7 research outputs found

    Complex spectral evolution in a BCS superconductor, ZrB12

    Get PDF
    We investigate the electronic structure of a complex conventional superconductor, ZrB12 employing high resolution photoemission spectroscopy and ab initio band structure calculations. The experimental valence band spectra could be described reasonably well within the local density approximation. Energy bands close to the Fermi level possess t2g symmetry and the Fermi level is found to be in the proximity of quantum fluctuation regime. The spectral lineshape in the high resolution spectra is complex exhibiting signature of a deviation from Fermi liquid behavior. A dip at the Fermi level emerges above the superconducting transition temperature that gradually grows with the decrease in temperature. The spectral simulation of the dip and spectral lineshape based on a phenomenological self energy suggests finite electron pair lifetime and a pseudogap above the superconducting transition temperature

    Rayleigh Approximation to Ground State of the Bose and Coulomb Glasses

    Get PDF
    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties

    Possible Unconventional Superconductivity In Substituted Bafe 2 As 2 Revealed By Magnetic Pair-breaking Studies

    Get PDF
    The possible existence of a sign-changing gap symmetry in BaFe 2 As 2 -derived superconductors (SC) has been an exciting topic of research in the last few years. To further investigate this subject we combine Electron Spin Resonance (ESR) and pressure-dependent transport measurements to investigate magnetic pair-breaking effects on BaFe 1.9 M 0.1 As 2 (M = Mn, Co, Cu, and Ni) single crystals. An ESR signal, indicative of the presence of localized magnetic moments, is observed only for M = Cu and Mn compounds, which display very low SC transition temperature (T c) and no SC, respectively. From the ESR analysis assuming the absence of bottleneck effects, the microscopic parameters are extracted to show that this reduction of T c cannot be accounted by the Abrikosov-Gorkov pair-breaking expression for a sign-preserving gap function. Our results reveal an unconventional spin- and pressure-dependent pair-breaking effect and impose strong constraints on the pairing symmetry of these materials.4Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H., Iron-based layered superconductor La[O12xFx]FeAs (x 5 0. 05-0. 12) with Tc 5 26 K (2008) J. Am. Chem. Soc., 130, p. 3296Rotter, M., Spin density wave anomaly at 140 K in the ternary iron arsenide BaFe2As2 (2008) Phys. Rev. B, 78, pp. 020503RIshida, K., Nakai, Y., Hosono, H., To what extent iron-pnictide new superconductors have been clarified: A progress report (2009) J. Phys. Soc. Japan, 78, p. 062001Hirschfeld, P.J., Korshunov, M.M., Mazin, I.I., Gap symmetry and structure of Fe-based superconductors (2011) Rep. Prog. Phys., 74, p. 124508Chubukov, A.V., Pairing mechanism in fe-based superconductors (2012) Annu. Rev. Cond. Mat. Phys., 3, p. 57Bittar, E.M., Co-substitution effects on the fe valence in the BaFe2As2 superconducting compound: A study of hard x-ray absorption spectroscopy (2011) Phys. Rev. Lett., 107, p. 267402Granado, E., Pressure and chemical substitution effects in the local atomic structure of BaFe2As2 (2011) Phys. Rev. B, 83, p. 184508Wadati, H., Elfimov, I., Sawatzky, G.A., Where are the extra d electrons in transition-metal-substituted iron pnictides? (2010) Phys. Rev. Lett., 105, p. 157004Ideta, S., Dependence of carrier doping on the impurity potential in transition-metal-substituted feas-based superconductors (2013) Phys. Rev. Lett., 110, p. 107007Berlijn, T., Lin, C.-H., Garber, W., Ku, W., Do transition-metal substitutions dope carriers in iron-based superconductors? (2012) Phys. Rev. Lett., 108, p. 207003Hin, Z.P., Haule, K., Kotliar, G., Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides (2011) Nature Materials, 10, pp. 932a-935aRosa, P.F.S., Evolution of Eu21 spin dynamics in Ba12xEuxFe2As2 (2012) Phys. Rev. B, 86, p. 165131Rosa, P.F.S., (2014) Site Specific Spin Dynamics in BaFe2As2: Tuning the Ground State by Orbital Differentiation, , arxiv:1402. 2001v01Garitezi, T.M., Transport critical current measurements on a Cu-substituted BaFe2As2 superconductor (2014) J. Appl. Phys., 115, pp. 17D704Rosa, P.F.S., Pressure effects on magnetic pair-breaking in Mn- and Eusubstituted BaFe2As2 (2014) J. Appl. Phys., 115, pp. 17D702Thaler, A., Physical and magnetic properties of Ba(Fe12xMnx) 2As2 single crystals (2011) Phys. Rev. B, 84, p. 144528Et Al., A., Pressure effects on the electron-doped high Tc superconductor BaFe22xCoxAs2 (2008) J Phys. Cond. Mat., 20, p. 472201Et Al., D., Pressure versus concentration tuning of the superconductivity in Ba(Fe12xCox) 2As2 (2010) J. Phys. Soc. Japan, 79, p. 124705Yamaichi, S., Katagiri, T., Sasagawa, T., Uniaxial pressure effects on the transport properties in Ba(Fe12xCox) 2As2 single crystals (2013) Physica C, 494, pp. 62-64Canfield, P.C., Budko, S.L., Ni, N., Yan, J.Q., Kracher, A., Decoupling of the superconducting and magnetic/structural phase transitions in electron-doped BaFe2As2 (2009) Phys. Rev. B, 80, pp. 060501RKirshenbaum, K., Saha, S.R., Ziemak, S., Drye, T., Paglione, J., Universal pairbreaking in transition metal-substituted iron-pnictide superconductors (2012) Phys. Rev. B, 86, pp. 140505ROnari, S., Kontani, H., Violation of Andersonaŝ Theorem for the Sign-Reversing s-Wave State of Iron-Pnictide Superconductors (2009) Phys. Rev. Lett., 103, p. 177001Li, J., Superconductivity suppression of Ba0. 5K0. 5Fe222xMn2xAs2 single crystals by substitution of transition metal (M 5 Mn, Ru, Co, Ni, Cu, and Zn) (2012) Phys. Rev. B, 85, p. 214509Bang, Y., Choi, H.-Y., Won, H., Impurity effects on the s6-wave state of the ironbased superconductors (2009) Phys. Rev. B, 79, p. 054529Wang, Y., Kreisel, A., Hirschfeld, P.J., Mishra, V., Using controlled disorder to distinguish s6 and s11 gap structure in Fe-based superconductors (2013) Phys. Rev. B, 87, p. 094504Fernandes, R.M., Vavilov, M.G., Chubukov, A.V., Enhancement of Tc by disorder in underdoped iron pnictide superconductors (2012) Phys. Rev. B, 85, pp. 140512RNi, N., Temperature versus doping phase diagrams for Ba(Fe12xTMx) 2As2 (TM 5 Ni,Cu,Cu/Co) single crystals (2010) Phys. Rev. B, 82, p. 024519Patz, A., Ultrafast observation of critical nematic fluctuations and giant magnetoelastic coupling in iron pnictides (2014) Nature Comm., 5, p. 3229Abrikosov, A.A., Gorkov, L.P., Contribution to the theory of superconducting alloys with paramagnetic impurities (1961) Sov. Phys. JETP, 12, p. 1243Skalski, S., Betbeder-Matibet, O., Weiss, P.R., Properties of superconducting alloys containing paramagnetic impurities (1964) Phys. Rev., 136, pp. A1500-A1518Pagliuso, P.G., Electron spin resonance of Gd31 in the normal state of RNi2B2C (R 5 Y, Lu) (1998) Phys. Rev. B, 57, p. 3668Korringa, J., Nuclear magnetic relaxation and resonance line shift in metals (1950) Physica, 16, p. 601Rettori, C., Dynamic behavior of paramagnetic ions and conduction electrons in intermetallic compounds: GdxLu12xAl2 (1974) Phys. Rev. B, 10, p. 1826Davidov, D., Electron spin resonance of Gd in the intermetallic compounds YCu, YAg, and LaAg:Wave vector dependence of the exchange interaction (1973) Solid State Comm., 12, p. 621Narath, A., Weaver, H.T., Effects of electron-electron interactions on nuclear spin-lattice relaxation rates and knight shifts in alkali and noble metals (1968) Phys. Rev., 175, p. 373Shaw, R.W., Warren, W.W., Enhancement of the korringa constant in alkali metals by electron-electron interactions (1971) Phys. Rev. B, 3, p. 1562Bittar, E.M., Electron spin resonance study of the LaIn32xSnx superconducting system (2011) J. of Phys.: Cond. Matt., 23, p. 455701Maple, M.B., Dependence of s 2 f exchange on atomic number in rare earth dialuminides (1970) Solid State Comm., 8 (22), pp. 1915-1917Garitezi, T.M., Synthesis and characterization of BaFe2As2 single crystals grown by in-flux technique (2013) Brazilian Journal of Physics, 43, p. 223Alireza, P.L., Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures (2009) J. Phys. Condens. Matter, 21, p. 012208Rotter, M., Tegel, M., Johrendt, D., Superconductivity at 38 K in the Iron Arsenide Ba12xKxFe2As2 (2008) Phys. Rev. Lett., 101, p. 107006Wang, C., Thorium-dopingaînduced superconductivity up to 56âK in Gd12xThxFeAsO (2008) EPL, 83, p. 67006Shibata, A., Thorium-dopingaînduced superconductivity up to 56âK in Gd12xThxFeAsO (1986) J. Phys. Soc. Jpn., 55, p. 6Cooley, J.C., Aronson, M.C., Canfield, P.C., High pressures and the Kondo gap in Ce3Bi4Pt3 (1997) Phys. Rev. B, 55, p. 7533Oomi, G., Kagayama, T., Effect of pressure and magnetic field on the electrical resistivity of cerium kondo compounds (1996) J. Phys. Soc. Jpn., 65 (SUPPL. B), pp. 42-48Ramos, S.M., Superconducting quantum critical point in CeCoIn52xSnx (2010) Phys. Rev. Lett., 105, p. 126401Hering, E.N., Pressureâtemperatureâcomposition phase diagram of Ce2MIn8 (2006) Physica B: Cond. Matt., 378Dyson, F.J., Electron spin resonance absorption in metals. Ii. Theory of electron diffusion and the skin effect (1955) Phys. Rev., 98, p. 349Texier, Y., Mn local moments prevent superconductivity in iron pnictides Ba(Fe12xMnx) 2As2 (2012) EPL, 99, p. 17002Leboeuf, D., (2013) NMR Study of Electronic Correlations in Mn-doped Ba(Fe12xCox) 2As2 and BaFe(As12xPx) 2, p. 4969. , arXiv1310Suzuki, H., Absence of superconductivity in the hole-doped Fe pnictide Ba(Fe12xMnx) 2As2: Photoemission and x-ray absorption spectroscopy studies (2013) Phys. Rev. B, 88, pp. 100501RKim, M.G., Effects of transition metal substitutions on the incommensurability and spin fluctuations in BaFe2As2 by elastic and inelastic neutron scattering (2012) Phys. Rev. Lett., 109, p. 167003Et Al., F., Short-range magnetic order and effective suppression of superconductivity by manganese doping in LaFe12xMnxAsO12yFy (2013) Phys. Rev. B, 87, p. 174515Golubov, A.A., Mazin, I.I., Effect of magnetic and nonmagnetic impurities on highly anisotropic superconductivity (1997) Phys. Rev. B, 55, p. 15146Openov, L.A., Combined effect of nonmagnetic and magnetic scatterers on the critical temperatures of superconductors with different anisotropies of the gap (1997) JETP Lett., 66, p. 661Efremov, D.V., Disorder-induced transition between s6 and s11 states in two-band superconductors (2011) Phys. Rev. B, 84, p. 180512Tucker, G.S., Competition between stripe and checkerboard magnetic instabilities in Mn-doped BaFe2As2 (2012) Phys. Rev. B, 86, p. 020503Fernandes, R.M., Millis, A.J., Suppression of Superconductivity by Neel-Type magnetic fluctuations in the iron pnictides (2013) Phys. Rev. Lett., 110, p. 117004Chi, S., (2013) Sign Inversion in the Superconducting Order Parameter of LiFeAs Inferred from Bogoliubov Quasiparticle Interference. ArXiv:1308. 4413v1Johnston, D.C., (2010) Adv. Phys., 59, p. 803Paglione, J., Greene, R.L., Hightemperature superconductivity in iron-based materials (2010) Nature Phys., 6, p. 645Wen, H.H., Li, S., Materials and novel superconductivity in iron pnictide superconductors (2011) Annu. Rev. Cond. Mat. Phys., 2, p. 121Stewart, G.R., Superconductivity in iron compounds (2011) Rev. Mod. Phys., 83, pp. 1589-165

    Light quantum control of persisting Higgs modes in iron-based superconductors

    Get PDF
    The Higgs mechanism, i.e., spontaneous symmetry breaking of the quantum vacuum, is a cross-disciplinary principle, universal for understanding dark energy, antimatter and quantum materials, from superconductivity to magnetism. Unlike one-band superconductors (SCs), a conceptually distinct Higgs amplitude mode can arise in multi-band, unconventional superconductors via strong interband Coulomb interaction, but is yet to be accessed. Here we discover such hybrid Higgs mode and demonstrate its quantum control by light in iron-based high-temperature SCs. Using terahertz (THz) two-pulse coherent spectroscopy, we observe a tunable amplitude mode coherent oscillation of the complex order parameter from coupled lower and upper bands. The nonlinear dependence of the hybrid Higgs mode on the THz driving fields is distinct from any known SC results: we observe a large reversible modulation of resonance strength, yet with a persisting mode frequency. Together with quantum kinetic modeling of a hybrid Higgs mechanism, distinct from charge-density fluctuations and without invoking phonons or disorder, our result provides compelling evidence for a light-controlled coupling between the electron and hole amplitude modes assisted by strong interband quantum entanglement. Such light-control of Higgs hybridization can be extended to probe many-body entanglement and hidden symmetries in other complex systems
    corecore