.553E-02 — 5.895E-01 —

0.0833 | 1.473E-02 1.356 | 3.527E-01 1.267
0.0625 | 9.754E-03 1.433 | 2.399E-01 1.340
0.0500 | 6.994E-03 1.491 | 1.757E-01 1.396

0.1250 | 1.405E-03 — 4.408E-02 —

0.0833 | 5.274E-04 2.417 | 1.712E-02 2.333
0.0625 | 2.576E-04 2.491 | 8.579E-03 2.402
0.0500 | 1.460E-04 2.545 | 4.961E-03 2.455

0.1250 | 4.872E-05 — 1.477E-03 —

0.0833 | 1.183E-05 3.491 | 3.684E-04 3.425
0.0625 | 4.234E-06 3.572 | 1.348E-04 3.495
0.0500 | 1.885E-06 3.626 | 6.105E-05 3.550

0.1250 | 1.100E-06 — 2.741E-05 —

0.0833 | 1.705E-07 4.598 | 4.428E-06 4.496
0.0625 | 4.447E-08 4.672 | 1.188E-06 4.573
0.0500 | 1.551E-08 4.720 | 4.235E-07 4.622

in two dimensions, whereas in three dimensions we observe the convergence rates
above (k + %) For the degenerate case with a smooth solution, the convergence
rate of (k‘ + %) is observed for both the scaled pressure p and the scaled velocity
u. For the degenerate case with low solution regularity, the convergence rates of
the numerical solutions are bounded by the solution regularity, but the high-order
method still shows a benefit in terms of accuracy. For smooth solutions for which the
superconvergence property of HDG methods holds, we can enhance the HDG solutions

by post-processing. We have shown that the post-processed HDG solution converges
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to the exact solution faster than the HDG solution. The convergence rates for the
post-processed solutions are approximately (k + 2) for the non-degenerate case, and
(k+ %) for the degenerate case with a smooth solution. Through a parameter study,
we found that using a positive parameter on the one-phase region does not affect the
accuracy of a numerical solution. We also found that 7 = 1/h showed slightly better
performance in terms of error levels and convergence rates for the degenerate case

with smooth solution.

In order for our proposed method to work in two-phase flows, the interfaces
between matrix solid and fluid melt need to be identified and grids should be aligned
with the interfaces. In other words, the degeneracies are always required to lie on a

set of measure zero.

2.6 Auxiliary results

In this appendix we collect some technical results that are useful for our anal-
ysis.
Lemma 8 (Inverse Inequality [168, Lemma 1.44]). For v € Py(K) with K € €, there

exists ¢ > 0 independent of h such that
IVollo i < chi [vllox - (2.53)

Lemma 9 (Trace inequality [168, Lemma 1.49]). For v € H'(Q) and for K € Q

with e C 0K, there exists ¢ > 0 independent of A such that
2 _
[0l < e (170l + AR lello ) lello (2.54)

Applying the arithmetic-geometric mean inequality to the right side, we can

derive

1 _1
ol < e (B IV elloe + i 0l ) - (2.55)
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If v € H'(£,) is in a piecewise polynomial space, we can derive the following

inequality from Lemma |§| and the inverse inequality (Lemma :

1l < chy [vllo k- (2.56)
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Chapter 3

IMEX HDG-DG

In this chapter [ we propose IMEX HDG-DG schemes for shallow water and
Euler systems. Of interest is subcritical flow in shallow water systems and low Mach
number flow in Euler systems, where the speed of the gravity wave in shallow wa-
ter systems and that of the acoustic wave in Euler systems are faster than that of
nonlinear advection. In order to simulate these flows efficiently, we split the govern-
ing system into a stiff part describing the fast waves and a non-stiff part associated
with nonlinear advection. The former is discretized implicitly with the HDG method
while an explicit Runge-Kutta DG discretization is employed for the latter. The pro-
posed IMEX HDG-DG framework: 1) facilitates high-order solutions both in time
and space; 2) avoids overly small time-step sizes; 3) requires only one linear system
solve per time stage; 4) relative to DG generates smaller and sparser linear systems
while promoting further parallelism; and 5) suppresses the fast modes in the system
with a large time-step size. Numerical results for various test cases demonstrate that
our methods are beneficial for applications where slow modes are accurately treated
while fast modes are inaccurately handled, i.e., a fast and stable solution is more

important than an accurate solution.

We start by briefly discussing a class of implicit-explicit Runge-Kutta (IMEX-

! The contents of this chapter are largely based on the manuscript [105], a reduced version of which
is under revision in the journal of computational physics. The contributions of the author ranged
from the key ideas of the algorithm, numerical implementation, participation in the theoretical
analysis and writing the manuscript.
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RK) time integrators in Section . In Section , we present shallow water systems
for planar and spherical surfaces. Of importance is the introduction of a linear-
nonlinear splitting of the flux tensor to separate the fast wave. This is done by a
linearization of the flux tensor around the “lake at rest” condition (to be defined).
Next we present, in detail, a coupled HDG-DG spatial discretization for the split
system in Section [3.4, The well-posedness of the semi-discrete HDG system and its
rigorous convergence analysis are simultaneously shown for both planar and spherical
geometries. In Section [3.5] we present an IMEX Runge-Kutta method for the semi-
discrete HDG-DG system as well as the procedure for solving the implicit HDG part.
Various numerical results for the shallow water systems for both planar and spherical
flows will be presented in Section to confirm the accuracy and efficiency of the
proposed IMEX HDG-DG scheme. Finally we summarize and discuss this chapter in
Section 3.7

3.1 Implicit-Explicit (IMEX) Runge-Kutta methods

In this section, we briefly describe the key ideas behind a class of IMEX Runge-
Kutta (IMEX-RK) methods. The readers are referred to [12, 165, [42] 220] for more
details. We employ standard letters for scalars, boldface letters for vectors and cal-
ligraphic letters for tensors. Let us start with a notation of stiffness. An initial
value problem is stiff if explicit time methods become numerically unstable unless
extremely small time-step size is taken (This is due to the limited size of the stability
regions of the explicit time methods). For a linear problem, the stiffness can be char-
acterized by condition number, i.e., the ratio of the smallest eigenvalue to the largest
eigenvalue in the system. When the magnitudes of the eigenvalues are significantly
different, the system is said to be stiff. The stiffness can be geometrically induced or

incurred by multi-scale features in the system. In this study, we are interested in deal-
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ing with scale-separation stiffness. Especially, in a shallow water system, the scale-
separation stiffness can be described by the Froude number(=advection speed /gravity

wave speed) and thus the subcritical flow is considered as a stiff problem.

Let us begin by considering the following system of ordinary differential equa-

tions

dq
S f
dt

(a) +g(q), te(0,T), (3.1)
with the initial condition q(0) = qo. The functions f and g correspond to the non-
stiff (slow time-varying) and the stiff (fast time-varying) parts, respectively. Note that
they could be the result of applying two different spatial discretizations (e.g. DG and
HDG methods as in this paper) for two differential operators associated with slow and
fast waves. Here, we employ explicit Runge-Kutta methods for the temporal evolution
corresponding to f(q) and diagonally implicit Runge-Kutta (DIRK) methods with s

stages for the temporal evolution corresponding to g(q). Combining these temporal

discretizations into one formula gives the IMEX-RK scheme at the ith stage [12] 165,

12):
i1 i
Q(i) :q"—l—AtZaijfijAtZdijgj, 1= 1;---737 (3.2&)
j=1 J=1
't =q" + At Z bifi + At Z bigi, (3.2b)
i=1 i=1

where f; = f (1" + ¢;At, QY), g = g (1" + & A, QW), g" = q(t") and Q) is the ith
intermediate state; here At is the time-step size. The scalar coefficients a;;, a;;, b;,

b;, ¢; and ¢; determine all the properties of a given IMEX-RK scheme.

The actual forms of the non-stiff term f(q) and stiff term g(q) for our proposed
coupled HDG-DG discretization for shallow water systems will be described in Section

2.0l
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3.2 Shallow water equations

The homogeneous shallow water system in conservative form can be written

as follows
H
88_75 + V. (Hu) =0, (3.3a)
H H?
8(8tu) + V- (Hu®u+gTJd) =0, (3.3b)

where H is the total water depth, u the horizontal velocity, d the dimension, J; the

d x d identity matrix, and ¢ the gravitational acceleration.

We can rewrite (3.3)) as

g—f+V~U:0, (3.4a)
ou UeU ¢ \
§+v-< - +39d)_o, (3.40)

where ¢ = gH is the geopotential height and U = ¢u.

The nonlinear shallow water system (3.4)) has two characteristic time scales:
nonlinear advection and gravity waves with corresponding speeds |u| and /¢, respec-
tively. In this paper, we consider subcritical flow (Ju| < /@), i.e., the differential

operator associated with gravity waves is stiff.

3.2.1 Planar shallow water equations

We first consider the two-dimensional shallow water equations on a plane. We
split the total water column H into n and B such that H = n+ B, where 7 is the free
surface elevation over a reference plane (positive upward), and B is the water depth

under the reference plane (positive downward), which is assumed to be constant in
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time. Following [87], the governing equation (3.4) can be rewritten as

8—q—l—V-Stzs in €, (3.5a)
ot

q=2gp on I'p, (3.5b)

F-n=gy on I'y, (3.5¢)

where Q C R? is a planar domain, 9Q = Tp U 'y is the boundary, n = (n,,n,)
is outward unit normal vector on 9, and q = (¢,, U)" := (gn, (U,V))" are the

conservative variables. Here, F = (F,, F,) defined by

U V
F,=| 436 +005 |, F,= v : (3.6)
r 5305+ dnd

T
is the flux tensor, s = (O,gbnag;f, n%) the source vector, and ¢ = ¢gB the

reference geopotential height.

We can extract the fast gravity wave term (stiff operator), by linearizing the
flux tensor (3.6)) around the “lake at rest” condition, i.e., n = 0 and u = 0, to obtain

the linearized flux ¥, corresponding to the fast gravity wave [174], 87| as

U %
9:L = anQbB 0 . (37)
0 angbB

3.2.2 Shallow water equations on a sphere

In this paper, we are also interested in the shallow water equations on the
Earth surface, and for that reason, we consider the two-dimensional shallow water
equations on the sphere with the Earth radius a = 6.371 x 10m. We adopt the
Lagrange multiplier approach [53, 1] [84], [122], i.e., we embed the two-dimensional

flow on the spherical manifold into the three-dimensional space R3. The shallow water
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equations (3.4) on the spherical manifold can be cast into the following PDE in R3

g—(;+V~?:s in €, (3.8)

where (2 is still the original surface of the sphere but now is considered a subset of

R3, q:= (¢, U)" := (¢,U,V,W)" are the conservative variables, and

U 1% W
uu 1.2 VU wuU
=4 —ng Yy woY
F= o' o P (3.9)
U[%/V ¢ \j_W2¢ ww ¢ 1.2
K2 5 e Ta?

is the flux tensor. Here s = (0,su(q))”, where sy(q) = =4V, — fF x U + pur, is
the source vector, f = 2Q2sin@ is the Coriolis parameter, () is the Earth’s angular
velocity, € is the latitude coordinate, r = (x,y, z) is the position vector on the sphere,
# = ra~! is the unit normal vector on the sphere, ¢, is the surface topography, and
is the Lagrange multiplier. In this approach, the tangential velocity on the sphere is
denoted by u = (u,v,w) in the Cartesian coordinate system. Clearly, the additional
degree of freedom allows fluid particles to depart from the spherical surface. One
way to avoid this undesirable effect is to introduce a fictitious force via a Lagrange
multiplier, which is chosen such that the velocity has no radial component on the

sphere, i.e. u-r =0 [84]. By taking a dot product of r and the momentum equation

in (3.8), we have

U
r~aa—t:r~RU+,ur-r, (3.10)

where Ry = —V - (% + %233> — ¢oVos — ft x U. Using the conditions u-r = 0
and % = 0, we obtain the Lagrange multiplier y = —%. Substituting p into the
momentum equation yields

o~ (5~ %) Ro, (3.11)
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which maps the momentum equation onto the local tangential plane. Note that £#7
is the orthogonal projector that takes vectors to the direction normal to the sphere
and, consequently, (J3 — ##7) is the complementary projector which takes all vectors

along the tangent to the spherical surface.

Similar to Section [3.2.1] we extract the fast gravity wave by linearizing the flux
tensor (3.9) around the lake at rest condition, i.e., background geopotential height
¢ = ¢p and zero horizontal velocity U = 0. We obtain the linearized flux Fp,

containing the fast gravity waves:

u v ow
_ | ¢80 O 0
L= "% ons 0| (3.12)
0 0  ¢po

We now show that the dynamics corresponding to the linearized differential

operator (associated with the fast waves) either in (3.7) or (3.12)) is well-defined.

Lemma 10 (Stability). Consider the following linear system of PDEs:

g—‘z+v-?L:0, in Q, (3.13)

where F, is either from (3.7 or (3.12)). Suppose (3.13)) is equipped with either wall
boundary conditions, i.e. U-n = 0 on 9¢2 where n is the unit outward normal vector,

or periodic boundary conditions, then it is well-defined in the following sense
oE
ot
where the energy F is defined as F = fQ gb% d§) + fQ o5 U -UdQ.

0, (3.14)

Proof. We proceed by an energy approach. Specifically, taking the L2-inner product
of the mass conservation equation with ¢, and the momentum equation with ¢§1U,

and then adding the resulting equations together we have

10F

——+/¢nv-UdQ+/U-v¢ndQ:o,
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which yields (3.14]) after integrating the second term by parts and applying the bound-
ary conditions. That is, the energy of the linearized shallow water system ([3.13)

remains constant over time. L]

3.3 Euler equations

In this section, we are interested in the compressible Euler equation, called
non-hydrostatic equations in the atmospheric science community, where the acous-
tic wave is the fastest wave in the systems. The governing equation for the non-

hydrostatic atmosphere is written as follows [86], 206, 3]:

dp B
2 + V- (pu) =0, (3.15a)
dpu
W+V~ (pu®@u+ pl) = —pgk+ V - (vpVu), (3.15Db)
% + V- (pu) =V - (vpV¥), (3.15¢)

where p is the density, u is the velocity, J is the rank-2 or 3 identity matrix, g is
the gravitational constant, k is the unit normal vector along the vertical direction,
v is the kinematic viscosity, and 6 is the potential temperature E| If a parcel of air
at temperature T" and pressure p is adiabatically brought to a reference pressure py,

then its potential temperature is given by

1-1/v
9:T<@> .
p

Here, v = Z—P is the ratio of specific heats, ¢, and ¢, are the specific heats for constant

pressure and volume. The pressure p is derived from the equation of state
pOR\"
P=Dbo| —
Po

20ne can consider the potential temperature and the reference pressure as the total temperature
and the total pressure for the isentropic flows.
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with R is the gas constant for dry air. We can rewrite (3.15)) in terms of conserved

variables [86]:

%JFV.U:(), (3.16a)
U U®U U
) +V- ( = +p3) = —pgk+V - <VpV—) ; (3.16b)
ot p P
00 eou ©

where U = pu and © = pf. We introduce the splitting variables for simplicity,

p(x) = (%) + 7(2).

This leads to
pd = (' +p) (0" +0) = (00" + p'0 + p8') + pb.
Similar to [23], we define (p) := p'0' 4 p'0 + pf’ and pf := pf. In addition, from the

isentropic relation, the pressure term can be written in terms of pf as

p(06) = p(pB + (p6)') = p(p0) + 5—;@9)' 1O ((ph))2.

So we define p := p(pf) and p’ := p — p. For linearized pressure, we define p/; :=

@(pH)’ = %. With the splitting variables and the hydrostatic balance equation, i.e.,

0pl
ap
dZ - Py,
we can simplify (3.16)) as
op'
—=-V-U 1
T V.U, (3.17a)
ou U U U
— =-V- ( 2 +p'.’J) —pgk+ V- (I/pV—) : (3.17b)
ot p p
/
%6 =-V. (@—U> +V- (VpVQ) : (3.17¢)
ot p p



For the IMEX scheme, we define a linear operator which contains the fast waves. To

this end, we linearize the flux tensor

U 0
F = @ +pI | = [vpVE (3.18)
& vy )
inviscid viscous

around a hydrostatic balanced solution [88], which leads to

op’

ou , ,

a5 -V (r'L9) — pgk, (3.19b)
00/ -

o =V (Uo) , (3.19¢)

where p/; = 0 := % = % and a? = 77;. (Note that we only linearize the inviscid

Euler flux.) Now, the linearized flux and its Jacobian read

U ong (0 070

F,=|1I| and A = L—10 0 mg|. (3.20)
ou % 0 n’€ 0
P P

We observe that the eigenvalues of (3.20) are —a, 0 and a.

3.4 Spatial Discretization
3.4.1 DG and HDG spatial discretization

The DG discretization [128, [96, [89] for either (3.5) or (3.8) can be written in

the following form: seek q € V, (K) such that the weak formulation

(%l,v)K —(F (@), V) + (T () v, = (5 V) (3.21)

holds for each element K € €, where F* (qF) is a numerical flux [I126] such as
the Lax-Friedrichs (i.e., Rusanov) [I8I] or Roe [I79] flux. Note that the standard

numerical flux F* (q%) is a function of the solution traces q* from both sides of K.
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For convenience, we have ignored the fact that (3.21]) must hold for all test functions

v € V}, (K); throughout this chapter, this should be implicitly understood.

The key idea of the HDG framework is to introduce a new single-valued numer-
ical trace q on the mesh skeleton [I55], 47, 147, [30] so that the numerical flux is now
the function of the solution in element K and q. In particular, the weak formulation

for the HDG discretization (compared with the DG discretization in (3.21])) reads

A

(?‘9_(3’ V>K —(F(q),Vv), + <ff(q, q) - n,v>aK =(s,V)g, (3.22)
where F is a hybridization of the numerical flux F* (q*) in (3.21)), and q approximates
q on &;,. In other words, we have hybridized the DG formulation to obtain the
HDG formulation . Since we introduce a new variable, q, we need one more
equation to close the system. To that end, we note that for the HDG discretization
to be conservative the HDG flux F needs to be continuous across the mesh
skeleton. Thus, a natural equation (a sufficient condition for conservation) is a weak

continuity of the HDG normal flux on each interface e € 0K, i.e.,

([F@a-n].n) =0 (3.23)

for all p € Ap(e). By summing (3.22)) over all elements and (3.23) over the mesh
skeleton we obtain the complete HDG discretization: find the approximate solution

(a,4) € Vi(24) x Ap(Ep) such that

h

<[[f}"(q, a) - n]] ’“>eh _o, (3.24b)

(5v), ~ 0@+ (Fa@my) =6y (G2

for all (v,p) € V() x An(€r), where the numerical flux F can be defined as
46, [156, [30]
Fl@q) =F(a)+7(a-q)@n, (3.25)

with 7 as the stabilization parameter (to be described in detail later).
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3.4.2 Coupled HDG-DG spatial discretization

As discussed in Section we decompose the nonlinear differential operator
associated with the shallow water equations into a linear (stiff) part V - F, and a
nonlinear (non-stiff) part V - (F — Fr). Unlike most of the existing literature, our
decomposition is on the continuous level instead of the discrete one. The advantage of
this strategy is that it allows one to employ two separate spatial discretizations for the
stiff and non-stiff parts, respectively. In this chapter, we choose HDG for the former
and DG for the latter. Clearly, we can choose DG [24], 152], [33], 30], 128, [4], 89 [87]
for the former as well but, as will be shown, HDG provides several advantages over
DG including lower storage and more efficiency. The coupled HDG-DG discretization
(see section of the decomposed system reads: seek (q,q) € V,(25) x Ap(Ep)

such that
0
(—q,v) — N&(q) + £(q, &), (3.264)
ot ),
([Fr@a-n).u) =o. (3.26D)

for all (v, ) € Vi(Q) X Ap(Er), where

NL(q) = (Fne (@), VV)g, — (T (a*) - n7V>th 7

£(a,d) = (1 (), V), + (5(a). v)g, = (F1(a.@) - n.v)

Qp
Here, Fnp := 3 — J, Ty := F* — J7] is a nonlinear DG numerical flux, and J, is a

linear HDG numerical flux. We now present a choice for these numerical fluxes.

3.4.2.1 Shallow water equations

For the two-dimensional shallow water equations on a plane, we choose the

Lax-Friedrichs numerical flux [I81], 204] for the DG discretization and the upwind
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HDG flux [33]:

7 (@) = {F(@} + S lawn], (3.272)
TH®={%M$+§M®M, (3.27b)
F1(q,4) = Fr(a) + F@—a) @n, (3.27c)

where 7% = max <(|u ‘n|+ \/E)Jr, (|u -n|+ \/5)7>, 7/ = max <\/¢_E? \/¢_J_3>> and

= 77. Note that 7* is the (advection + gravity) wave speed of the shallow water

>

equations, while 77 is the (gravity) wave speed of the stiff term. Here, a hybridized

Lax-Friedrichs fluxf] (3:27¢)), is defined [33] as

MU+%v+wﬁQm—@>
n-J(q,q) = | n.épd, + Vo (U—-U . (3.28)
nydpdy +op (V -V

For the two-dimensional shallow water equations on a sphere, the Lax-Friedrichs

flux for DG methods has the same form as (3.27al) and (3.27b|), while the hybridized

Lax-Friedrichs flux is defined as

nl 40,V + W+ Vg5 (6~ )
. Napd + /s (U —U
FL (q.q) = ] . 3.29
n L(QOI) ny¢B¢+\/¢_B Vo1 ( )

n.¢pd +/op (W - W)

For periodic boundary condition (or similarly no boundary in spherical cases),
all faces are interior faces, and hence no special treatment is needed. To enforce the

wall boundary condition, we use a reflection principle. In particular, for an element

3Note that for polygonal domain €, (3.27b) and ([3.27c)) are the same [30, [33], and hence there
is no splitting error. Otherwise, the splitting error is of order O hPt3 , which is the same as the

convergence order, and thus not affecting the convergence rate of the whole scheme.
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K~ that is adjacent to the domain boundary, i.e. 9K~ NJN # (), we assume that there

is an imaginary neighbor element K+ whose state q* = (¢, Ut)” is determined as

ot =9, (3.30a)

Uf=U -2(U 'n)n, (3.30b)

which, together with the conservation condition ({3.26b|) and the HDG flux (3.28]) (or
(3.29)) on boundary faces e € 0K~ N €2, leads to
=0, (3.31a)

<U'n—|— \/@@_QB) ”u>aK—naQ B
(Vos (U =17, ') —0, U.n=0, (3.31b)

OK—Nd0

where the superscript “t” denotes the tangential part.

3.4.2.2 Euler equations

For Euler equations, we take 7 = max ((Ju-n|+a)*, (Jju-n| +a)”) and 7/ =
7 = a as the stabilization parameters in . A hybridized Lax-Friedrich flux is
defined as
neU+7 ()
n-F;(qq) = Wrt+7 (U - U) . (3.32)
n- ULtz (0 -0)

As for the wall boundary condition, similar to (3.30]), we use the ghost element ap-

proach as
P =7, (3.33a)
U'=U -2(U -n )n, (3.33Db)
0 =0". (3.33¢)
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3.5 Temporal Discretization

In this section, we adapt the general IMEX-RK idea in Section to the
semi-discrete system (3.26). In particular, the ith stage IMEX-RK stated in (3.2,
when specified to (3.26]), reads

1—1 [
QY =q"+ ALY ayMTUINL; + ALY @M Ly, i=1,...,s, (3.34a)
j=1

J=1

Q=g+ ALY BMUINL + ALY ML, (3.34b)

i=1 i=1

where NL; := NL (QW) and £; := £ (Q(i), Q(i)>; M is a mass matrix. Due to the
last term on the right-hand side, the ith stage equation (3.34al) is implicit in both
Q" and Q®. They can be solved by combining (3.34a) and (3.265). Since £; is

a result of the HDG discretization, this combination is nothing more than an HDG

discretization with the local equation and the conservation condition defined as
QY — Ata; ML, = Res, (3.35a)
<[[fﬁ (Q“), Q@) - nﬂ ,p,>8h —0, (3.35b)
where Resy = q" + AtM ! Z;;ll (@i NL; + a;;L;).

To solve the HDG system ([3.35]), we note that both equations are linear in

Q® and Q(i), and can be written as a coupled linear system. We define

Res (Q, Q> =Q — Ata;M™'L (Q, Q) — Reso, (3.36a)
Flx (Q, Q) _ <[[5L <Q, Q) -nﬂ , ”>sh' (3.36b)

The HDG system ([3.35]) can be written algebraically as
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where A = I — Ata; M 128 B = —Atg;M19% C =%k D= Pz R, = Res,

oQ’ 8Q’ oQ BQ )
and Ry = 0. Note that the term % does not involve the computation of a Jacobian.
Since L is linear, 3—8 is a constant matrix.

To solve (3.37)), we can first eliminate the volume unknowns Q®
QY = A~ <R1 - BQU’)) . (3.38)

Since A is block-diagonal (each block corresponding to one element in the mesh),
the inversion in (3.38) is actually done in an element-by-element fashion, completely
independent of each other. This Schur complement step allows us to condense Q®

to arrive at a much smaller linear system of equations in terms of Q(®:

(D-CA'B)Q” =R, - CA™'R,. (3.39)

Once Q@ is computed, the volume unknowns Q® can be obtained using
(3-38)), in an element-by-element fashion. Compared to IMEX DG schemes [I78] [70,
174 229], our IMEX HDG-DG scheme has a smaller number of coupled unknowns.
On quadrilateral meshes with n xn elements and polynomial order p, for example, the
number of coupled IMEX HDG-DG unknowns is 2n(n+1)(p+1), whereas that of the
IMEX DG is n?(p + 1)2. The ratio of the IMEX DG unknowns to the IMEX HDG-
DG counterparts is 2(1%11/71). The IMEX HDG-DG schemes thus become beneficial
in terms of the number of coupled degrees of freedom, and hence the size of the
linear system, when the solution order p > 1 + 2/n. In particular, IMEX HDG-
DG becomes advantageous starting from second order approximations. A detailed
complexity comparison between HDG and DG can be found in [33]. Once all the

intermediate solutions are computed, the next time-step solution q"*' is determined

through ([3.34h)). Algorithm summarizes all the steps of our proposed IMEX scheme.
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Algorithm 1 IMEX HDG-DG scheme for s-stages.

Ensure: Given solution state ¢”, compute its next solution state ¢"*!.
1: forv=1to s do
2:  if a;; = 0 then

3: Q(i) —q"

4: L; + L£(QW)

5. else ‘

6: Res0 < q" + AtM™' ST (NG + a8 ;)

7: Solve for Q™ using

8: Obtain the volume unknowns Q® using
9: L; + L£(QW, QW)

10:  end if

11: NL; + NL(QW)

12: end for

13: Update the solution ¢"™* < ¢" + AtM ™1 Y7 | (bifNLZ- + l;ZLz>

The IMEX methods considered in this chapter are the ARS2(2,3,2) and ARS3(4,4,3)
[12] methods, which have the singly diagonally implicit Runge-Kutta (SDIRK) prop-
erty. (ARK methods [85], 42] with the same order of accuracy behave similarly and
hence are not shown in the chapter.) Here, the triplet (s, o, p) denotes the s stages of
the implicit scheme, o stages of the explicit scheme, and the order of accuracy of the

scheme.

3.6 Numerical Results

In this section, we demonstrate the accuracy and efficiency of the proposed
coupled IMEX HDG-DG methods for the shallow water equations and the Euler
equations through several numerical experiments. For planar shallow water flow,
two test cases are considered: the translating vortex test case and the water height
perturbation problem. For the former, in which an exact solution exists, we present
the numerical convergence for both the spatial and temporal discretizations. For the

latter, in which no analytical solution is available, we perform a comparison with
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explicit schemes. For the spherical shallow water equations, the well-known standard
test cases proposed by [225] and the barotropic instability phenomenon [77| are chosen
to verify the IMEX HDG-DG scheme. For the Euler equations, three examples are
tested: the inertia-gravity wave [192], the rising thermal bubble [86] and the density

current flows [196].

3.6.1 Moving vortex

We consider the vortex translation test [I77] in which the initial condition in
the domain Q = [—2,2] x [—2,2] is chosen in such a way that the pressure gradient
force and the centrifugal force are balanced. This allows the initial vortex to translate
across the domain without changing its shape. The exact solution for the vortex at

any time ¢ is given by

ﬁ2 —2(r2—
H=H,— (r*=1) 4
o 3271_26 , (3.40a)
(U, U) = (UOO, Uoo) + %6—(7‘2—1)(_1/“ .’L't), (340b)

where 3 is the vortex strength, (., y.) the center of the vortex, (o, Vs ) the reference
horizontal velocity, T; = & — T. — Usol, Yt = Y — Ye — VUool, 7° = x7 + y2, and H,, the
reference water depth. For the numerical results in this section, we choose H,, = 1
and (Ueo, Vo) = (1,0), B = 5, and g = 2. We use the exact solution to impose the
boundary condition. Initially the vortex is located at (z.,y.) = (0,0). Figure
shows numerical results for the free surface elevation n := H — H,, at different times.
Here, the solution order is p = 6 and the results are computed on a uniform mesh

with 32 x 32 elements.

We compute the errors of the free surface elevation and the velocity using
1
the Ly norm defined as Ls(q) := (ZKth Jic la— qr)’ dK)? , where gr is the exact

solution at the final time 7. For the spatial convergence test, we use a sequence
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Figure 3.1: The moving vortex test case: time evolution of the free surface elevation
n at times ¢t = 0, ¢t = 1 and ¢t = 2 computed using ARS3 HDG-DG. The contour levels
are from —0.6m to Om with the step-size of 0.05m.

of nested meshes with N, = {82,122 162,20} for p = {2,3,4,5} and measure the
errors at T" = 0.1. We choose a time-step size such that spatial discretization error
is dominant over time discretization error (e.g., At = 5.0 x 107 for p = 5, At =
2.0 x 107 for p = 4, At = 1.0 x 1073 for p = 3, At = 1.0 x 1073 for p = 2).
Table [3.1] shows the spatial convergence results of the free surface elevation n and
the velocity u for ARS3 HDG-DG scheme, where the energy norm is defined as
E = %(HnHéh + ||u||52)h) As can be seen, the predicted convergence rate of (p + 1/2)

is observed for all cases.

To numerically compute the temporal convergence for ARS2 HDG-DG and
ARS3 HDG-DG, we simulate the translational vortex with a 6th-order solution on
the 32 x 32-element mesh. The time-step size At varies from 6.25 x 1075 to 5 x 1073,
which corresponds to Courant numbers (Cr) from 0.07 to 5.6. We compute the error
at T'= 0.2. The mean water depth H, is set to be 50 so that the reference Froude

e : . . .
number, Fr = N 0.1, that is, the gravity wave dominates the convection.

In Figure [3.2(a)l we observe the correct second-order and third-order conver-
gence in time for ARS2 HDG-DG and ARS3 HDG-DG, respectively. We also see

the second-order convergence in time for RK2 DG. As for RK3 DG, we notice that
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Table 3.1: Spatial convergence for the traveling vortex test using ARS3 HDG-DG.

p N

Ly (77)
error

order

LQ(U)

error

order

Ly(VE)

error

order

8 x 8
12 x 12
16 x 16
20 x 20

8 x 8
12 x 12
16 x 16
20 x 20

8 %X 8
12 x 12
16 x 16
20 x 20

8% 8
12 x 12
16 x 16
20 x 20

9.983e-03
3.816e-03
1.851e-03
1.046e-03

1.102e-03
3.500e-04
1.281e-04
5.869e-05

2.344e-04
3.658e-05
1.047e-05
4.072e-06

2.340e-05
3.557e-06
7.820e-07
2.303e-07

2.372
2.515
2.557

2.829
3.494
3.498

4.581
4.348
4.233

4.647
5.265
5.479

2.585e-02
1.168e-02
6.248e-03
3.758e-03

6.138e-03
1.484e-03
5.509e-04
2.491e-04

7.030e-04
1.475e-04
4.508e-05
1.727e-05

1.873e-04
2.171e-05
3.986e-06
1.094e-06

1.959
2.174
2.278

3.502
3.443
3.557

3.851
4.120
4.299

2.315
5.892
2.793

1.959¢-02
8.689e-03
4.608e-03
2.758e-03

4.410e-03
1.078e-03
4.000e-04
1.810e-04

5.240e-04
1.074e-04
3.272e-05
1.255e-05

1.335e-04
1.556e-05
2.872e-06
7.908e-07

2.006
2.205
2.300

3.475
3.446
3.554

3.908
4.133
4.295

5.301
5.873
5.781

its error levels are saturated near 10710,

This is because the spatial discretization

error starts to dominate the time discretization error. To demonstrate the stability

benefit of the IMEX HDG-DG scheme we perform simulations for a range of Courant

numbers (Cr) from 0.28 (the point over which the second order RKDG, denoted as

RK2 DG, blows up) to 5.6.

Clearly, the IMEX HDG-DG approaches are more economical than our previ-

ous work on IMEX DG [87, 85] due to the fewer number of coupled degrees of freedom

in the context of a direct solver. Compared to standard fully implicit methods, they

are much more advantageous since only one linear solve is needed for each stage per
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Figure 3.2: Comparison between IMEX HDG-DG and RKDG for the moving vortex
test case: (a) accuracy/stability and (b) wallclock time.

time-step. For this chapter, our methods are in fact “optimal” in the sense that the
HDG matrix in (3.37), and hence the matrices A in (3.38) and (D — CA™'B) in
, is the same for any time-step and any stage (since a;; are the same at any
stage for the chosen schemes). Thus, we need to perform the LU factorization (here
we use UMFPACK [57]) of the HDG-trace matrix (D — CA~'B) once, and the same
LU factors can be recycled (via a forward substitution followed by a backward substi-
tution) for all subsequent computations involving . We also store the inverse of
each diagonal block of A in once and reuse it for recovering the DG unknowns

in an element-by-element fashion.

Still, it is challenging to compete with fully explicit methods in terms of wall
clock time because our approach needs to solve and for each time-
step. However, there are cases when the proposed IMEX HDG-DG methods are
more economical than explicit schemes. To demonstrate this we plot in Figure
the L? error of the free surface height against the wall clock time for ARS2 HDG-
DG, ARS3 HDG-DG, RK2 DG, and RK3 DG (the third order RKDG). Given an

64



error level, RK2 DG and RK3 DG outperform ARS2 HDG-DG and ARS3 HDG-
DG, respectively. However, ARS3 HDG-DG becomes comparable to RK2 DG and
outperforms RK2 DG for tighter error levels. This means that high-order IMEX

HDG-DG methods can be beneficial compared to low-order explicit methods.

Not only that, when a desired level of accuracy is relaxed, IMEX HDG-DG
can be efficient. For example, when the desired accuracy is O(107%), ARS3 HDG-DG
method is three times faster than RK2 DG methods in Figure . Indeed, the
error level of O(107!) will not be achieved when the solution is not smooth or is not
well resolved in spatial discretization. In Table we lower the solution order from
p = 6 to p = 4 so that the spatial discretization error affects the temporal convergence
rate. As expected, the saturation level increases from O(1071%) to O(1077). When
the desired accuracy is O(1077), we observe that ARS3 HDG-DG with Cr = 1.38
is comparable to RK2 DG with Cr = 0.28. As shown in Table [3.3] we can obtain
further computational gain when considering the case with F'r = 0.01 (here, we take
H,, = 5000), where the saturation level is O(107%) for p = 4. ARS3 HDG-DG and
ARS2 HDG-DG with Cr = 4.72 are four times and six times faster than RK2 DG
with Cr = 0.24, respectively. This is due to the virtue of the scale-separation in low
Mach or subcritical flows, where there is a chance to take a larger time-step size, with
which IMEX schemes can outperform explicit schemes [22] 231]. Clearly, the smaller

the Froude Number, the better it is for IMEX methods in the shallow water systems.

To improve the wall clock time we can, for example, develop iterative solvers
for and solve ; Recently, block Jacobi type preconditioner [I51] and multi-
grid solver [224] have been developed for HDG methods. Woopen et al. (2014)[228]
have shown that HDG methods give a faster solution than DG methods for compress-
ible flow with iterative solvers. Based on that, we can conjecture the IMEX HDG

methods would be more efficient, but we need to explore iterative solvers in various
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Table 3.2: Moving vortex for F'r = 0.1: the errors and the convergence rates for the
free surface elevation 7, and wallclock time at 7" = 0.2. The errors are computed over
the domain ) € [—2,2]? with 32 x 32 elements.

p=6 p=4
Cr error order wc[s] | Cr error order wc [s]
560 2.657E-05 -  98.1 |552 LOGYE-04 - 161
2.80 6.627E-06 2.003 193.5 | 2.76 2.657E-05 2.009 31.6
ARS2 | 1.40 1.655E-06 2.001 380.3 | 1.38 6.639E-06 2.001 62.2
0.70 4.130E-07 2.003 759.8 | 0.67 1.704E-06 1.962 122.8
0.28 6.618E-08 1.998 1764.4 | 0.28 4.828E-07 1.376 305.7

32 x 32

5.60 2.304E-06 - 162.4 | 5.52 1.832E-05 - 25.9
2.80 2.901E-07 2.990 319.5 | 2.76 2339E-06 2.969 51.1
ARS3 | 1.40 3.650E-08 2.990 633.8 | 1.38 4.971E-07 2.234 101.1
0.70 4.598E-09 2.989 1220.9 | 0.67 4.054E-07 0.294 201.6
0.28 3.328E-10 2.866 2876.9 | 0.28 4.038E-07 0.004 502.5

0.28 4.264E-08 - 558.3 | 0.28 4.384E-07 - 98.3
RK2 |0.14 1.065E-08 2.001 1109.8 | 0.14 4.060E-07 0.111 205.5
0.07 2.668E-09 1.998 2101.0 | 0.07 4.039E-07 0.008 413.5

0.28 4.054E-10 - 792.4 | 0.28 4.038E-07 - 134.2
RK3 |0.14 1.601E-10 1.341 1539.0 | 0.14 4.038E-07 0.000 281.2
0.07 1.542E-10 0.054 2898.0 | 0.07 4.038E-07 0.000 547.3

aspects because their performance depends on not only the size of the system but
also preconditioning techniques, matrix properties and so on. We will consider this

topic in our future work.

3.6.2 Water height perturbation

The IMEX methods are designed to find accurate solutions for the slow modes
while damping out the high-frequency modes. [12]|. This design philosophy fits atmo-

spheric models because they simulate slow advection, Rossby waves, and slow gravity
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Table 3.3: Moving vortex for F'r = 0.01: the errors and the convergence rates for the
free surface elevation 7, and wall clock time at 7" = 0.1. The errors are computed
over the domain Q € [—2,2]? with 32 x 32 elements.

p=©6 p=4
Cr error order wc [s] | Cr error order  wc [s]
10.17 9.466E-07 - 2553 | 9.44 5.666E-06 - 415
508 2172E-07 2124 5087 | 472 3.204E-06 0.783  87.8
ARS2 | 254 5.269E-08 2.044 1001.4 |2.36 3.162E-06 0.059 171.8
1.27 1.306E-08 2.012 19042 | 1.18 3.155E-06 0.003 339.4
0.64 3.407E-09 1.939 3710.1 | 0.59 3.155E-06 0.000 696.1

32 x 32

10.17  1.902E-06 - 3729 |9.44 1.357E-05 - 70.3

5.08 2.462E-07 2949 732.0 |4.72 3.684E-06 1.881 140.7
ARS3 | 2,54 3.108E-08 2.986 1458.7 | 2.36 3.164E-06 0.219 279.6
1.27  4.034E-09 2.946 2941.1 | 1.18 3.155E-06 0.004 556.9
0.64 1.158E-09 1.801 6505.6 | 0.59 3.155E-06 0.000 1118.6

0.25 1.106E-09 - 2928.6 | 0.24 3.155E-06 - 561.9
RK2 0.13 1.054E-09 0.071 5467.6 | 0.12 3.155E-06 -0.000 1142.8
0.06 1.050E-09 0.005 10490.8 | 0.06 3.155E-06 -0.000 2174.5

0.25 1.051E-09 - 4029.8 | 0.24 3.155E-06 - 769.7
RK3 0.13 1.050E-09 0.001 7588.3 | 0.12 3.155E-06 0.000 1531.9
0.06 1.050E-09 0.000 15329.5 | 0.06 3.155E-06 0.000 3022.3

waves accurately while inaccurately treating acoustic waves and fast gravity waves
[220,, [85], 180]. This is because the fast modes have a negligible effect on the nonlin-
ear convected motion for low Mach number flows (e.g., compressible fluid dynamics
contain acoustic waves, which play no essential role on the motion of interest in the

atmosphere or the ocean).

In this section, gravity waves are the fast modes in the shallow water systems,

and we examine how IMEX HDG-DG methods suppress the gravity waves.

We consider the propagation of smooth gravity waves [65] over the domain
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Q) =[—1,1] x [=1,1]. The initial condition is given as
r2+y2
H=H,+e 22, and u=v=0,
where H,, = 100. We set the gravitational acceleration g to be unity. The domain
is discretized with 20 x 20 finite elements and with 8th order polynomials. The time

horizon is T" = 0.5.

We choose different time-step sizes for RK2 DG and ARS2 HDG-DG. Since
RK2 DG blows up after a few iterations with At=0.0002 (see Figure [3.3), we take
At = 0.0001. The time-step sizes of At = 0.002 and At = 0.02 are chosen for ARS2
HDG-DG. Figure quantitatively shows a three-dimensional plot of the evolution
of the free surface elevation using RK2 DG and ARS2 HDG-DG at times ¢ = 0,
t = 0.06,t = 0.1, and t = 0.5. Since the speed of the reference gravity wave is
VgH,, = 10, the wave crest propagates radially and reaches to the wall boundary at
t = 0.1. We observe that ARS2 HDG-DG with At = 0.002 is in good agreement with
RK2 DG. While IMEX-RK methods allow us to increase the time-step size without
being penalized by stability constraints, the accuracy of the fast modes is reduced
due to the truncation error in the time discretization. This can be observed in the
last column of Figure in which ARS2 HDG-DG with At = 0.02 shows damped

(inaccurate) but stable solutions.

In Figure 3.5 we compare the wall clock times and the errors of ARS2 HDG-
DG and ARS3 HDG-DG with the DG counterparts. Since no analytical solution is
available in this case, we take the numerical solution of 10th order RK4 DG with
At = 0.00005 as a reference solution and measure an L, norm. The norm is defined
as Lo(q,qr) == (ZKth S (4 — HqR)2 dK)%, where II is the elementwise projection
operator from 10th to 8th order polynomial space. As can be seen, ARS2 HDG-DG

and ARS3 HDG-DG show correct second-order and third-order convergence in time
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Figure 3.3:  Water height perturbation test: free surface evolution for RK2 DG
(At=0.0002) at t = 0.016, ¢t = 0.017 and ¢ = 0.018.

for decreasing time-step size. For increasing time-step size, we see that the error level
is bounded above. This is because the fast gravity waves are effectively damped out
as shown in the last column in Figure This implies that we can view the IMEX

methods as a high-frequency filter.

From an efficiency standpoint, in Figure ARS2 HDG-DG and ARS3
HDG-DG do not compete with RK2 DG and RK3 DG at the same error level. How-
ever, high-order ARS3 HDG-DG is more economical than low-order RK2 DG below
the error level of O(107%). Also, in view of a high-frequency filter, ARS2 HDG-DG
and ARS3 HDG-DG methods are attractive because they provide fast and stable so-
lutions. For example, at O(1072) error level, they are two times faster than RK2 DG,

and at O(107!) error level, they are ten times faster than RK2 DG.

3.6.3 Steady-state geostrophic flow

We consider the steady-state geostrophic flow in [225]. This flow admits an

analytical solution for the shallow water equations on the sphere [I52]. The initial
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Figure 3.4: Water height perturbation test: free surface evolution for RK2
DG (At=0.0001, left), ARS2 HDG-DG (At=0.002, center) and ARS2 HDG-DG
(At=0.02, right) at times t =0, ¢t = 0.06, t = 0.1 and t = 0.5.

condition is given by

1 u?, 9
H=H, — p af) + — ) cos 9, (3.41a)

(ux, up) = (Uoo c0s 6, 0), (3.41Db)

where (uy, ug) is the local tangential velocity in latitude-longitude coordinates (), 6).

We take gH, = 2.94 x 10*m?s72, and u. = 38.61ms~!, which corresponds to
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Figure 3.5: Comparison between IMEX HDG-DG and RKDG for the smooth gravity
wave: (a) the accuracy /stability and (b) the wall clock time.

Fr = 0.23. The numerical experiment is performed on a grid with N, = 1536
elements (16 x 16 elements on each of the six faces of the cubed-sphere) and solution
order p = 4. The time-step size for ARS2 HDG-DG is 864s. Figure [3.6] shows the
snapshot of the height field from the ARS2 HDG-DG approach (Figure and
the exact field (Figure 3.6(b)|) after 12 days. The height field from ARS2 HDG-DG is
almost the same as the exact solution. Indeed, we show in Figure the relative

error of the height field, \W\, and the maximum relative error of O (1077) is
observed (see also Figure [3.7(a)]).

Figure [3.7] shows the time series of the height field error, mass, and energy

loss in Ly, Ls and L. norms, where Ly and L., norms are defined as Li(q) :=
> keq, Jx 10— ar| dK and Lo (q) := max,eq, |¢ — gr|, respectively.
Here, the mass and energy losses are defined as

energy(t) — energy(0)
energy(0)

s loss — mass(t) — mass(0)

, energy loss =

Y

mass(0)

where mass := |]H||?2h and energy := [|[Hu-u -+ QHQH?zh- We observe that the

mass has O(10711) loss level, whereas the energy has O(107'3) loss level. This is a
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Figure 3.6: Geostrophic flow test case: (a) total height field from ARS2 HDG-DG at
day 12 with Cr = 1.36, (b) the exact solution, and (c) the relative error of the height
field.
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Figure 3.7: Geostrophic flow test case: (a) time evolution of height field error in L,
Lo and L, norms, and (b) mass and energy loss of the ARS2 HDG-DG solution with
timestep size of 864s (i.e. Cr = 1.36).

direct consequence of the fact that both DG and HDG are conservative discretizations

for the mass.
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3.6.4 Steady-state geostrophic flow with compact support

This case is similar to the steady-state geostrophic flow in Section [3.6.3] The
difference is that it is equipped with a compactly supported wind field, considered as

a high latitude jet in the northern hemisphere. The initial condition is given as

0
H=H.,— 9/ (f + m) u()dr, (3.42a)
g —7/2 a
(U, ug) = (Uoob(x)b(ze — x)e ., 0), (3.42b)
0 fi <0
where 0, = —7/6, 0. = 7/2, z. = 0.3, x = xeei__eebb, and b(z) = {e‘l/’“ f;li g ; x’

For the spatial convergence test, we conduct both A-convergence and p-convergence

studies in Figure [3.8
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Figure 3.8: Convergence studies for the ARS2 HDG-DG scheme when applied to the
steady-state geostrophic flow with compact support with Cr = 0.7: (a) h-convergence
with p = 3 and (b) p-convergence with N, = 6144.

The errors are measured at 7' = 9.6 hour with Cr = 0.7. For h-convergence,
the height field error in L,, Ly and L., norms are computed for p = 3 and the total

number of elements is given by N, = 6n?, where n = {4,8,16,32}. As can be seen in
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Figure [3.8(a)], the convergence rate is p + 1. For p-convergence, an exponential rate
is observed in Figure |3.8(b)|

3.6.5 Zonal flow over an isolated mountain

We consider the zonal flow over an isolated mountain test proposed in [225].
The height and wind fields are similar to those of the steady-state geostrophic flow,
but now H,, = 5960m and u. = 20ms~! with Fr = 0.08. A mountain with height
Hg =2000(1 —r/rs) m, located at (A, 0.) = (37/2,7/6), is introduced into the flow,

where ry = £ and 7% = min(r?, (A — X\.)* + (6 — 6.)?).

We plot the height field at days 5, 10 and 15 in Figure 3.9 on a grid with
N, = 384 elements (8 x 8 x 6 elements on the cubed-sphere) and solution order p = 8.
The timestep size of 432 is taken. As can be seen, the height fields are smooth and
comparable to the corresponding results in [152) [207] (note that this problem has no

analytic solution).

20 m/s — 20m/s — ~== = 2 20m/s —

5000 5250 5500 5750 6000 5000 5250 5500 5750 6000
Height Height Height

(a) Day 5 (b) Day 10 (c¢) Day 15

5000 5250 5500 5750 6000

Figure 3.9: Flow over an isolated mountain (red circle) computed with the ARS2
HDG-DG scheme: shown are the total water height after (a) 5 days, (b) 10 days,
and (c) 15 days. The numerical experiments are performed on a grid with N, = 384
elements, solution order p = 8, and Cr = 1.46. Contour levels are from 5000 m to
6000 m with 21 levels.

We compare the height field of ARS2 HDG-DG with that of RK2 DG in Figure
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3.10L We take At = 43.2s (Cr=0.15) for RK2 DG. The height field of ARS2 HDG-DG

is in good agreement with that of RK2 DG: the relative difference in the height field

is O (1073).
ARS2 HDG-DG Relative Difference (ARS2 - RK2)/RK2

90N . 90N - L .
60N 1.56-03
30N 1.0e-03
0 | F5.0e-04
5 0.0e+00
308 \AF/V\,M £.06-04
———= 2 | B-1.0e-03

90S

Figure 3.10: The zonal flow over an isolated mountain: total height field computed
from ARS2 HDG-DG (left) at day 15 with Cr of 1.46; the relative difference (right)
with RK2 in the height field.

3.6.6 Rossby-Haurwitz wave

We next consider the Rossby-Haurwitz wave test in [225]. The Rossby-Haurwitz
wave is an exact solution of the nonlinear barotropic vorticity equation [93], but not
an exact solution of the shallow water system [I52]. The wave number is chosen
to be 4. This wave pattern propagates from the west to the east keeping its shape
at an angular velocity of 12° per day. With the maximum speed 100ms~! and the

minimum depth 8 x 103> m, we have the Froude number of 0.35.

To simulate this test case, we use the ARS2 HDG-DG scheme on a grid with
N, = 864 elements (12 x 12 x 6), solution order p = 5, and with a time-step size of
345.6s (i.e. Cr= 1.2). The height fields at days 0, 7 and 14 are shown in Figure [3.11]
We also compare the results of ARS2 HDG-DG with those of RK2 DG in Figure |3.12
after 14 days. For RK2 DG, we take the timestep size to be 43.2s (Cr=0.14) for
stability. The height field of ARS2 HDG-DG is in good agreement with that of RK2

DG. In particular, the relative difference in the height field is O (107?).
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Figure 3.11: Rossby-Haurwitz wave: the total height field computed from ARS2
HDG-DG after a) 0 days, (b) 7 days, and (c) 14 days. The numerical experiment is
performed on the grid with N, = 864 elements, solution order p = 5, and Cr = 1.2.
Contour levels are from 8000 m to 10600 m with the step size of 173 m.

ARS2 HDG-DG Relative difference (ARS2 - RK2)/RK2
90N ———

60N £
30N

90N
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30N
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90S

30S
60S
90S

e

Figure 3.12: Rossby-Haurwitz wave: the total height field computed from ARS2
HDG-DG (left) after 14 days with Cr of 1.2; the relative difference (right) with RK2
in the height field.

3.6.7 Barotropic instability test

In this section, we consider the barotropic instability test in [77]. A zonal jet,
a wind field along a latitude line and geostrophically balanced height, is initialized in
the northern hemisphere. Then, the height field is perturbed by adding a smoothly
localized bump to the center of the jet, which causes barotropic waves to evolve in
time. The maximum velocity of the jet is 80ms™! and H,, = 1 x 10*m is chosen,

which corresponds to F'r = 0.26.
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Figure [3.13] shows the relative vorticity field of the barotropically unstable
flow at days 4, 5 and 6. The numerical experiment is conducted on the grid with
N, = 5400 elements (30 x 30 x 6), solution order p = 4, and time-step size of 173
seconds. The vorticity field computed from ARS2 HDG-DG is comparable to that
of [I38], which use high-order continuous and discontinuous Galerkin methods with

explicit time-integration.
1.75e-04
1.04e-04

3.25e-05

-3.88e-05

-1.10e-04
(a) Day 4 (b) Day 5 (c) Day 6

Figure 3.13: Barotropic instability test: relative vorticity field of the ARS2 HDG-DG
at (a) 4 days, (b) 5 days, and (c) 6 days. The numerical experiment was performed
on the grid of N, = 5400 and p = 4 with a time-step size of 173s (Cr=0.94). The
vorticity ranges from —1.1 x 107*s7! to 1.8 x 10*s7L.

We also compare the results of ARS2 HDG-DG with those of RK2 DG in
Figure after 6 days. For RK2 DG, we take the timestep size to be 21.6s (i.e Cr
—=0.12) for stability. The vorticity field of ARS2 HDG-DG is in good agreement with
that of RK2 DG. Indeed, the difference in the vorticity field is O(1079).

3.6.8 Inertia-gravity waves

As a test for the non-hydrostatic equations, we consider the propagation of the

inertia-gravity waves [192],[86]. We consider the uniformly stratified atmosphere with a
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Figure 3.14: Barotropic instability test: relative vorticity fields of RK2 DG (top)
and ARS2 HDG-DG (middle) at 6 days with Cr of 0.94 and 0.12, respectively; the
difference (bottom) in the vorticity field between ARS2 HDG-DG and RK2 DG.

constant Brunt-Vaisala frequencyﬁof N = 1072571, We construct the hydrostatically

balanced potential temperature profile, i.e.,

0(2) = B, exp (%)

4 Brunt-Viisili frequency is the frequency of vertical acceleration on an air parcel. For an ideal
gas, the frequency can be written in terms of the potential temperature as N? = %%. For an
_ 1
isothermal atmosphere T', the frequency becomes a constant, i.e., N =g (CpT) * with C, specific
heat at constant pressure. With the hydrostatic balanced equation and the equation of state, we

denote the density and the pressure by

D= Po€ ( gz) and p = p, € ( gz)
= P, €X _— = Po €X E——
P = Po €Xp RT P = Po €XP RT

with p, = RTp,. The potential temperature is denoted as § = TTI~! with the Exner pressure. Here,

_\1-1/v N1
the Exner pressure is defined as IT = (ﬁﬂ) = (%) .
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with 6, = 300 K. Then we add an initial perturbation of the potential temperature

/ sin (’;—j)
0'(x,z) =0, W_TI)Q
on top of the hydrostatically balanced atmosphere. Here, we choose 6. = 0.01 K,
. = 100km, 0 = 5km and z. = 10km. When air parcel moves up slightly from its
rest position, the displaced air parcel returns to its original position by the gravity.
When it reaches the rest position, it moves downwards because of negative vertical
velocity. However, at some point, due to the pressure force, the air parcel stops
and return to its original position. This creates a wave. It is described by inertia
and gravity. As you can see in Figure [3.15] the inertia-gravity wave propagates in
a channel (z,z) € [0,300]km x [0, 10]km for ¢ € [0,3000]s. Since a uniform velocity

lis enforced, the center of the inertia-gravity wave moves to the right.

ug = 20ms~
In Figure [3.16 ARS2 with dt = 10 solution matches well with RK4 with dt = 0.1s
solution. The sampled plot of the potential temperature perturbation at the height
of 5km reveals that both the RK4 with dt = 0.1s and ARS2 with dt = 10s results

agree well.

3.6.9 Rising thermal bubble

The rising thermal bubble test [86] mimics the convection system of the atmo-
sphere. A warm bubble is located in a constant potential temperature environment.
Because the bubble is warmer than the ambient temperature, the air bubble rises
up and the shear motion of the velocity field transform the circular shape into a

mushroom shape.

We take a constant potential temperature, § = 300K as a background field,
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and add a small perturbation of the form

o _ {O for r > r,

50, (1 + cos(mrr;t))  forr <r.

with 6. = 05K, r = ||[x — x|, 7« = 250m, x. = (500,350)m. The simulation
runs for ¢ € [0,900]s on (z,2) = [0, 1]?km, which is discretized with (N,,, N.,) =
(10, 10) elements and solution order k£ = 10. The snapshots of the perturbation of the
potential temperatures are plotted in Figure [3.1§ for ARS2 with Cr = 52.62, where
the contour levels range from 0K to 0.5 K with 11 isosurfaces. Compared to RK4
with Cr = 0.5262, ARS2 with Cr = 52.62 can increase one hundred times larger

timestep size, but produce a comparable result as shown in Figure [3.19]

3.6.10 Density current

The density current test was proposed by [196]. This example is similar to
the rising thermal bubble test except that the cold bubble falls into the viscous fluid.

The perturbation of the potential temperature is given by

9,:{0 for r > 1,

10, (14 cos(wr))  forr <1

X—Xc¢

with 6, = —15K and r =

. The center of the bubble is initially located at
P
x. = (0,3)km and its size is controlled by x, = (4,2)km. The computational domain
is defined as x € [0,25.6]km x [0, 6.4]km and is discretized with (Ne,, Ne,) = (32, 8)

lis applied to the

elements and k = 8 solution order. A uniform viscosity 75m?s~
whole domain. A slip boundary condition is imposed on all the directions. The cold
bubble drops, hit the bottom, and propagates to the right. Because of the strong
viscosity, the cold front creates a shear force at the upper boundary of the front.

This results in Kelvin-Helmholtz rotors. The evolution of the cold bubble is shown

in Figure for ARS2 with Cr = 1.7. We compare the result of ARS2 to that of
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RK4 in Figure [3.21] Both the results seem to match well and also shows that
the sampled profiles of ARS2 and RK4 at z = 1.2km are on top of each other. In this
example, ARS2 HDG-DG method uses dt = 0.2s whereas RK4 DG does dt = 0.04s.
The timestep size of ARS2 HDG-DG is only five times larger than that of RK4
DG. This is because we treat the artificial viscosity term explicitly. We consider the

implicit treatment of the viscosity terms in the future study.

3.7 Discussions

In this chapter, we are interested in subcritical shallow water and subsonic
Euler systems. We start by decomposing the original flux into a linear part (obtained
from linearizing the flux at the lake at rest condition) containing the fast wave and
a nonlinear part for which the fastest wave is removed. We spatially discretize the
former using an HDG method, and the latter using a DG approach. This enables us
to develop an IMEX HDG-DG framework in which we integrate the DG discretization

explicitly and the HDG discretization implicitly.

The purpose of our coupled approach is fivefold: (i) to step over the fast
waves using larger time step sizes (compared to fully explicit methods) without facing
instability; (ii) to avoid expensive Newton-type iterations (compared to fully implicit
methods) for each time step; (iii) to take advantage of the DOF reduction in HDG
method (relative to DG approaches) to further reduce the cost of linear solves; (iv)
to preserve high-order accuracy in both space and time; and (v) to be applicable for
applications where slow modes are accurately treated while permitting less accurate

handling fast modes.

Numerical results have shown that while fully explicit DG approaches are

stable with small timestep sizes, our IMEX HDG-DG method is stable for orders of
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magnitude larger time-step sizes. In the IMEX HDG-DG framework, the resulting
HDG system is linear. That means only the right-hand side of the HDG system
needs to be updated throughout the computation, which significantly reduces the
computational cost. We have shown that dense but smaller linear system can be
constructed with HDG methods in discontinuous Galerkin discretization. We also
numerically observe that the proposed approach achieves the expected high-order
accuracy both in time and space. Especially, the high-order IMEX HDG-DG methods
can be beneficial compared to the low-order explicit RK method with a fixed error
level. Not only that, with a low Froude number, the IMEX HDG-DG methods can
be more economical than the explicit RK when the desired accuracy is relaxed. We
also numerically confirm that the IMEX HDG-DG methods damp out the fast gravity
waves with large time-step size. This implies that IMEX HDG-DG method can be
used as a tool to suppress the high-frequency modes such as acoustic waves or fast

gravity waves shown in atmospheric or ocean models.

These observations make IMEX HDG-DG methods attractive for applications
in which slow modes are accurately treated while permitting less accurate handling

fast modes.

Note that our proposed methods work for subcritical flows, which means the
speed of gravity waves is faster than the speed of nonlinear advection. Considering
the speed of gravity wave is proportional to the water depth, i.e. ¢, ~ /gH, our
IMEX scheme is not appropriate for simulations requiring the wetting and drying
treatment where the water depth is shallow. Similarly, our IMEX method works for

subsonic flows in Euler systems.

Ongoing work focuses on further improving the efficiency of the IMEX HDG-

DG approach by developing preconditioned iterative methods for the linear solve and
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to implement the scheme on parallel computing systems. Of interest will be the

rigorous convergence analysis of the IMEX-HDG-DG scheme.

3.8 Auxilliary results
3.8.1 Hybridized upwind HDG flux with a one-trace variable

The hybridization is based on a numerical flux form. For example, the numer-
ical flux in (3.28)) is composed of the three-trace variables, i.e., ¢En, U and V. The
resulting HDG system in (3.39) has 2n(n + 1)(p + 1) x 3 degrees of freedom.

To reduce the degrees of freedom further, we can use other forms of numerical
flux. For example, the upwind (UP) HDG flux [33] is comprised of a one-trace variable,
o
noU + 0,V + Vo5 (6~ b

n-9;(q,q) = nabd, (3.43)
ny¢B¢n-

The resulting Schur complemented system is smaller, 2n(n+1)(p+ 1), than that with
the Lax-Friedrich (LF) flux in (3.28).

As for the moving vortex case, we compare the performance of the two hy-
bridizations (with UP and LF fluxes) in terms of accuracy and efficiency. In Table
[3.4] we observe the theoretical second-order and third-order convergence in time for
ARS2 HDG-DG and ARS3 HDG-DG with both three-trace variables and one-trace
variable. Compared to the ARS HDG-DG scheme with three-trace variables, the
one-trace counterpart has almost the same accuracy but is slightly more economical.
For this reason, we choose the ARS HDG-DG scheme with the one-trace variable to

compare with the explicit RKDG methods for the planar shallow water equations.

Clearly, the linear solver with the three-trace variables is more expensive than

that with the one-trace variable. However, in the proposed IMEX HDG-DG method,
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we perform LU factorization of the HDG system in (3.39) one time and reuse the
same LU factors for the succeeding computations. The difference in wall clock time

is not significant for the moving vortex case.

3.8.2 Well-balancing property

We consider the first order IMEX scheme, which is composed of the forward
and backward Euler schemes, to the semi-discrete system ([3.26]) for the planar shallow

water equation (3.5,

qtt—q" v = NL(q") + £( n+l antl 3.44
(—At : >Qh q Q" am), (3.44a)
<[[5% (@, q") - n]] ,M>8h =0, (3.44b)
<[[§"L (q", q™) - n]] ,,u> =0, (3.44c)
En

for all (V,u) € Vh(Qh) X Ah(gh)

Our IMEX HDG-DG scheme is well-balanced in the sense that the solution
preserves the lake at rest condition. In other words, for a given still-water solution at
t", q" = (¢, U") = (0,0), the solution at ¢t"*' becomes zero, q"*' = (¢p+!, U™t =
(0,0). From the conservation condition (3.44b)), we notice q" = (A,’;, U") = (0,0). At
t" step, the nonlinear term NL (") in ({3.44a)) vanishes because both the flux terms
((3.6) and (3.7)), and the numerical flux terms ((3.27a) and (3.28))) become zero.
Thus and yield the linear system as

(@ v)g, — AtL(@™,q") =0, (3.45a)
(|72 (@@t -n] u) =o, (3.45h)
En

for all (v, ) € V5, (24) X Ap(E). This is indeed the HDG system shown in ([3.35))
with Resq = 0, Q¥ = q"*' and @; = 1. Since the HDG system has a unique solution,

the solution at the next time-step becomes zero, q"** = (0, 0).
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The IMEX HDG-DG methods is also well-balanced with a constant height
perturbation, q" = (C,0). Applying integration by parts to (3.44a) with a zero

forcing (i.e., s = 0), we have the nonlinear and linear term as

NL(G") = (V- Fne ("), v _<( ( ) ‘?NL(( )i))-nv>dg,

L@ ah) = (V- 5, (Q"“) ) = (T (@™ =) V), -

Since ¢, is a constant and U™ = 0, the volume flux term in NL(q™) vanishes because
of the divergence operator. From the conservation condition in , we have

= {{¢Z}} = C and U" = V" = 0. The surface flux term in N£ (q") also disappears
because the penalty terms in the numerical flux in become zero. The resulting

HDG system yields

(qn-I—l’ V)Qh o AtL( n—‘rl, qn—‘rl) (qn7 V)Qh ’ (346&)

(|72 (@) -n] ,u>€h —0, (3.46b)

for all (v,u) € V() x Ap(Er). Next, we define g"™' := q"*! — (C,0). From
(3.46b)), we have

=7 o FH@ D]+ o =77 [0 F@ )] + {a ) + (6 0).
(3.47)

By plugging (3.47) to the linear operator £(q"™!, q"™!), we can rewrite the HDG
linear system ([3.46|) as

(@ v)g, — AtL@.q") =0, (3.48a)

(|5 @@ -n) . u) =o, (3.48b)

En

for all (v, ) € Vi(2s) x Ap(Er). Since the right-hand side is zero and the HDG

system has a unique solution, we have @"™' = (0, 0), which means that q"™! = (C,0).
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(b) ¢ =1000s

(c) t =2000s

(d) t =3000s

Figure 3.15: Inertia-gravity wave: the snapshots of the potential temerature pertur-
bations at T" = [0, 1000, 2000, 3000]s. ARS2 with dt = 10s solutions are plotted on
the grid with (Ne,, Ne,) = (30,2) elements and solution order £ = 10. Contour levels
range from —0.0015 K to 0.003 K with 13 isosurfaces.
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(a) RK4 (dt = 0.1s)

(b) ARS2 HDG-DG (dt = 105)

Figure 3.16: Inertia-gravity wave: the potential temperature perturbations at T =
3000s are plotted for RK4 with dt = 0.1s and ARS2 with dt = 10s.

%1073
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Figure 3.17: The inertia-gravity wave: the potential temperature perturbations are
sampled at z = bkm along = € [0,300]km at 7' = 3000s. ARS2 of dt = 10s shows a
good agreement with RK4 of dt = 0.1s.

87



) t=300s
) t=600s ) t=900s

Figure 3.18: Rising thermal bubble: the snapshots of the potential temperature per-
turbations at T' = [0, 300, 600, 900] are plotted for ARS2 HDG-DG with dt = 0.5(C'r =
52.62). The numerical experiment is performed on the grid with (N,,, N.,) = (10, 10)
elements and solution order £ = 10. Contour levels range from 0K to 0.5 K with 11

isosurfaces.
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(a) RK4 (CFL=0.5262) (b) ARS2 (CFL=52.62)

Figure 3.19: Rising thermal bubble: RK4 with dt = 0.005s(Cr = 0.5262) and ARS2
with dt = 0.5s(C'r = 52.62) solutions at 7' = 600s.
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(b) t =300

(c) t=600s

® Sa.

(d) £ =900s

Figure 3.20: Density current: the potential temperature perturbations is evolved from
t =0stot=900s. ARS2 with dt = 0.2s(Cr = 1.7) is used for the simulation on
the grid with (Ne,, N..) = (32,8) elements and solution order k£ = 8. Contour levels
range from —9.5K to 0.5 K with 11 isosurfaces.
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(a) RK4 (dt = 0.045)

® S

(b) ARS2 HDG-DG (dt = 0.25)

Figure 3.21: Density current: RK4 with dt = 0.04s(Cr = 0.378) and ARS2 with
dt = 0.2s(Cr = 1.7) solutions at ¢t = 900s.
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Figure 3.22: Density current: the potential temperature perturbation is sampled at
z =1.2km along = € [0,15]km at 7" = 900s.
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Table 3.4: Comparison of the ARS HDG-DG schemes with the three-trace variables
(¢, U, V) in and the one-trace variable (¢,) in for the moving vortex
for F'r = 0.1: the errors and the convergence rates for the free surface elevation 7
and the velocity u, and wall clock time at T" = 0.2. The errors are computed over the
domain Q € [—2,2]* with 32 x 32 elements and p = 6 solution order.

p=6,32x32 | Cr | In°—nll, order | Ju®—ul, order | wc [s]
5.60 | 2.657E-05 - 1.717E-05 - 98.1

2.80 | 6.627E-06 2.003 | 4.294E-06 2.000 | 193.5
ARS2 (qgn) 1.40 | 1.655E-06 2.001 | 1.074E-06 2.000 | 380.3
0.70 | 4.130E-07 2.003 | 2.684E-07 2.000 | 759.8
0.28 | 6.618E-08 1.998 | 4.296E-08 2.000 | 1764.4

5.60 | 2.304E-06 - | 6.644E-07 - | 1624
2.80 | 2.901E-07 2.990 | 7.602E-08 3.128 | 319.5
ARS3 (¢,) 1.40 | 3.650E-08 2.990 | 9.633E-09 2.980 | 633.8
0.70 | 4.598E-09 2.989 | 1.691E-09 2.510 | 1220.9
0.28 | 3.328E-10 2.866 | 9.180E-10 0.667 | 2876.9

5.52 | 2.658E-05 - 1.717E-05 - 112.7
2.76 | 6.630E-06 2.003 | 4.293E-06 2.000 | 202.9
) | 1.38 | 1.656E-06 2.001 | 1.073E-06 2.000 | 407.7
0.67 | 4.140E-07 2.000 | 2.683E-07 2.000 | 758.8
0.28 | 6.623E-08 2.000 | 4.297E-08 1.999 | 1898.1

>
>
<

ARS2 (

7 )

5.52 | 2.305E-06 - 6.655E-07 - 192.5
2.76 | 2.902E-07 2.990 | 7.701E-08 3.111 | 348.7
) | 1.38 | 3.648E-08 2.992 | 1.029E-08 2.904 | 692.9
0.67 | 4.600E-09 2.988 | 2.603E-09 1.983 | 1355.0
0.28 | 4.331E-10 2.579 | 2.017E-09 0.278 | 3189.0

S
>
<

ARS3 (

7 )
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Chapter 4

EXPONENTIAL DG

As we have seen in Chapter [, the IMEX HDG-DG method requires a linear
solver, which means an appropriate preconditioner needs to be equipped for achieving
decent performance. However, developing such a preconditioner is not an easy task,
especially, for hyperbolic problems. This is why we propose an EXPONENTIAL DG
scheme [[] as an alternative method to the IMEX HDG-DG scheme. Similar to the
IMEX HDG-DG scheme, we separate governing equations into linear and nonlinear
parts, to which we apply the DG spatial discretization. The former is integrated
exactly, whereas the latter is approximated. Since the method does not require any
linear solve, it has a potential to represent the phase of the fast modes accurately and
to be scalable in a modern massively parallel computing architecture. The proposed
EXPONENTIAL DG method: 1) exploits high-order solutions both in time and space;
2) allows a large Courant number (Cr> 1); 3) does not require any linear solve; 4)

provides promising weak and strong scalable solutions.

We briefly describe the exponential time integrators including an adaptive
Krylov subspace approach in Section [4.1} In Section [4.2] we present the construction
of the linear operator for Euler equations by introducing a flux Jacobian. The compu-
tational performance of the method is discussed in Section [4.3| with several numerical

examples.

L' A manuscript is in preparation for the contents of this chapter. The contributions of the author
ranged from numerical implementation of the algorithm and writing the manuscript.
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4.1 Exponential time integrations

In this section, we briefly describe the key ideas behind exponential time in-

tegration methods. The readers are referred to [I0I] for more details.

We consider a linear initial value problem,

d
—=1Lq te(0.1), (4.1)

where ¢ is a quantity of interest; L is a linear operator and ¢(t = 0) = ¢, is the initial

condition. The exact solution is given as

q(t) = goexp(tL). (4.2)

For a nonlinear initial value problem,

d
L =Rl@). te(), (4.3)
by spliting the right-hand side into linear and nonlinear parts, i.e.,

d
— = Lq+N(g), te(0.1), (4.4)

AtL

and multiplying an integrating factor e™="*, we arrive at

At
gt = eAtg(tm) + / eBIN(g(t" + 0))do (4:5)

with the method of the variation of constants. This formula is exact. The first
term e“Lq(t") is the homogeneous solution, whereas the second term is the particular
solution that involves a convolution integral with the matrix exponential. Various
exponential integrators are proposed by approximating in different ways. For
example, the nonlinear term N(q(t" +¢)) can be approximated by Taylor expansions,

ie.,

/NI (g (4
N(g(t"+0)) =) (W) o, (4.6)
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By substituting (4.6|) into (4.5)), we have

gt = 2 () + Y (A1) pu(ALLNED (g(t)) (4.7)

with ¢y-functionsP} When k = 1, the first-order exponential time differencing (ETD1)
method [54] reads

q(t"h) = eBq(t") + Dty (ALLYN® (q(t")). (4.9)
When k = 2, the second-order ETD2 scheme [54] is obtained,
g(t"h) = B (") + Aty (ALLYNO (g(1))
+ Btipa(BLL) (NO(g(t7) = NO(g(t™1)) . (4.10)

where the first-order derivative of N is approximated by the finite difference method,

o NO((E)-NO (g(*=1))
ie., N ~ d )

On the other hand, one can use a polynomial to approximate (4.6)). The work

in [I97] shows that the solution of

dg Pl
- :Lq+2;ﬁNj, te(0,7) (4.11)
]:
is
p—1 j
g(t"h) = po(AtL)q(t") + > ) o1 (AEL)N;. (4.12)
7=0 [=0

With v;41 := N;, we rearrange (4.12)) as

g(t"") = o (AtL)(t") + Z(At)iapi(AtL) < ; (t”)ﬂ Ui-l—j) . (4.13)

i=1

2 pp-function for a scalar 7 argument is defined as

1 Zk—l
oi(T) :=/0 et =27 Fooi® (4.8)

with ¢o(2) := e?, ¢(0) = 7; and the recurrence relation of (¢x(7) — r(0)) 77 = pry1(7).
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We clearly see that the solution ¢(¢"!) is a linear combination of p-functions, i.e.,

p

(") = (At)ig(ALL)b; (4.14)

1=0

with by := ¢(t") and b; := ;’;é (t;!)j +j- That means (p+ 1) ¢-function evaluations

are needed. To reduce the computational burden on the evaluations, the authors [162]

have proposed the alternative form based on the recurrence relation (4.8]),
p—1 )m

g(t"t) = Z — + (AP, (AtL)w, (4.15)

m=0

with wy = ¢(t") and w; = Lw;_1 + >, ) vlﬂ fori =1,2,---,p. Only the action
of p,(AtL) on a vector w, is required. To compute ¢,(AtL)w,, we let L € R

wy,e; € Rfand J = (0 Jp1

0 0 ), and introduce an augmented matrix L € R(¢)*(E+p)

~ T
L= (g wﬂfl) . (4.16)

From the Theorem 1 of [190], the exponential of the augmented matrix yields

e to1(AtL)w t) o (AtL)w, --- t)Po tL)w

AL Nty (AtL)yw, (At)2py(AtL)w, At)Po,(AtL)w,
0 1 Lt (gt

ok _ |0 0 1 -2 . (4.17)
0 0 0 1 ot
0 0 0 1

AtL Ath

That is, the first ¢ entries of the last column of e~** gives the vector (At)Pe

P

ie.,

N €p

~ _ cR(€+p) % (£+p) ——
cR+p) cR(+p)

\((At)pwp(AtL)wﬁ NS (0> (4.18)

. T
where e, = (0,0,--- ,1)7 € R and @ = ((Ap? !1,--- ,At,l) .

96



However, the procedure in (4.15) may become sensitive to rounding errors
when a large coefficient of ¢-function is involved [82]. Thus, authors [82] have sug-

gested to compute (4.14) simultaneously with the generalized augmented matrix [5],

L= (g ?) : (4.19)

where B := (b, by, -+ ,b,) = bie] +bae] + -+ bpe,. The matrix exponential of the

augmented matrix (4.19) yields

0 1 Lt . (aget
1! (p—l)!2
- (At)r—
otk _ | Y 0 1 o -2)
0 0 0 1 ot
0 0 0 0 1
(4.20)

Now we can obtain the solution ¢(t"*1) by taking the top ¢ elements from the matrix

(q(t;“)) _ otk (ZZ) ' (4.21)

4.1.1 Krylov subspace projection-based methods

exponential,

Now, we need to explain how to evaluate the action of p-functions on a vector.
Since ¢-functions can be solved simultaneously using the augmented matrix (4.19)),
we focus on how e?b is approximated in Krylov subspace projection-based methods
[182]. Given a matrix A € R™" and a vector b € R™, we seek an approximation of
eb € Ko,

X, := span {b, Ab, A%, - - - ,Amflb}

in m dimensional Krylov subspace whose dimension is m << n. To that end, we

generate an orthonormal basis set

Vm = (Ul7v27' o avm)
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through Arnoldi iterations [I1], and project the action of A to the Krylov subspace,
AViy = VinHy + Do 1.mVUm1€5 (4.22)

where H,, = V' AV,, € R™™ is the Hessenberg matrix; h;; E| is the element of H,,;
and e,, € R™ is the mth canonical unit vector. Now, the action of e? on b can be

approximated with the small matrix H,, by

e b ~ Ve VI = ||b]|, Vinem e (4.23)

b
o]l

of eflm is less expensive than that of e?. Next, we evaluate the matrix exponential of

and Vn{vl = e;. Note that the size of H,, is m-by-m. The evaluation

with v; =

eflm using Padé approximation via the scaling and squaring method [5].

The accuracy of the approximation (4.23) relies on the size of the Krylov

subspace, m and the distribution of the eigenvalues of A. By Theorem 2 in [190)] EL

the error (4.23) satisfies

b — bl Vine™ e1 = bl hunsim S oy (Hn)er AT vn. (4:25)

J=1

€

This suggests a posteriori error estimate,

lelly 22 118l [|Am+1,memer (Hmen || (4.26)

under the assumption that the magnitude of ¢; dominates the error. The a poste-

riori error estimate is easily computed by introducing an augmented matrix H,, €

3 Bunt1.m can be considered as a residual of the projection of A onto the Krylov subspace X, [82].
4 We obtain ([4.25) when p = 0 from Theorem 2 in [190], which states that

p(TA = [[blly Vinpp(THm)er = [blly Thinsrm D emei(THm)er (TAY 7 omgn. (4.24)
Jj=p+1
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R(m+1)><(m+1)

T Hm €1
H,, = ( 0 O) , (4.27)
and computing its matrix exponential
_ Hyp,
D) .

Once we know the error estimate, we can control the accuracy of the approximation
. If the spectrum of A is broad, then we can either expand the Krylov subspace
or downsize the eigenvalues of A. When A = AtL (in (4.20)), we can split At into
a sum of smaller intervals, i.e., At =73 + 7 + - - - + 7%, and approximate the matrix

exponential iteratively [

ePthy = emk (- (e (e™D))) . (4.29)

Based on a posteriori error in (4.26]), the authors [162] have developed phim
algorithm to carry out the matrix exponential efficiently by adaptively adjusting the
size of the Krylov subspace and the number of sub-steps. Along the line, recently,
KIOPS in [82] and phipm /IOM2 in [I33] have been developed to improve the adap-
tive Krylov algorithm phim by replacing the Arnoldi iteration with the incomplete

orthogonalization procedure [I19].

4.2 Governing equations and spatial discretization

In this section, we focus on the construction of the linear L and the nonlinear
operator N in (4.4). The linear operator should capture the rapidly changing charac-

teristics of the system for accuracy and stability of exponential integrators. Due to

5This is equivalent to a time-stepping method with the small time intervals.
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this reason, we utilize Jacobian 81;—((;’) of the right-hand side R(q) in (4.3)). By adding

and subtracting the Jacobian, we construct the linear and the nonlinear operator
as follows: Lq = 81;—((;]) and N(q) := R(q) — Lq. Indeed, this choice transforms the

first-order ETD1 in (4.9) to the second-order EPI2 [202],
" =q" + Atp (LAY R"
where ¢" ™! = q(t"™), ¢" = q(t"), N* := N(¢") and R" := R(q"). We will numerically

demonstrate the benefit of using Jacobian as the linear operator in Section 4.3.1

4.2.1 Constructing a linear and a nonlinear operator in DG

Given a partial differential equation (PDE),

oq
LT = 4.
; +V.-F=s, (4.30)

we split the full flux tensor into a linear (stiff) part V- F, and a nonlinear (non-stiff)

part V- (F — F1) at a continuous level
—+V - F,+ V- (F-F) =s, (4.31)

then we apply the DG spatial discretization to (4.31). The DG discretization of the
decomposed system reads: seek q € V;(£2;) such that
0
(—q, v) — Lq+N(q), (4.32a)
ot o
for all v € V,(Qy,), where
N(a) = (Ix(a),Vv)q, — (I% (qi) : n,v>6Qh ’

Lq= (F.(q),VVv),, +(s(a),v)q, — <?z (qi) : 1’1,V>th

6 This approach avoids taking a partial derivative of the stabilization parameter in a numerical
flux.
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for the weak form and
N(a) == (VIn(a),v)g, — (T (aF) = In(a)) 'n7v>aﬂh ;
Lq=—(VTFL(q),v)q, +(s(q),V)g, — <(5Fz (qi) -J (q)) "1, V>e—mh

for the strong form. Here, Fy := F — J is a nonlinear flux; 5 = §* — J] is a

nonlinear DG numerical flux; and J7 is a linear DG flux.

4.2.2 Euler equations

We consider Euler equations

% + V - (pu) = Sp, (433&)

85;: + V- (pu®@u+pl) = s, (4.33b)
E

6gt + V- (puH) = s,p, (4.33¢)

where p is the density; u is the velocity; p is the pressure; pE = pe + 3p |ul|* is the
total energy; e = % is the internal energy; H = E + % = 7“—_: + % lu|® is the total
specific enthalpy; a = \/% is the sound speed; v is the ratio of the specific heat; J is

the rank-1,2 or 3 identity matrix; and s is a source term.

For simplicity, we focus on one-dimensional Euler equations. The core of the
linearization is to introduce a flux Jacobian. In a compact form, (4.33) can be written

as

dq  0F(q)

ot ox

+s (4.34)

with q = (p, pu, pE)", s = (8., Spu, Spr)” and F(q) = (pu, puu+ p, puH)". We define

the flux Jacobian A := g—F by
q

A= (v = 3)u? (3—"7)u vy—11, (4.35)



evaluate A at a reference state q, and construct the following linear flux, Fj :=
A(Q)q = Aq. By adding and subtracting the linear flux, we decompose (4.34) into

the following form,

dq ( OF(q) 0Aq _aflq
E < Dy + o + o +s]. (4.36)
N(a) Lq

By multiplying a test function v to (4.36)), integrating by parts twice for each element

and summing all the elements, we arrive at the strong formulation: seek q € V()

dq [ OF(a)  0Aq
(8t’v)9h_< or " on V),
h

such that

(o () -3 4, o
for all v € V;(€2,). As for the numerical flux, we use Roe flux [I79] for both F*(q*)
and (Ag®)*, i.e.,

F*(a*) = {F(@)} + 51A(a)][d] (4.35)

(Aa*)" = {fAa)} + 5 1A, (1.35b)

where |A| := R|A|R™!, |A| = diag(|u — al, |ul, [u + a]) absolute eigenvalues,

1 1 1
R: u—a U U+ a
H—-—au % H-+au

2

[V
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right eigenvectors and its inverse

(UM Ery O E - G
Rrl=|1-()E poux R
(a5 -CHa+d B

whose rows are left eigenvectors. The readers can refer Appendix [A] for the flux

Jacobian of two- or three-dimensional FEuler equations.

4.3 Numerical Results

4.3.1 A system of two ordinary differential equations (ODE)

We consider the autonomous system of two ODEs proposed by [54]

du(t)

=cu—v+ (M — cu)r? (4.39a)

dv(t)
dt

=u+cv — (M + cu)r? (4.39b)

where 72 = u? + 0%, ¢ > 0 constant, u = rcosf, v = rsinf. The exact solution is

given by

rP(t) =1y (rg (L—e7>) + e, (4.40a)

0(t) = 0o+ (1 = Nt — Qiclog (rg (1—e ")) + e (4.40D)

For a numerical simulation, we take ¢ = 100, A = 1/2, ug = u(0) = 2 and
vo = v(0) = 1. The exact solution with the parameters is shown in Figure The

magnitude and the phase of the solution rapidly change within a short period.

How do we choose a linear operator to capture the characteristics of a rapidly
changing system? To address the question, we consider the two linear operators: the

dynamic Jacobian operator

o OR (=1 +200v —cu)u =1+ N+ 2N\ — cu)v
bai= (5’(16,1))) N ( 1= M2 =2Mu+cv)u (1 —7r?) —2A\u+ cv)v) (4.41)
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Figure 4.1: System of two ODEs: (a) magnitude and (b) phase of the exact solution

of (A-404).

10° 10°
102+
o 10 %
- 10 > 104 -
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1010}
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Figure 4.2: System of two ODEs: time convergence study of ETD1-L, ETD1-J and
EPI2. We observe the first-order convergence rate for ETD1-L and the second-order
convergence rate for ETD1-J and EPI2. The use of Jacobian improves not only the
accuracy, but also the stability of ETDI.

evaluated at each timestep t", and the constant linear operator [54]

L.:= G —01> . (4.42)

Figure demonstrate the benefit of the dynamic Jacobian in terms of accuracy.
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Figure 4.3: System of two ODEs: time convergence study of ARS111-L, ARS111-
J and EPI2. ARS111-L shows the first-order convergence rate, whereas ARS111-J
shows the first-order convergence rate near 10~* timestep size, but the second-order
convergence rate as loosen the timestep size.

We measure the errors of magnitude r and phase # at 7" = 1 for ETD1 and EPI2
methods. ETDI1-L and ETDI1-J stand for ETD1 method with the constant linear
operator and the dynamic Jacobian , respectively. The error of ETD1-L
shows the first-order convergence rate in both the magnitude and the phase errors,
whereas ETD1-J counterpart shows the second-order convergence rate. Not only that,

ETD1-J allows larger timestep size than ETD1-L. This demonstrates the importance

of using the dynamic Jacobian.

We also perform the time convergence study for ARS111 in Figure[d.3] ARS111-
L and ARS111-J stand for ARS111 method with the constant linear operator
and the dynamic Jacobian , respectively. ARS111-L shows the first-order con-
vergence rate, whereas ARS111-J shows the first-order convergence rate near 1074
timestep size, but the second-order convergence rate as loosen the timestep size. This
implies that the error associated with the fast modes starts to dominate as tighten

the timestep size. We also notice that the difference of the phase error between
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Table 4.1: System of two ODEs: time convergence study of ARS111 and ETDI.
Using Ly gives better stability and accuracy than using L.. With the small timestep
size (dt < 107%), ETD1 solutions are more accurate than ARS111 solutions.

I dt ETD1 ARS1
|r —r¢|| rate ||@ —6°| rate | |r—r°|| rate |60 —6° rate
2.0E-5 || 1.3E-08 - 52E-04 - | 38E-08 - 1.0E-03 -

5.0E-5 || 3.1E-08 1.0 1.3E-03 1.0 | 94E-08 1.0 26E-03 1.0
1.0E-4 || 6.2E-08 1.0 2.6E-03 1.0 | 1.9E-07 1.0 5.2E-03 1.0
2.0E4 || 1.3E-07 1.0 5.2E-03 1.0 | 3.8E-07 1.0 1.1E-02 1.0
5.0E4 || 3.1E-07 1.0 1.3E-02 1.0 | 99E-07 1.0 27E-02 1.0
1.0E-3 || 6.1E-07 1.0 26E-02 1.0 | 2.1E-06 1.1 5.6E-02 1.1

2.0E-5 || 1.7E-11 - 2.8E-08 - 1.3E-08 - 2.1E-06 -
5.0E-5 || 1.0E-10 2.0 1.8E-07 2.0 | 3.1E-08 1.0 5.2E-06 1.0
1.0E-4 || 4.2E-10 2.0 7.5E-07 2.0 | 6.1E-08 1.0 1.0E-05 1.0
2.0E4 || 1.7E-09 20 3.2E-06 2.1 | 1.2E-07 1.0 20E-05 1.0
Ly | 5.0E4 || 1.1E-08 2.0 23E-05 2.1 | 2.8E-07 0.9 54E-05 1.1
1.0E-3 || 44E-08 2.0 9.2E-05 2.0 | 5.0E-07 0.8 1.6E-04 1.5
1.0E-2 || 6.3E-06 2.2 48E-03 1.7 | 6.3E-06 11 9.0E-03 1.8
1.0E-1 | 1.1E-03 2.2 16E-01 1.5 | 1.1E-03 23 18E-01 1.3
1.0 6.0E-01 2.7 5.2E-01 0.5 | 6.0E-01 27 52E-01 0.5

ARS111-L and ARS111-J is relatively larger than that of the magnitude error. The
same behavior is observed between ETD1-L and ETD1-J. The dynamic Jacobian L,
significantly improves the phase error. We tabulate the time convergence results in
Table[d.1l We see that ETD1 solutions are more accurate than ARS111 solutions with
the small timestep sizes (dt < 1073). This makes sense because the IMEX scheme
is known to damp out the high-frequency modes in the system, whereas exponential
integrators exactly treat the fast modes. In particular, exponential integrators sub-
divide a timestep size At into several sub-steps At = 71 + 75 + -+ and march the
approximation step-by-step similar to an explicit time integration method. Overall,

exponential integrators are promising in the sense that it is not only accurate but
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also stable with a large timestep size.

4.3.2 Isentropic vortex translation

We study an isentropic vortex example [234], where small perturbations of
a vortex are added to a uniform mean flow and are translated without changing
its shape. The mean flows are set to be (Us, Voo, Poos Io) = (0.2,0,1,1) and the

perturbations are given as

A (1
o= el (g — ),
F_ A (1)
v = —i-%e (x — z.),
(0 =DX s
1672

with r = ||x — x.[|, x. = (5,0), and A = 0.05 the vortex strength. The exact solutions

are generated from the isentropic relation,
o= (T + T/)l/(“ffl) )

We take v = 1.4 and the domain Q = [0, 10] x [—5,5]. Periodic boundary conditions
apply to all directions. For a three-dimensional simulation, we take the zero vertical

velocity, w = 0 and extrude domain vertically, € = [0, 10] x [—5,5] x [0, 1].

We perform the simulation for ¢ € [0, 10] on the grid with k£ = 12 solution order
and N, = 256 elements in Figure 1.4 For time discretization, RK4 with C'r = 0.86,
EPI2 with Cr = 85.56 and EXPRB42 [133] with C'r = 85.56 are chosen. As can be
seen in Figure [1.4(b) and Figure [{.4c), EPI2 and EXPRB42 can use one-hundred
times larger timestep size than RK4, and still capture the vortex movement. However,
we see the solution of EPI2 degrades due to the time truncation error in Figure

4.4(b). To alleviate the error, we can use a high-order time integration method.
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For example, in Figure (c), the time truncation error of EXPRB42 is significantly

reduced compared to EPI2 counterpart.

1.00002 1.00002 1.00002

1 1 1

0.99998 0.99998 0.99998

0.99996 0.99996 0.99996

0.99994 0.99994 0.99994

0.99992

b 099992 \ ,] 099992 v
{ : ’
0.9999 v 09999 \‘(« 0.9999 v
5 5 5

(a) RK4 with C'r = 0.86 (b) EPI2 with Cr = 85.56 (c) exprBaz with Cr = 85.56

Figure 4.4: Isentropic vortex example to the two-dimensional Euler equation is sim-
ulated from ¢ € [0,10]: (a) RK4 with Cr = 0.86, (b) EPI2 with Cr = 8.56 and (c)
EXPRB42 with Cr = 85.56 are chosen for k£ = 12 and N, = 256 spatial discretization.

To examine the error growth rate, time convergence studies are conducted with
k = {8, 16} solution order for t € [0, 1] on a uniform and a non-uniform mesh in Figure
[4.5] The results for p on a uniform mesh are summarized in Figure [4.6] and Figure
[1.7] In Figure [4.6(a), we observe the second-order convergence rate of EPI2 and the
fourth-order convergence rate of EXPRB42 in a wide range of Courant number.The
errors are saturated at O(1073) error level, from which the spatial discretization error
starts to dominate. In Figure [1.6(b), we see that the high-order EXPRB42 scheme is
beneficial compared to the second-order EPI2 at O(1071%) error level. However, we
still see that RK4 scheme is more economical than EXPONENTIAL DG methods at
O(10713) error level. When we increase a spatial discretization error, however, the

wall clock time of EPI2 becomes comparable to that of RK4 in Figure [4.7]

On the non-uniform mesh, we start to see the benefit of EXPONENTIAL DG
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Figure 4.5: (a) Uniform mesh with N, = 256 elements and (b) non-uniform meshes
with N, = 250 elements.
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Figure 4.6: Isentropic vortex translation in two dimensions: time convergence study
for (a) accuracy and (b) efficiency on a uniform mesh. The computational domain is
discretized with N, = 256 and k£ = 16.

schemes. In Figure [4.§|(b), the wall clock time of EXPRB42 becomes comparable to
RK4 at O(107!2) error level. We add a spatial discretization error by lowering the

solution order from k = 16 to k = 8. We clearly see the computational gain in Figure

[.9(b). At O(107°) error level, EPI2 is two times faster than RK4.
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Figure 4.7: Isentropic vortex translation in two dimensions: time convergence study
for (a) accuracy and (b) efficiency on a uniform mesh. The computational domain is
discretized with N, = 256 and k = 8.
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Figure 4.8: Isentropic vortex translation in two dimensions: time convergence study
for (a) accuracy and (b) efficiency on non-uniform mesh. The computational domain
is discretized with N, = 250 and k = 16.

Figure shows snapshots of advecting isentropic vortex at ¢ = [0, 10, 25].
For spatial discretization, we take N, = 6400 elements and k = 8 solution order. For

time discretization, we choose EPI2 with dt = 0.25(C'r = 27.9). We see the center of

the vortex is located at lateral boundary at ¢ = 25, because the mean speed of the
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Figure 4.9: Isentropic vortex translation in two dimensions: time convergence study
for (a) accuracy and (b) efficiency on a non-uniform mesh. The computational domain
is discretized with N, = 256 and k = 8.

flow is 0.2 and the half-length of the domain is 5.

(a) t=0 (b) t =10 (c) t =25

Figure 4.10: Isentropic vortex translation in three dimensions: snapshots for (a) EPI2
with Cr = 27.9(dt = 0.25). Simulations are performed on the grid with N, = 6400
and k = 8 solution order for ¢ € [0, 20].

Now we study the parallel performance of the Exponential DG methods. To
this end, we have implemented the adaptive Krylov subspace method [82] on top
of the DG finite element library written in C++, which is the spin-off library from
mangll [223|. For computing a matrix exponential, we use EIGEN C++ library. Par-
allel implementations mainly focus on vector-vector multiplication and matrix-vector

multiplication. The matrix-vector multiplication is carried out in a matrix-free man-
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ner by calling the linear operator Lq in (4.32)). By the virtue of the DG discretization,
the computation of Lq is embarrassingly parallel. For a dot product (vector-vector
multiplication), we initially scatter a global vector to each processor, and then we
perform the dot product with the local vector. Next, we call MPT ALLreduce func-

tion.

Parallel simulations are conducted on Stampede2 at the Texas Advanced Com-
puting Center (TACC). Stampede 2 provides 4,200 Knights Landing (KNL) nodes and
1,736 Skylake (SKX) nodes. Each node of KNL consists of 68 cores of Intel Xeon Phi
7250 1.4GHz processors, 96 GB of traditional DDR4 RAM, and 16 GB high-speed
MCDRAM. Each node of SKX consists of 48 cores of Intel Xeon Platinum 8160 2.1
GHz processors and 192GB DDR4 RAM. The interconnect is a 100 GB/s Intel Omni-
Path (OPA) network with a fat-tree topology. We conduct strong and weak scaling

studies on SKX system.

In Table [4.2] strong scaling results of EPI2 are compared with RK4 counter-
part. Domain is discretized with N, = 6400 elements and k£ = 8 solution order. We
take dt = 0.25(Cr = 27.9) for EPI2 and dt = 0.005(Cr = 0.56) for RK4 and perform
the simulations up to ¢t = 2. In general, EPI2 is comparable to RK4 in terms of wall
clock time. The efficiency [|of EPI2 is slightly better than RK4 counterpart. For both
EPI2 and RK4, we see the efficiency drops as increasing the number of processors.
This is because the number of elements per core decreases as increasing cores so that

the communication cost starts to dominate over the computational cost.

Next, we assign additional elements to each processor by refining the mesh.

Table compares the efficiencies of two different spatial discretization: (i) N, =

7 Efficiency is defined by % with T serial wall clock time and 7, parallel wall clock time. Here,

we approximate Ts ~ Tpase X NPpase Where Tpqse is parallel wall clock time with nppgse cores.
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Table 4.2: Isentropic vortex translation in three dimensions: strong scaling results for
EPI2 with Cr = 27.9(dt = 0.25) and RK4 with Cr = 0.56(dt = 0.005) are performed
with N, = 6400 and k£ = 8 solution order up to t = 2.

EPI2 RK4
#cores | Ne/core Wall clock [s] Efficiency | Wall clock [s] Efficiency

32 200 1283 100 1014 100

64 100 537.3 119.4 501.6 101.1
128 50 4248 75.5 315.5 80.3
256 25 148.6 107.9 225.9 56.1
512 12.5 114.1 70.3 118.1 53.7
1024 6.3 64.38 62.3 64.49 49.1
2048 3.1 39.38 50.9 37.11 427
4096 1.6 24.39 41.1 20.17 39.3

51200 elements and k = 6 solution order, and (ii)N, = 6400 elements and k& = 8
solution order. As expected, efficiency with the former discretization is higher than

the latter.

To understand the effect of the timestep size on efficiency, we conduct strong
scaling tests with two different timestep sizes, dt = 0.125 and dt = 0.25, on the
mesh with N, = 51200 elements and k£ = 6 solution order. As shown in Table [4.4]
the efficiency with dt = 0.125 is a little bit higher than that with dt = 0.25. This is
because the latter case involves more Krylov iterations than the former case. The total
number of Krylov steps involved exponential time integrations is 561 for dt = 0.125
and 1024 for dt = 0.25. This implies that the spectrum of the linear operator becomes

broad by increasing the timestep size.

Based on the above observations, we conduct the strong scaling test for EPI2
with Cr = 8.1(dt = 0.03125), N, = 3,276,800 and k = 4 solution order. We use the
consecutive processors, np = {16, 32,64, 128, 256, 512, 868} x 48 so that the number of
elements per core becomes {4266.7,2133.3,1066.7, 533.3, 266.7, 133.3, 78.6}. In Figure
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Table 4.3: Isentropic vortex translation in three dimensions: strong scaling results for
EPI2 with different degrees-of-freedoms (DOF). For the number of DOF (NDOF) of
17,561, 600, simulations are performed on N, = 51200 and k = 6 solution order with
dt = 0.25(Cr = 32.98) up to t = 1, whereas for NDOF of 4,665, 600, simulations are
performed on N, = 6400 and k = 8 solution order with dt = 0.25(C'r = 27.93) up to
t=2.

Leores NDOF = 17,561,600 | NDOF = 4,665, 600

N./core  Efficiency | N./core FEfficiency
32 1600 100 200 100
64 800 97.9 100 1194
128 400 82.7 50 75.5
256 200 85.7 25 107.9
512 100 61.9 12.5 70.3
1024 50 59.2 6.3 62.3
2048 25 55.0 3.1 50.9
4096 12.5 51.4 1.6 41.1

4.11] the speedup Fj factor shows a good strong scalability up to 41664 cores (which

is the maximum cores in Skylake system in TACC).

Now we perform the weak scaling test. For the weak scaling test, we assign the
same amount of work to each processor while increasing the number of processors. We
discretize the domain with N, = {1, 8,64, 512,4096} x 100 elements and k = 8 solution
order, and decompose the domain with np = {4, 32,256,2048, 16384} processors.
That is, we make the number of elements per core to be 25. We also keep the Courant
number fixed so that the total number of Krylov steps, Nkyyion to be uniform. We
have tabulated the weak scaling results in Table . We observe that Ng,y0, tends
to be linearly proportional to the Courant number. We also see that the increment
of wall clock time is relatively small for a fixed Courant number. We plot the average

time per timestep against the number of degrees-of-freedom in Figure[4.12] from which

8 Speedup is defined as % with T serial wall clock time and T}, parallel wall clock time.

114



Table 4.4: Isentropic vortex translation in three dimensions: strong scaling results
for EPI2 with Cr = 16.49(dt = 0.125) and Cr = 32.98(dt = 0.25) are performed with
N, = 51200 and k£ = 6 solution order up to t = 1.

dt = 0.125 dt = 0.25
#cores | Ne/core Wall clock [s] Efficiency | Wall clock [s] Efficiency

32 1600 2346 100 4151 100

64 800 1199 97.8 2121 97.9
128 400 607.7 96.5 1255 82.7
256 200 306.9 95.6 605.7 85.7
512 100 237.3 61.8 419.1 61.9
1024 50 122.7 59.7 219.1 59.2
2048 25 61.33 59.5 118.0 55.0
4096 12.5 33.72 54.4 63.12 51.4

we see exponential DG methods shows a good weak scaling result.

Table shows that the total number of Krylov steps linearly depends on the
timestep size and the refining level. We refine the mesh by factor of two along x,y and
z direction. That is, we add geometrically-induced stiffness to the system. This is why
we see the wall clock time tends to increase with the number of degrees-of-freedom.

The corresponding wall clock times are summarized in Figure [£.13]

4.4 Discussions

In this chapter, we have developed an EXPONENTIAL DG framework where
we construct the decomposed system of by adding and subtracting a linear
term, and employ the adaptive Krylov subspace projection-based methods. In partic-
ular, to accommodate rapidly varying characteristics in the system, we take a dynamic
flux Jacobian as the linear operator. Besides, we split the system at a continuous level
instead of a discrete one. This approach avoids taking the complicated derivatives of

the stabilization parameter in the DG formulation.
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Number of cores

Figure 4.11: Isentropic vortex translation in three dimensions: strong scaling study
for EPI2 with Cr = 8.1(dt = 0.03125). The computational domain is discretized with
N, = 3,276,800 and k = 4 solution order for np = {16, 32,64, 128,256,512, 868} x 48.

The purpose of our approach is threefold: (i) to use larger timestep sizes
(compared to explicit integrators); (ii) to accurately capture rapidly varying charac-
teristics (compared to IMEX schemes); (iii) to achieve good scalable performance for

large-scale simulations;

Numerical results demonstrate that exponential DG methods are stable and
achieve larger timestep sizes. Depending on the spectrum of the dynamic Jacobian,
the adaptive Krylov subspace methods automatically adjust the size of Krylov sub-
space and the sub-step intervals. Compared to the fourth-order explicit RK method,
the EXPONENTIAL DG scheme can be beneficial when a non-uniform mesh is in-
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Table 4.5: Isentropic vortex translation in three dimensions: weak scaling results for
EPI2 with fixed Courant numbers. Each core has 18,225 degrees-of-freedom (=25

elements and 8th solution order).

Cr N, \ dt \ Final time \ Wall clock |[s] \ Niryiov
4 0.2 0.8 15.3 103
5 59 32 0.1 0.4 17.8 90
256 0.05 0.2 24.4 81
2048 | 0.025 0.1 27.8 81
16384 | 0.0125 0.05 29.3 82
4 0.2 0.8 50.4 397
99 4 32 0.1 0.4 89.9 381
256 0.05 0.2 85.8 355
2048 | 0.025 0.1 86.9 348
16384 | 0.0125 0.05 93.1 358
4 0.2 0.8 130.9 1024
55.9 32 0.1 0.4 240.4 1023
' 256 0.05 0.2 246.2 1024
2048 | 0.025 0.1 248.8 1024
16384 | 0.0125 0.05 342.2 1408

voled. Since a mesh refinement technique is necessary tool for complex simulations,

the EXPONENTIAL DG scheme would be a viable option to overcome the timestep

size restriction.

Parallelization of the adaptive Krylov subspace method involves matrix-vector
and vector-vector multiplications. The matrix-vector product is performed in a
matrix-free manner using the DG method, which is embarrassingly parallel. The
vector-vector product (dot product) requires global communication, but the com-
munication cost is relatively small compared to the computational cost. From the
weak and the strong scaling tests, we observe that the EXPONENTIAL DG method

provides a promising scalable solution to Euler systems.
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Figure 4.12: Isentropic vortex translation in 3D: weak scaling study with
fixed Courant numbers. The computational domain is discretized with N, =
{1,8,64,512,4096} x 100 and k = 8 solution order for np = {4, 32, 256, 2048, 16384},
respectively, so that each processor has 25 elements.

In future work, we focus on extending the idea to various PDE and optimizing

the performance of exponential time integrators. Besides, the stability analysis of

exponential DG schemes is also of interest.
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Table 4.6: Isentropic vortex translation in three dimensions: the total number of
Krylov steps, Ngyyio0, linearly increases by (i) the refining level, and (ii) Courant

number.

0t N, =100 N, = 800 N, = 6400 N, = 51200
Cr NKrylov Cr NKrylov Cr NKrylov Cr NKrylov
0.025 || 0.7 40 1.4 40 2.8 45 5.6 81

0.25 7.0 128 14.0 233 27.9. 448 55.9 1024
2.5 ]/ 69.8 1536 | 139.7 3072 | 279.32 5120 | 558.7 10112

3L
10 - |-+-dt=0.025 22048
- |—#=dt=0.25 “_f-"’
| |-B-dt=2.5 056"
32 e -
/E-_-_

20 .
10 i -~ 2048

Wallclock/ Timestep [sec]

Number of degrees-of-freedom

Figure 4.13: Isentropic vortex translation in three dimensions: weak scaling study
with fixed timestep size. The computational domain is discretized with N, =
{100, 800, 6400, 51200} and k = 8 solution order for np = {4, 32,256, 2048}, respec-
tively, so that each processor has 25 elements.
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Chapter 5

Sliding-mesh Interface

In this chapter E], we are interested in simulating rotating flows. Inspired by
[233], we develop a sliding-mesh interface in the context of (hybridized) DG spatial
discretization. The key ingredients are to utilize mortar interfaces and Arbitrary
Lagrangian-Eulerian (ALE) method. To handle nonconforming meshes, we introduce
a mortar interface such that only two adjacent elements are allowed. In this manner,
we only treat conforming mortar interfaces, where we construct projection operators
to transfer data from a face to a mortar, vice-versa. When a mesh rotates, the size
of the mortars between stationary and rotating meshes dynamically changes. To
treat a moving mesh, the ALE method is employed. Within the ALE framework, the
motion in the stationary and the rotating meshes can be described in terms of the

deformation gradient and its Jacobian.

This chapter is organized as follows. Section explains the curved noncon-
forming treatment in (hybridized) DG spatial discretization. In Section [5.2] we recall
ALE methods for linear and curved elements. Section B.3] combines the curved non-
conforming mesh and ALE method to realize the sliding mesh interface. We perform

several numerical experiments to demonstrate the idea.

L A manuscript is in preparation for the contents of this chapter. The contributions of the author
ranged from numerical implementation of the algorithm and writing the manuscript.
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5.1 Nonconforming mesh treatment

A (non) conforming interior interface = is shared by two neighboring elements
KT and K~ where we denote ¢* as the trace of the solutions from K*. Figure
shows an example of a nonconforming mesh. Mortar element =, is shared by volume
elements K and Ks. To compute a numerical flux on =N K5, we project the solutions
on K; and K, to =1, compute the numerical flux on =;, and then project it back to
=1 N Ky. Similarly, we compute the numerical flux on =, N K3 by projecting the
solutions on K; and K3 to Z5. We construct the numerical flux such that the amount
of the numerical flux on {Z;,=Z5} N K is the same as the sum of the numerical flux

computed on =Z; N K, and on =, N K in the sense of L? projection.

w

VA

—_

=2

(a) A nonconforming mesh. (b) A mortar decomposition.

Figure 5.1: Examples of (a) a linear nonconforming mesh and (b) a mortar decom-
position. The mortar elements conform to the volume elements K; and Ks.

To that end, we define two projection operators: PUSH=F from a face to a

mortar and P75 from a mortar to a face. We denote approximated solutions by

Nip

ul = Z@(f)(ﬂ(&f))j (5.1)
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on a face f of an element K, and

S

[1

W= 5:2)

<.
Il
-

on a mortar element =, where ¢ € V,(K, f) and / € A,(Z) are the Lagrange basis
functions defined on the face and the mortar; u|k s is the trace of u on the face f
and the element K; £ € [—1,1] is the parameterization of the face coordinate x/ and

z € [—1,1] is that of the mortar coordinate x=.

Since both the mortar = and the face (K, f) share the intersection, we can
relate ¢ and z in terms of the offset 0% and the stretch s= by £ = 0= + s52z. In case of

a linear element as shown in Figure the offset and the stretch are given as

E_tEtai -l —w s -y (5.33)
h — ] +yy —yl

ol —x] vyl —yf

When a mortar Z is on a circle | (centered at (z,,y,) with a radius r) as shown
in Figure , we can write x/ € [x,xJ] = [x](6]),x}(6])] and x= € [xT,x5] =
(xT(0F),x5(03)] in terms of 6 only . Then we parameterize the angle 0 € [07,0]]
with £ € [-1,1] and 0 € [0F,65] with z € [—1, 1], which results in the offset and the

stretch as

= 05 +0F -0, —0f

a 9 5.4a
05 — 0] (54e)

. 0507
s5 =2 L 5.4b
05 — 0] (5.4p)

2 To deal with a curved element, we use Golden-Hall blending [90].
3 The physical coordinate on the circle is a function of an angle 6 with a given radius r € R, i.e.,
r=2x,+rcosf and y = y, + rsinf.
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(a) A curved nonconforming mesh. (b) A mortar decomposition.

Figure 5.2: Examples of (a) a curved nonconforming mesh and (b) a mortar decom-
position. The mortar element m; is shared by two volume elements K; and K, for
1=1,2 and 3.

5.1.1 Projection operator from a face to a mortar

We define the projection operator PE:)=E : V,(K) 3 ul|x; — u= € Ay(Z)

such that

(' —u=,0)_ =0, (5.5)

holds for all & € A,(Z). By expanding u/ and = with (5.1)) and (5.2), and taking

b=1; € A, (Z), we have the discrete projection operator as

= _ NI-1RE , f
u; = M;; Bj, .. (5.6)
——
pUE.)E
ik

Here, M = <l@(z), Aj(z)JsE> and BE = <£Ai(2),£j(05 + 352)JSE>

[-1,1] ~1,1]
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5.1.2 Projection operator from a mortar to a face

Once the numerical fluxes are computed on the mortar element, they need
to be projected back to the adjacent faces. We interpret the surface integral on
an element face (in local solver) as the sum of the individual contributions from its

adjacent mortar elements, ¥ = {Z|=2N (K, f) # ¢}, ie.,

<n F(x) >Kf - Z< FE(x >H (5.7)

— =
=1

for all v € V},(K). By approximating the numerical fluxes on the face and the mortar,

ie, n-F(x) = ((x) (n . 1:"> “and n - FSi(x) = ;(x) (n : FE> , we can define the
j j

projection operator from the mortar to the face PE=U5 1 Ay (Z) 3w — u|x s €

<uf - Z uEi,vf> =0, (5.8)
= ()

By expanding v/ and v= with (5.1]) and (5.2)), and taking v/ = ¢; € V,,(K)|y,

Vi(K) requiring that

holds for all v/ € V;];.

we have the discrete projection operator as

ul = > M;'BY W3, (5.9)

=,EX Pﬂ;(K P
; =, =. o =. ~ o\ T
where My, = (6(6), 6;(€)J) ), BY = <£i(o~z +s~zz),£j(z)J;z>(_l = (B(”> ,

J, is the geometric Jacobian of the element face (K, f) and J=i = J,s=i.

We construct the projection operator satisfying (5.7), which means that we can
replace the surface integral shown in a weak form with the sum of mortal integrals,

ie.,

<n F(x), %K - Z <n FE(x), U>EQ8K , (5.10)



For example, the surface integral

can be replaced with

<n PR (x), U>El + <n CFE2(x), v>ﬁ2 + <1’1 FE3(x), U>53 ,

for a conforming element in Figure (a), and

4

Z <n CFE(x), v>: :

i=1 =
for a nonconforming element in Figure (b) From this perspective, we do not need

to project the numerical flux computed on a mortar back to the adjacent faces.

K,

=1 1

(a) A conforming element (b) A nonconforming element

Figure 5.3: Examples of (a) a conforming element and (b) a nonconforming element.

5.1.3 Watertight mesh

When a polynomial approximation does not fully resolve a curved face, a
geometrically induced aliasing error occurs. Suppose the curved face is shared by
two conforming elements, each of which approximates the curved face with the same
polynomial order N. In this case, there are no gaps between two adjacent faces,
because each of the elements commits the same aliasing error. When this happens,

we call the mesh is watertight. When one of the element approximates the face with a
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different polynomial order M, there are gaps between two faces. Similarly, when the
curved face is shared by nonconforming elements in Figure [5.2] there may be gaps.
However, when we refine a curved element so that its child elements match the curved

face of the parent element in Figure [5.4] we can construct a watertight mesh.

In Figure[5.4], we observe that the curved face of K is attached to those of K3
and Kj4. The curved face of K; is approximated by a single polynomial, whereas its
counterparts (the curves of =; and =Z,) are approximated by two piecewise polynomi-
als. This means that the single polynomial space is a subspace of the direct sum of
the piecewise polynomial spaces. Therefore the geometric information of the curved

face of K; can be conveyed to the counterparts without losing information because it

s

=
—2

is an injective map.

[1]

(a) A curved nonconforming mesh. (b) A mortar decomposition.

Figure 5.4: Examples of (a) a curved conforming mesh and (b) a local refinement.
The parent element K5 in (a) is subdivided into four child elements in (b).

For example, assume that the curved face of K; is an arc of a circle with the
center (x,,Y,). When we approximate the arc with N order polynomial, we pick
(N + 1) points in £ € [—1,1] and compute (x;,y;) = (x, + rcosb(&;),y, + rsind(&;))

fore =1,---, N + 1. Then we construct N order interpolant functions for x and v,
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ie.,

I (2(6)) = Z&(G)% I (y(€)) = ij(é)yj-

Next, to ensure watertight mesh, we evaluate the interpolant functions IV (x) and

IV (y) at the points €= € [&,, &) on the mortar my, for k = 1,2, i.e.,
7 =1 (2(&)), 6 =1"(y(&))

with & = 0= + s5z; for i = 1,--- | N + 1. Finally, we build N order interpolant

functions on the mortar m; for x and vy, i.e.,

N+1 N+1

M= (2(2)) = Zéj(z):i:j, M= (y(2) = ) 4i(2)y;-

J=1

+

We notice that the union of the interpolant functions IV (x) is equivalent to IV (x).

5.2 Arbitrary Lagrangian-Eulerian

In an arbitrary Lagrangian-Eulerian (ALE) framework, the mesh can move
with a different velocity from the flow. Since the mesh movement is independent
of the flow, this method is useful for moving or deforming a body. The basic idea
is to construct a map between the deformed body in the physical domain and the
corresponding reference domain, and then transform the original equation in terms

of the reference domain.

We consider an abstract PDE in the conservative form

% + V- F(u, Vu) =0, (5.11)

where u is a scalar quantity and F is a column vector. To obtain the ALE formulation,

we integrate ([5.11]) over a time-varying domain 9(t),

9 o) +/ F - nda = 0. (5.12)
oty Ot 99(t)
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On the other hand, applying the Reynolds transport theorem for the total rate of

change following ¥(t) and combining with the conservation law (5.11)), we have

d

dt

/ udd(t) + / (F —uug) -nda =0, (5.13)
9(t) v O(t) d9(t)

where ug is the velocity of 09(t).

T =@o(X7) T2
X — /
/’%1

X1

Figure 5.5: Mapping between physical to reference domain.

We now cast ([5.13) into a fixed reference domain 9(0). To this end, let us de-
note by x = ¢ (X) the map from 9(0) to ¥J(t). Using the relation []nda = JGTNdA,
where G = g—; the deformation gradient and .J is the determinant of the deformation

gradient, we have

o(Ju 1
/19(0) (é]t >d0(0) " /819(0) ST —un)) NdA =0 .

By applying the divergence theorem, we have the transformed PDE in the reference

domain,

ag_;( + Vx-Fx = 0, in 9(0), (5.15)

4 n and da are a normal vector and a differential area on physical domain, whereas N and dA

are the counterparts on the reference domain. A differential volume di)(t) in the physical domain is
related to that ¥(0) in the reference domain as d¥(t) = Jd¥(0). Since the volume is the dot product
of the differential area and the differential length, we can write dx - nda = JdX - NdA. By using
dx = GdX, we have the relation of nda = JG~TNdA.
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where ux = Ju and Fx = JG7! (F — uug) contravariant HUXE] )

When F is a function of Vu, we can cast (5.11) into the first-order form by

introducing an auxiliary variable Q,

Q- Vu=0, (5.16a)
ou

5 TV Fu.Q) =0 (5.16b)

The auxiliary variable Q can be rewritten in the reference domain 9(0) as

_uoX

Q=Vu=rxXox =

JGTT (Vxux — J7H (VxJ) ux) . (5.17)

This leads to the governing equation in the reference domain (0),

Qx — Vxux +J7' (VxJ) ux =0, (5.18a)
0
T+ Vx-Fx(ux, Qx) =0 (5.18b)

with Qx := JG7Q.

5.2.1 Weak formulation

Testing (5.18]) with v € V,,(K(0)) and P € V,(K(0)), we obtain

(Qx, P)K(O) + (ux, Vx - P)K(O) — (axN, P)aK(O)

+ (I (V) ux, P) ) = 0, (5.19a)

ou A
(a_X’ v) — (Fx, Vxt) g + <FX ‘N, v> —0, (5.19b)
V0

9K (0)

for all K(0) € Qh(O)ﬂ where Fx (ux, Qx, @) is a numerical flux (which is defined

later).

5 Note that each row of G7! is a contravariant basis vector. Thus, the ith component of the
contravariant flux can be denoted by (Fx)" = JVX' - (F — uug).
6K(0) := K(t =0), Q2,(0) := Qu(t = 0) and Z(0) := Z(t = 0).
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For the HDG formulation, since we treat a trace u as an unknown value, to
close the system, we enforce the continuity of the numerical flux across each interior

edge, i.e.,

<[[N Fx(ux, Qx, a)ﬂ ,@> —0, (5.20)

for all v € A,(2(0)).

Note that we impose a boundary condition through a numerical flux or a trace
variable. For practical implementation, it is convenient to rewrite the numerical flux

in (5.19) and (5.20)) in terms of physical fluxes and boundary conditions [74]. This

leads to

<[[F(u, Q. 1) — uug - nﬂ ,@>E(t) ~0 (5.21)

for ([5.20)), and

(Qx: P) (o) + (ux, Vx - P) () — (aG"n, P>6K(t)

+ (I (VxS ux, P) ) =0, (5.22a)
6’LLX
g —(F
( ot 72}) K(0) (Fx, V)
+ <F(u, Q,4) — uug - n, v>aK(t) =0, (5.22b)

for (5.19) with some manipulations |Z|

Summing (5.22) and (5.21)) over all elements and all edges, we obtain the
HDG system: find the approximate solution (Qx, ux, 1) € V5, (2,(0)) x V4(Q2,(0)) x

7 Here we implicitly assume that JG~! is continuous across element boundaries. Fx - NdA =
_——— \T T T
(JS‘lF—uuG) NdA = F—uug (JST'NdA) = F—uug nda. We also use axNdA =
wJNdA = 4G nda.
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Ap(ER(t)) such that

(QX: P)Qh(o) + (UX’ Vx - P)Qh(o) - <a9Tn’ P>8Qh(t)\FD

— <uD9Tn, P>FD + (J_l (VxJ)ux, P)Qh(o) =0,
oux T
i — (Fx.V F - :
( ot ’v) 2(0) Fx Voo + < e n’v>

+(FaQrup) —upua-mo)_ —0,

I'p

<[[F—uug-nﬂ ,@> + <bv> —0,
0 £2(0)

h

OQn(H\I'p

for all (P,'U,f}) € Vh(Qh(O)) X Vh(Qh(O)) X Ah<8h(t)), where [; =1 — up.

5.2.2 Linear convection equation

(5.23a)

(5.23b)

(5.23¢)

For a linear convection equation, we take F = Bu, which leads to the following

ALE formulation,

8uX -1
+(n- (Bu—uug) + 7 (u—4),0)50, m)\rp
+(n- (Bu — uug) +T(U—UD),U>FD =0,

(In - (Bu — wag) + 7 (u = @), 8y, + (b @>88(t) 0,

where 7 := |(3 — ug) - n| is a stabilization parameter.
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5.2.3 Linear convection-diffusion equation

For a linear convection-diffusion equation, we take F = Bu — kKVu. The ALE

formulation reads Fl

(QX> P)Qh(o) + (UXv Vx - P)Qh(o) - <@9Tn7 P>th(t)\FD

—(upGTn, P+ (S (Vx)ux, P), o =0, (5.25a)
(7uX > _1
—v —(JS (Bu —ugu — kQ), Vxv
( ot Q5 (0) ( )Qh(o)
+ - (Bu—wuug) —n-kQ+7(u—1),v)50, 11y
+(n - (Bu—uug) —n-kQ+7(u—up),v)p, =0, (5.25b)
(In-(Bu—wug) —n-xkQ+7(u—1) ,@)gz(t) + <b, ﬁ>8§(t) =0, (5.25¢)
where 7 is a stabilization parameter, here we take 7 := |n - (8 — ug)|+x—n-(8—ug).

5.3 Sliding mesh interface

Now we are in a position to combine the two ideas, the nonconforming mesh
treatment in Section [5.1] and the ALE method in Section [5.2] for simulating rotating
flows. To that end, we first decompose the domain into the stationary region €2, and
the rotating region €2,., as shown in Figure Second, we describe a motion in the
rotating mesh and the stationary mesh by the ALE formulation with

{J 79 j,UG 0 or Sy (526)

J=1,9=Rug=02x (x—x.) for Q,,

where x,. is the center of the circular rotating mesh; J is the identity matrix; R =
cos(Qt)  —sin(2t)
sin(Qt)  cos(Qt)

) is the rotation matrix; € = (0,0, 2) is z-axis rotation vector;

8 The contravariant flux is defined as Fx = JG! (Bu — ugu) — JG1kQ. When we substitute
Q with J~'G-7Qx, we can define the inviscid and viscous contributions of the contravariant flux
[74], Fx = Fx' — Fx" with Fx’ := J§7! (Bu — ugu) and Fx" = $7'x5-7Qx = rx Qx.

132



(the reader can find the details in Appendix [B|regarding the connection between the
rotating frame and the ALE formulation.) Third, sliding mesh interfaces (dynamically
varying mortars) are constructed between the stationary and the rotating meshes at
a given time of instance. Finally, we apply the nonconforming treatment to the ALE
formulation and substitute the deformation gradient, Jacobian and grid velocity
with . The ALE formulation for rotating flows reads: find the approximate
solution (Q,u, @) € V,(Q24(t)) x Vi(Qn(t)) x Ap(Ex(t)) such that

(RTQa P)Qh(O) + (U,, Vx - P)Qh(O) - <’LALRTI1, P>€;’l(t)
— (upR'n,P),. =0, (5.27a)
ou -1

+<F —uuG-n,v>
Ep(t)

+ <F(U, Q, UD) — Uplug - 11, U>F = 0, (527b)
D
F— uug - ] , > <z3, ) =o, 5.27
<[[ B R £9(¢) + v>e§(t) ( C)

for all (P,v,0) € V,(Q(0)) x Vi(2,(0)) X A (Ex(2)), where b := d—up. Note that we
have replaced the surface integrals with the mortar integrals as discussed in Section

6.1l

5.4 Numerical results

We conduct several numerical examples to demonstrate the performance of
the curved nonconforming treatment, the ALE formulation, and the sliding mesh

interfaces.
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Figure 5.6: A domain is decomposed into the stationary and the rotating regions.
BEach region is discretized with triangle elements. Isoparametric curved elements are
used. Sliding mesh interfaces are constructed between stationary and rotating meshes.

5.4.1 Steady-state advection with a discontinuous solution

This example tests the nonconforming mesh treatment for linear and curved

elements. A steady-state advection equation reads

V- (Bu)=s, in Q, (5.28a)
u=gp, on Iy, (5.28Db)

where u is the scalar quantity, B is the fluid velocity and gp is the function defined

on inflow boundary I';.

The HDG discretization of ([5.28al) gives the following local solver and global

solver: find the approximate solution (u, @) € V,(2,) X An(Ep) such that

o 2]
g2Ue

— (Bu, Vu)g, + <j’\n,v> = (5,)g, ; (5.29a)

<[[ﬁ;ﬂ ,ﬁ>80 + <z§,@>8§3 —0, (5.20b)

h

for all (U, @) c Vh(Qh) X Ah<8h>, where

Z)'— {ﬂ—gD for F],

U—u otherwise ,

(5.30)
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F,=n-F:=n-Bu+7(u—a) the upwind based HDG flux [30], and 7 = |3 - n|.

We consider the case with s = 0 and B = (1 + sin(ny/2),2). The domain is
2 €[0,2] x[0,1]. The inflow boundary condition is applied at the left and the bottom

walls by

1, r=0,0<y <2
gp = ¢ sin’(mx), 0<x<1,9=0,
0, 1<x<2,y=0,

and the outflow boundary condition is given at the right and the top walls. The exact

solution is obtained by using the method of characteristic ﬂ

17 Zo S 07
u =
sin®(rxg), w0 >0

with zo = 4 — 2 cos(%) + <. Figure shows the numerical solution on a curved
nonconforming mesh. Here, the circle in the mesh is represented by isoparametric

elements with k& = 3 order polynomials. To capture the sharp gradient in Figure [5.7]

we adaptively refine the mesh three times.

5.4.2 Constant solution

To examine the free-stream preservation property on a nonconforming mesh,
we consider a constant solution u® = 1 with the uniform flow of (5,,8,) = (1,0)
in the two-dimensional domain Q = (—0.5,0.5)2. The DG formulation for a linear

convection reads

ou »
(E’U)Q — (Bu, Vv)g, + (F, 7“>5;u62 =0,Vv € V() (5.31)
h

9 The solution u on a characteristic does not change, i.e.,

ou ou
du = %da: + a—ydy = fBrdx + Bydy = 0.
Using the separation of variable, we come up with 2o = § — %COS(%) + %
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(a) A curved nonconforming mesh

0 0.5 1 1.5 2

(b) A numerical solution field

Figure 5.7: Two-dimensional steady-state transport equation with a discontinuous
solution: (a) a curved nonconforming mesh and (b) the solution field, .

where F,,* is Lax-Friedrich numerical flux. The domain is discretized with N, =
{67,268,1072} triangular elements, where the curved nonconforming mesh are con-
structed to be watertight in Figure [5.11)c). As shown in Figure (a), the free-
stream is preserved up to rounding errors for the polynomial degree of the solution
k = {3,4,5,6} over a curved nonconforming mesh. We also notice that the error

level increases as the degree of the polynomial increases. This is because the time
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discretization error becomes dominant over the spatial discretization error for high-
order polynomials. We clearly see the trend in Figure (b), where the error level

decreases as a timestep size decreases as expected.

From this example, we confirm that the watertight mesh and our nonconform-
ing treatment satisfy the freestream preservation condition. However, there remains
a challenge for a sliding mesh. Even if we start with a watertight mesh, once the mesh
rotates, then we would encounter a polynomial gap between curved nonconforming

elements on the sliding interface. This needs to be addressed in the future.

x1071° . «10°18

D O bh W

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
time time

(a) dt =5 x 10~ (b) k=6

Figure 5.8: Constant solution: error histories are shown for (a) k = {3,4,5,6} poly-
nomial order with fixed dt and for (b) Cr = {0.01,0.05,0.1} with fixed k = 6. The
freestream is preserved up to rounding error over a curved nonconforming mesh. L2
errors are measured during ¢ € [0,0.5], where the 4th order RK method is used.

5.4.3 Cosine bell

We are interested in a cosine bell,

w—1+ (%) (F(4mr) — f(m)) (5.32)

translating with a constant velocity 3 = (1,0) for the DG advection equation. Here,

re = ||x[l, and f(r) = 2cos(r) + 2rsin(r) + g cos(2r) + % sin(2r) + 3r2. The domain
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Q € [0.5]? is discretized with the curved nonconforming mesh in Figure A
periodic boundary condition is applied to all sides.
Figure [5.9 shows the history of the normalized energy and the energy loss for

t € ]0,10]. We observe that the numerical solution is stable and its energy loss is at

the level of O(1071Y). For time integration, SSPRK3 method is employed.

%1010

11

=
o
a

Energy Loss

Normalized energy
-

o
©
a

0.9

0 2 4 6 8 10
time

(a) Ener(t)/Ener(0) (b) |Ener(t) — Ener(0)|

Figure 5.9: Cosine bell test: (a) energy “72 history shows the scheme is stable. (b)
energy loss is observed at the level of O(1071%). SSPRK3 is used for time integration
from ¢ € [0, 10].

5.4.4 Rotating Gaussian

We consider a Gaussian bell for convection and convection-diffusion equations
in the (hybridized) DG spatial discretization. (Hybridized) Lax-Friedrich numerical
flux is used for simulations.

The Gaussian bell is rotated with the velocity of (u,v) = (—4y,4x) in the
two-dimensional domain Q = (—0.5,0.5)%, which is discretized with N, triangular
elements. An exact boundary condition is imposed at all boundaries. The exact

solution is given by

q¢° = exp (—2%2 (@ =)+ (5 — yc)2)> : (5.33a)
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where ¢ = 0.1 is the standard deviation, (x.y.) = (—0.3,0) is the center, & =
cos(4t)x + sin(4t)y and § = — sin(4t)x + cos(4t)y.

For a convection equation, Figure [5.10| quantitatively shows a rotating Gaus-
sian bell at t = 0, ¢ = 0.02, t = 0.04 and ¢ = 0.06 using the 6th order polynomial
degree and 4th order Runge-Kutta methods. The Gaussian bell is initially located

at x, = (—0.3,0). As time goes on, the Gaussian bell rotates without changing its

shape.

) t =10.02 ) t=0.04 ) t =0.06

Figure 5.10: Snapshots for the rotating Gaussian bell at ¢t = {0,0.02,0.04,0.06}.The
simulation was conducted with the 6th order polynomial degrees and 4th order RK
method of dt = 1073,

5.4.4.1 Nonconforming mesh

We conduct a convergence study on linear conforming, linear nonconforming
and curved nonconforming meshes in Figure with DG methods. In particular,

the curved nonconforming mesh is watertight, which is generated by the procedure in

Subsection (.1.3]

Both Figure and Table show h-convergence results in the L?(€,)-
norm using a sequence of nested meshes with N, = {32,128 512} for a linear con-
forming mesh, N, = {164, 656,2624} for a linear nonconforming mesh and N, =
{67,268,1072} for a curved nonconforming mesh, respectively (here, we compute

h = (N,)z). We observe that the DG solutions converge to the exact solution with
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(a) Linear conforming (b) Linear nonconforming (¢) Curved nonconforming

Figure 5.11: Coarse grids with (a) linear conforming, (b) linear nonconforming and
(¢) curved nonconforming meshes.

the convergence rate of k£ + 1 for linear conforming, linear nonconforming and curved
nonconforming meshes. The results support that our nonconforming treatment main-

tains the high-order accuracy of the DG methods when linear or curved nonconforming

meshes are involved.
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(a) Linear conforming (b) Linear nonconforming (¢) Curved nonconforming

Figure 5.12: Convergence results with (a) linear conforming, (b) linear nonconform-
ing and (c) curved nonconforming meshes. L? errors are measured after 100 time
integrations, where the 4th order RK method is used with dt = 1075,

5.4.4.2 Moving mesh

We consider a Gaussian bell on a two-dimensional moving mesh. The moving

mesh is described by the mapping x = p(X),
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Table 5.1: The rotating Gaussian test: the results show that the DG solutions con-
verge to the exact solution with the optimal order of k + 1 for linear conforming,
linear nonconforming and curved nonconforming meshes.

Linear Conforming Linear Nonconforming | Curved Nonconforming ‘
T 1 R [
error order error order error order
0.177  6.24E-02 — 0.078 2.39E-02 — 0.122  3.76E-02 —

110.088 3.06E-02 1.03 |0.039 6.67E-03 1.84 | 0.061 2.71E-02 0.47
0.044 8.18E-03 1.90 | 0.020 1.70E-03 1.97 | 0.031 6.86E-03 1.98

0.177 2.84E-02 — 0.078 3.20E-03 — 0.122  2.58E-02 —
210.088 3.73E-03 295 | 0.039 3.83E-04 3.06 | 0.061 2.57E-03 3.33
0.044 5.12E-04 2.86 | 0.020 4.88E-05 2.97 | 0.031 3.85E-04 2.74

0.177 6.70E-03 — 0.078 3.27E-04  — 0.122 4.35E-03  —
31 0.088 5.95E-04 3.49 | 0.039 285E-05 3.52 | 0.061 4.55E-04 3.26
0.044 4.02E-05 3.89 | 0.020 1.82E-06 3.97 | 0.031 2.77E-05 4.04

0.177 1.87E-03 — 0.078 7.48E-05 — 0.122 1.63E-03  —
410.088 8.64E-05 4.43 | 0.039 2.11E-06 5.15 | 0.061 5.50E-05 4.89
0.044 2.79E-06 4.95 | 0.020 6.73E-08 4.97 | 0.031 1.97E-06 4.80

T = Xl + Al Sin(27T/L1X1> Sin(27T/L2X2) Sin(27r/T1t), (534&)

To =— X2 + A2 Sin(27T/L1X1> Sin(27T/L2X2) sin(27r/T2t). (534b)

We pick Ty =1, T, = 0.5, Ly = Ly = 1 and A; = Ay, = 0.1. Figure [5.13] shows the
snapshots of the moving mesh at time ¢t =0, ¢t =0.1,t = 0.2 and t = 0.3.

For a convection-diffusion equation, we use the HDG formulation in (5.25)).
Exact boundary condition is imposed on all sides. Figure and Figure [5.15] show
the evolutions of the solution field u for k = 0.01 and x = 0.1, respectively. We see

Gaussian bell is diffused while it rotates due to the diffusion coefficient, .
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(a) t=0 (b) t =0.1 (c) t =02 (d) t=0.3

Figure 5.13: Snapshots of the moving mesh at ¢ = {0,0.1,0.2,0.3}. The mesh moves
with a mapping function of (5.34)).

(a) t=0 (b) t =0.1 (c) t =02 (d) t=0.3

Figure 5.14: Snapshots of the rotating Gaussian bell at ¢ = {0,0.1,0.2,0.3} with
k= 0.01.

() =0 (b) £ = 0.1

(c) t = 0.2 (d) t=0.3

Figure 5.15: Same to Figure except k = 0.1.

We also perform a h-convergence study of v and Q in Figure using a
sequence of nested meshes with N, = {32,128 512} elements. We observe k + 1
convergence rate for u, but for q we see k rate for even polynomial and approximately

k 4 1/2 rate for odd polynomial orders.
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Figure 5.16: Rotating Gaussian with moving mesh: h convergence study for (a) u
and (b) ¢q. Backward Euler method is used with dt = 107% and error is measured at
t = 107" for k = 0.01. (Here, p stands for the solution order.)

5.4.4.3 Rotating mesh

We consider a Gaussian bell on a two-dimensional rotating mesh as shown in
Figure [5.3 The domain is decomposed into the stationary and the rotating regions.

The rotating mapping is prescribed as

X = X, + R(Q)X (5.35)

cos(Qt) —sin(2t)
sin(Qt)  cos(Qt)
Q. Figure [5.17 shows the rotating meshes at ¢t =0, t = 0.1, ¢ = 0.2 and ¢ = 0.3 with

with R(0) (

) the rotation matrix and a constant angular velocity

=27 and x. = (0,0).

For a convection-diffusion equation, the HDG formulation in used on the ro-
tating mesh in [5.17] We perform a h-convergence study of u and Q using a sequence
of nested meshes with N, = {58,232,928} elements. We summarize the results in
Figure |5.16] The solution u converges to the exact solution with k + 1 rate, whereas

q shows k rate for even polynomial and k + 1/2 rate for odd polynomial orders.
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(a) t=0 (b) t =0.1 (c) t =02 (d) t=0.3

Figure 5.17: Snapshots of the rotating mesh at ¢t = {0,0.1,0.2,0.3}.
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Figure 5.18: Rotating Gaussian with a sliding mesh: h-convergence study for (a) u
and (b) ¢. Backward Euler method is used with dt = 107% and error is measured at
t = 107" for k = 0.01. (Here, p stands for the solution order.)

5.4.5 Isentropic vortex

We consider the isentropic vortex example [234] for Euler equations. The DG
formulation is used for the simulation. The domain is 2 = [3.5,5.5] x [—1, 1], which
is descrized with triangular elements. Exact boundary condition is imposed at all
directions. The center of vortex is located at x. = (4.5,0) at t = 0, and translated
with the velocity (0, 1) on the rotating mesh in Figure[5.19} We perform the simulation
for ¢ € [0,0.18] with the 6¢th order polynomial degrees and the 4th order RK method
of dt = 1073. The density p and the y-momentum pv are plotted in Figure and
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Figure [5.21] We observe that the fields of the vortex is advected upward without

changing its shape.

(a) t =0 (b) t = 0.06 (c) t =0.12 (d) t=0.18

Figure 5.19: Snapshots of the rotating mesh at ¢ = {0,0.06,0.12,0.18}. The domain
is decomposed into the rotating mesh (red) and the stationary mesh (black). The
blue element is highlighted to emphasize the rotation.

e

(a) t=0 (b) t =0.06 (c) t=0.12 (d) t=0.18

Figure 5.20: Snapshots of p for the isentropic vortex on the rotating mesh at ¢t =
{0,0.06,0.12,0.18}. The simulation was conducted with the 6th order polynomial
degrees and the 4th order RK method of dt = 1073.

(a) t =0 (b) t = 0.06 (c) t =0.12 (d) t =0.18

Figure 5.21: Snapshots of pv for the isentropic vortex on the rotating mesh at ¢t =
{0,0.06,0.12,0.18}.

145



We perform a h-convergence test in Figure [5.22 We see that all the conser-
vative variables (p, pu, pv and pE) converge to the exact solution with a higher rate

than the optimal one of (k + 3) for a hyperbolic problem.
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Figure 5.22: Isentropic vortex with a sliding mesh: h-convergence study for (a) p, (b)
pu, (c) pv and (d) pE. RK4 is used with dt = 107 and error is measured at ¢t = 10~%.
(Here, p stands for the solution order.)

5.5 Discussions

In this chapter, we have developed the sliding-mesh interface in the (hy-

bridized) DG spatial discretization for simulating rotating flows. The sliding-mesh
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interface is composed of the nonconforming treatment and the ALE formulation. For
an accurate and stable nonconforming treatment, we have employed mortar spaces in
the (hybridized) DG spatial discretization. We first develop the projection operator
from a face to a mortar. Then, we project state variables on the face to the mortar
spaces, and compute the numerical flux. We interpret the surface integrals in the
local solver as the sum of its surrounding mortar integrals. With this standpoint, we
do not need to project back the numerical flux from a mortar to its adjacent faces.
Meanwhile, as for the DG convection equation, we confirm that the watertight mesh
and the nonconforming treatment satisfies the freestream preservation condition. We

also numerically observe our nonconforming treatment for curved elements is stable.

Next, we extend the nonconforming treatment to rotating mesh. Since we con-
struct a mortar interface such that only two adjacent elements are allowed, mortar
spaces need to be updated at every time instance. Once we identify all mortar spaces,
then we use the fixed nonconforming treatment to communicate between the station-
ary and the rotating meshes. Numerical results demonstrate that our (hybridized) DG
sliding-mesh method achieves high-order convergence rates for advection, convection-

diffusion, and Euler equations.
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Chapter 6

Conclusions and Future Work

In this work, we have developed high-order (hybridized) DG methods for sev-
eral equations including a linear degenerate elliptic equation, shallow water equations,
Euler equations, and Navier-Stokes equations. At first, we propose the HDG method
for a linear degenerate elliptic equation, where the scaled system [7] is utilized to
handle the degeneracy. We show that the proposed HDG method is well-posed by
using an energy approach. We derive a prior: error estimates for the method on
simplicial meshes in both two- and three-dimensions, and demonstrate that the con-
vergence rates are optimal for both the scaled pressure and the scaled velocity for
non-degenerate problems and are sub-optimal by half order for degenerate ones via
numerical experiments. We also enhance the HDG solutions by post-processing. The
super-convergence rates of (k+2) and (k+ 2) are observed for both a non-degenerate
case and a degenerate case away from the degeneracy. Degenerate problems with
low regularity solutions are also studied, and numerical results show that high-order

methods are beneficial in terms of accuracy.

To achieve high-order accuracy in time and space, in addition to high-order
(hybridized) DG spatial discretization, high-order time integrators are also needed.
Since explicit time integration methods sometimes suffer from a timestep size re-
striction for multiscale problems, we propose the IMEX HDG-DG framework for
efficient flow simulation. We split the governing system into a stiff part describing

the fast waves and a nonstiff part associated with the slow modes. Then, we discretize
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the former implicitly with the HDG method while the latter explicitly with the DG
method. The coupled HDG-DG spatial discretization combined with implicit-explicit
(IMEX) time integrators promote high-order solutions in time and space, and allow
larger timestep sizes than explicit time integrators. The IMEX HDG-DG scheme only
requires one linear solve per time stage and generates smaller and sparser linear sys-
tems relative to DG. Numerical results for shallow water equations, Euler equations,
Navier-Stokes equations demonstrate that our methods are beneficial for applications

where slow modes are accurately treated while fast modes are inaccurately handled.

We found that the IMEX HDG-DG method suppresses the high-frequency
mode in the system to maintain numerical stability, but provides a less accurate
solution in the high-frequency mode. Also, the performance of the method highly
depends on a linear solver. Therefore, it is difficult to show excellent scalability
for parallel computation. To avoid the difficulties of the IMEX HDG-DG scheme, we
have developed the EXPONENTIAL DG method. The EXPONENTIAL DG method
combines exponential time integrators and the DG spatial discretization. First, we
construct linear and nonlinear operators by adding and subtracting a linear flux based
on a flux Jacobian to the governing equation at a continuous level. Then the system
is discretized with the DG method. Since the exponential integrator does not require
any linear solve, it is attractive in parallel computation, but a matrix exponential
needs to be evaluated. To compute a matrix exponential accurately and efficiently,
we use the adaptive Krylov subspace method [162] and its variants [82) 133]. The
parallel implementation of the algorithm involves matrix-vector and vector-vector
multiplications. The matrix-vector product is performed in a matrix-free manner and
is embarrassingly parallel by the virtue of the DG spatial discretization. The vector-
vector product (dot product) requires global communication, but the communication

cost is relatively small compared to the computational cost. From the weak and
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the strong scaling tests, we observe that the EXPONENTIAL DG method provides

promising scalable results for the Euler systems.

Finally, we have proposed the (H) DG sliding-mesh methods for rotating flows.
The main ingredients are mortar interfaces and the Arbitrary Lagrangian-Eulerian
(ALE) formulation. We decompose a domain into rotating and stationary regions.
The ALE formulation represents the motion in rotating and stationary meshes. The
remaining job is to handle the curved nonconforming mesh between the rotating and
the stationary meshes. Inspired by the HDG method, we use the conservation (trans-
mission) condition of a numerical flux as an interface condition between two regions.
To that end, we introduce a mortar interface between the regions, project the state
variables from the faces of the adjacent elements to the mortar, and then we com-
pute the numerical flux on the mortar interface. In addition, we interpret the surface
integrals in the local solver as the sum of its surrounding mortar integrals. With
this point, we do not need to project back the numerical flux from the mortar to its
adjacent elements. Numerical examples show that our nonconforming treatment is
stable and high-order accurate. By incorporating the nonconforming treatment to
the ALE formulation, we develop the (H) DG sliding-mesh interfaces. Numerical ex-
periments show that our method achieves high-order convergence rates for advection,

convection-diffusion, and Euler equations.

There are several directions in which the current work can be extended and

we suggest a few of them as follows.

o Extension of the HDG method for a linear degenerate elliptic equa-
tion: We have developed the HDG system for a linear degenerate elliptic equa-

tion, which is a part of Darcy-Stokes systems. The authors [6] have developed

the full set of dynamical equations, (i.e., (2.1)), (2.4)), (2.7) and (2.8))) with the
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mixed finite element method and demonstrated the benefit of the scaled system.
Thus, the next step of our work would be to develop an HDG system for the full
model. Another possible direction is to study the case where the degeneracies
lie on a set of measure nonzero. Recently, the authors [230] have proposed a
shock tracking algorithm, where they adjust a mesh such that shock interfaces
align a set of measure zero by solving an optimization problem. We may utilize

the method to identify the interfaces between matrix solid and fluid melt.

Extension of the IMEX HDG-DG scheme:

IMEX methods are designed to efficiently handle the stiffness in the system.
There are two types of stiffness: scale-separation stiffness and geometry-induced
stiffness. In this work, we focus on subcritical flows for shallow water equa-
tions and low Mach number flows for Euler equations, which means that scale-
separation stiffness is of interest. Thus, another possible direction is to tackle
geometry-induced stiffness using the IMEX HDG-DG scheme. The geometry-
induced stiffness can be seen when adaptive mesh refinement (AMR) is em-
ployed, complex geometry is triangulated, or an anisotropic model is at hand.
For example, in a global atmospheric model, the horizontal length scale is larger
than the vertical length scale. To efficiently treat the stiffness, horizontal-
explicit vertically-implicit (HEVI) methods have been studied [220]. It would
be worth to study whether the IMEX HDG-DG schemes well fit this kind of
problem. Regarding the performance, preconditioned iterative methods, e.g.,
multilevel or multigrid methods, also need to be explored because the compu-

tational cost highly depends on a linear solver.

Improvement of EXPONENTIAL DG: In this study, we compute a matrix

exponential using the adaptive Krylov subspace method. However, the Arnoldi
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iteration has communication bottlenecks in parallel computation because the
dot product requires global communication. To amend the problem, we can
attempt other strategies such as the communication-avoiding Krylov subspace
methods [102], block Krylov subspace method [I12] and so on. Also because
the adaptive Krylov methods rely on the a posteriori error estimation, a sharp
estimation could help the convergence of the scheme. We also want to mention
that the EXPONENTIAL DG scheme is not specific to Euler systems. It will be
interesting to apply the scheme to large-scale problems such as climate systems

and magnetohydrodynamic (MHD) systems.

Applications of (H) DG sliding-mesh interfaces: In this work, we propose
the (H) DG sliding-mesh interfaces for simulating rotating flows. We have
numerically shown that our scheme provides stable and high-order accurate
solutions, but have not yet demonstrated its performance in real applications
such as a wind turbine or a jet engine. Thus it still remains to perform a large-
scale simulation with the sliding-mesh interface and show the benefit of the
method. Another interesting direction is to pursue a theoretical analysis of the
nonconforming mesh treatment. Along the line, constructing watertight mesh

with a sliding-mesh interface is an open question.
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Appendix A

Flux Jacobian of Euler equations

For the completeness, we describe flux Jacobian of Euler equations in two- and

three-dimensions. Details can be found in [139].

A.1 Two-dimensional Euler equation

We consider the two-dimensional Euler equations in a component form,

dp 0 0
aJr%(PU)JFa—y(PU)—O;
opu 0 0
WﬂL%(PUU-FPH‘—(PW) =0,
dpv 0
W + % (puv) +
OpE
OE

dy
0
5 p (puH) +

The flux Jacobian along z-direction is defined as

dq
0 1 0
(55 [[u)* = u? (B=7u (1—=9)v
—Uuv v u
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(A.1c)
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The flux Jacobian along y-direction is denoted by

Aylq) = <_81~;;jéq))
0 0 1 0
—uv v u 0
) Il =v? G=y)u B=mp (=1
() [u?-H)v (1-yuw H+1—y)0* v

The normal flux Jacobian reads

A(q) = n.Ax(q) +nyAy(q)

0 Ny TNy 0
Png — ul, ung —Aung +u,  uny — AN, —Yn,
Pny, — vy, VNg — JUNy UMy — JUNy + Uy — Ny
(¢ — H)uy, Hn, — yuu, Hn, — yvu, YUn

where ¢ := (137) |ul|* and 4 1=~ — 1.

The eigenvalues and eigenvectors of normal flux Jacobian, A = RAR™! are

u,—a 0 0 0
0 u, 0 0
A= 0 0 wu, 0 ’
0 0 0 wu,+a
1 1 0 1
R— U — ang U t, u-+an,
| v—an, v ty, v+an,

and
3 (3 (?21) ﬂ}lll2+2"7") —%((%1)“+"Tf) —%((%l)“+%) %(%)
o | =35 ull (L) u () v - (%)
1 /1 —I_Ut 2 1 —fx 1 —fy n 1 0—1
sGE) =) 5 (G )u—") —5((%)v—"2) 3(%)
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A.2 Three-dimensional Euler equation

Consider the three-dimensional Euler equations in a component form,

%+§(p )+a%(pv)+%(pw)=0,
%+8ﬁ(puu+p)+§y(pvw+%(pww =0,
%%—%(puv)Jr%(pvv%—p)JF%(Pwv) =0,

ag;;“”+%(puw)+%(pvw)+%(pww +p) =0,
P g (out) + 5L (pH) + 5 () =0

(A.2a)
(A.2b)
(A.2¢)
(A.2d)

(A.2¢)

The flux Jacobians for Euler equations along z,y, z direction and normal flux

Jacobian, A :=n,A,(q) + ny,A,(q) +n.A.(q), are definfed as follows:

0 1 0

G P -w By - <1—
A, = —uv v U
—uw w 0

() Il = H)u H+ (1 =y (1=y)uv (1—

0 0 1
—vu v U

e B 1 L A (T R C B <1—
—vw 0 w

((VT_I) ||u||2—H)U (1 —7)vu H+(1—7)U2 (1_

0 0 0 1
—wu w 0 U
A, = — WU 0 w v
(%7 )HUH w o (l=yu (L—7 (B—7w
(%) |u|? —H)w (I—y)wu (I—y)wv H+(1—7)
and
0 Ny ny n,
PNy — Uy UNG — YUNG + Up UNy — YUN, UN, — YWn,
A= | ¢ny, —vu, Vg — YU, Uy — YUNy + Uy VN, — YWy,
on, — Wiy, WNg, — YUN, WNy — YUN, WN, — YWN, + Uy,
(¢p — H)uy, Hn, — Fuu, Hn, — Jou, Hn, — ywu,
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where ¢ := (1) Jul|* and 7 := v — 1.

The eigenvalues and eigenvectors of A = RAR™! reads

0
0 U, 0 0 0
A= 0 0 u,+a 0 0|,
0 0 0 u, 0
0 0 0 0 wu,
1 1 1 0 O
U — ANy Uu u+an, tp S
R=1| v—an, v v+any, ty, Sy
w — an, w v+an, t, S,

H—au, 3|ul” H+au, u us

and
Y Ar2 Up AU mg AV My AW ny A
4M ~+ 22a 2a2. a 2a2. 2a 2a? 2a 2a2
ol yu v Jw _
1 ~1 22M a? _a? n a? a?
Tt = ol Un  __ U ng __ v Ny _Jw Nz L
R 4M 2a a? + 2a 2a2 + 2a 2a2 + 2a 2a2
—Uy t, Ly t, 0
—Ug Sz Sy S, 0
2
where M? = sz ; t and s are tangent vectors such that s x t = n, t x n = s and

nxs=t;u=u-tand u, =u-s.
We also define
5
Al = RIART =) [\ifrar; "
i=1
We notice that the sum of ryr;” 4 rsr; 7 can be denoted as
0 o’ 0

U, — U J—m®n 0
u,? — |Jull® u” —u,n” 0
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in terms of a normal vector n. Thus, |A| can be rewritten as

Al = [A]

+ [ A2

+ | As]

Tl

Un, Ju

%MQ;F 2a T 242 _~2_aT . 2a?
(u—an) (IM?*+ %) (u—an)® (—72‘;2 — ‘;—a> (u—an)
(H —au,) (AM?*+ %) (H —au,) ® (—%QT — %) (H — auy) 55

1—IM? ) Zu’ —5

u,n — 2 M?*u Ju®u+J-n®n —Su

un? — 5 (14 IM2) (14 2M2)uT —un” —IM?

~ ~uT n ~

- gy s
(wtan) (JM2 - ) (utan)@ (-3 +5)  (u+an)
(H +au,) (GM? = 82) (H+au,) @ (=35 +5) (H +au,)

a, Ao = u, and A3 = u, + a.
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Appendix B

Solid body rotation

This appendix shows how the solid body rotation can be described in the ALE
formulation (5.15). Suppose a rotating disk embedded in stationary domain. For

simplicity, we focus on a linear transport equation,

ou :
En + V.- (Bu) =0, in Y(t), (B.1)

where 3 is the velocity and w is the scalar quantity. The velocity B3 in the inertial
frame can be decomposed into the velocity 3, in the rotating frame and the velocity

ug of the rotating frame, i.e.,

B=0 +xx.

ug

The governing equation in the rotating frame is written as

@ + Vo - (B,u) =0, in 9(t)

o (B.2)

rot?

where V,..; is a divergence operator defined in the rotating frame. We can rewrite

(B-2) in the inertia frame[],

% + V- (R7H0) (Bu — uug)) =0, in 9(t) (B.3)

with 8 = Qt.

1 'We can use a chain rule to show V, - 3, = V - (R‘l,ﬁr).
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Note that (B.3) can be expressed in the ALE formulation (5.15) with a grid
velocity E| ug = Q2 x x , a deformation gradient § = R and Jacobian J = det(§) = 1.
Similarly, (B.1)) is equivalent to (5.15)) with ug =0, § =7 and J = det(9) = 1.

2 For example, in two-dimension, ug = (ug,vg) = Q—y + Yo, * — T,) with the center of circle
(o, Yo)-
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