2,384 research outputs found

    A scalable application server on Beowulf clusters : a thesis presented in partial fulfilment of the requirement for the degree of Master of Information Science at Albany, Auckland, Massey University, New Zealand

    Get PDF
    Application performance and scalability of a large distributed multi-tiered application is a core requirement for most of today's critical business applications. I have investigated the scalability of a J2EE application server using the standard ECperf benchmark application in the Massey Beowulf Clusters namely the Sisters and the Helix. My testing environment consists of Open Source software: The integrated JBoss-Tomcat as the application server and the web server, along with PostgreSQL as the database. My testing programs were run on the clustered application server, which provide replication of the Enterprise Java Bean (EJB) objects. I have completed various centralized and distributed tests using the JBoss Cluster. I concluded that clustering of the application server and web server will effectively increase the performance of the application running on them given sufficient system resources. The application performance will scale to a point where a bottleneck has occurred in the testing system, the bottleneck could be any resources included in the testing environment: the hardware, software, network and the application that is running. Performance tuning for a large-scale J2EE application is a complicated issue, which is related to the resources available. However, by carefully identifying the performance bottleneck in the system with hardware, software, network, operating system and application configuration. I can improve the performance of the J2EE applications running in a Beowulf Cluster. The software bottleneck can be solved by changing the default settings, on the other hand, hardware bottlenecks are harder unless more investment are made to purchase higher speed and capacity hardware

    Fast Low Fidelity Microsimulation of Vehicle Traffic on Supercomputers

    Full text link
    A set of very simple rules for driving behavior used to simulate roadway traffic gives realistic results. Because of its simplicity, it is easy to implement the model on supercomputers (vectorizing and parallel), where we have achieved real time limits of more than 4~million~kilometers (or more than 53~million vehicle sec/sec). The model can be used for applications where both high simulation speed and individual vehicle resolution are needed. We use the model for extended statistical analysis to gain insight into traffic phenomena near capacity, and we discuss that this model is a good candidate for network routing applications. (Submitted to Transportation Research Board Meeting, Jan. 1994, Washington D.C.)Comment: 11 pages, latex, figs. available upon request, Cologne-WP 93.14

    Simulating the universe on an intercontinental grid of supercomputers

    Full text link
    Understanding the universe is hampered by the elusiveness of its most common constituent, cold dark matter. Almost impossible to observe, dark matter can be studied effectively by means of simulation and there is probably no other research field where simulation has led to so much progress in the last decade. Cosmological N-body simulations are an essential tool for evolving density perturbations in the nonlinear regime. Simulating the formation of large-scale structures in the universe, however, is still a challenge due to the enormous dynamic range in spatial and temporal coordinates, and due to the enormous computer resources required. The dynamic range is generally dealt with by the hybridization of numerical techniques. We deal with the computational requirements by connecting two supercomputers via an optical network and make them operate as a single machine. This is challenging, if only for the fact that the supercomputers of our choice are separated by half the planet, as one is located in Amsterdam and the other is in Tokyo. The co-scheduling of the two computers and the 'gridification' of the code enables us to achieve a 90% efficiency for this distributed intercontinental supercomputer.Comment: Accepted for publication in IEEE Compute

    Comprehensive Evaluation of OpenCL-Based CNN Implementations for FPGAs

    Get PDF
    Deep learning has significantly advanced the state of the art in artificial intelligence, gaining wide popularity from both industry and academia. Special interest is around Convolutional Neural Networks (CNN), which take inspiration from the hierarchical structure of the visual cortex, to form deep layers of convolutional operations, along with fully connected classifiers. Hardware implementations of these deep CNN architectures are challenged with memory bottlenecks that require many convolution and fully-connected layers demanding large amount of communication for parallel computation. Multi-core CPU based solutions have demonstrated their inadequacy for this problem due to the memory wall and low parallelism. Many-core GPU architectures show superior performance but they consume high power and also have memory constraints due to inconsistencies between cache and main memory. OpenCL is commonly used to describe these architectures for their execution on GPGPUs or FPGAs. FPGA design solutions are also actively being explored, which allow implementing the memory hierarchy using embedded parallel BlockRAMs. This boosts the parallel use of shared memory elements between multiple processing units, avoiding data replicability and inconsistencies. This makes FPGAs potentially powerful solutions for real-time classification of CNNs. In this paper both Altera and Xilinx adopted OpenCL co-design frameworks for pseudo-automatic development solutions are evaluated. A comprehensive evaluation and comparison for a 5-layer deep CNN is presented. Hardware resources, temporal performance and the OpenCL architecture for CNNs are discussed. Xilinx demonstrates faster synthesis, better FPGA resource utilization and more compact boards. Altera provides multi-platforms tools, mature design community and better execution times.Ministerio de Economía y Competitividad TEC2016-77785-

    Comprehensive Evaluation of OpenCL-based Convolutional Neural Network Accelerators in Xilinx and Altera FPGAs

    Get PDF
    Deep learning has significantly advanced the state of the art in artificial intelligence, gaining wide popularity from both industry and academia. Special interest is around Convolutional Neural Networks (CNN), which take inspiration from the hierarchical structure of the visual cortex, to form deep layers of convolutional operations, along with fully connected classifiers. Hardware implementations of these deep CNN architectures are challenged with memory bottlenecks that require many convolution and fully-connected layers demanding large amount of communication for parallel computation. Multi-core CPU based solutions have demonstrated their inadequacy for this problem due to the memory wall and low parallelism. Many-core GPU architectures show superior performance but they consume high power and also have memory constraints due to inconsistencies between cache and main memory. FPGA design solutions are also actively being explored, which allow implementing the memory hierarchy using embedded BlockRAM. This boosts the parallel use of shared memory elements between multiple processing units, avoiding data replicability and inconsistencies. This makes FPGAs potentially powerful solutions for real-time classification of CNNs. Both Altera and Xilinx have adopted OpenCL co-design framework from GPU for FPGA designs as a pseudo-automatic development solution. In this paper, a comprehensive evaluation and comparison of Altera and Xilinx OpenCL frameworks for a 5-layer deep CNN is presented. Hardware resources, temporal performance and the OpenCL architecture for CNNs are discussed. Xilinx demonstrates faster synthesis, better FPGA resource utilization and more compact boards. Altera provides multi-platforms tools, mature design community and better execution times
    corecore