
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Massey Research Online

https://core.ac.uk/display/159449278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Scalable Application Server
On Beowulf Clusters

A thesis presented in partial fulfilment of the requirement
for the degree of

Master of Information Science

At Albany, Auckland, Massey University
New Zealand

Supervised by: Dr. Chris Messom

Michael Zhiyong Zhou

2005

Abstract

Application performance and scalability of a large distributed multi-tiered application

is a core requirement for most of today ' s critical business applications.

I have investigated the scalability of a J2EE application server using the standard

ECperf benchmark application in the Massey Beowulf Clusters namely the Sisters and

the Helix. My testing environment consists of Open Source software: The integrated

]Boss-Tomcat as the application server and the web server, along with PostgreSQL as

the database. My testing programs were run on the clustered application server, which

provide replication of the Enterprise Java Bean (EJB) objects.

I have completed various centralized and distributed tests using the JBoss Cluster. I

concluded that clustering of the application server and web server will effectively

increase the performance of the application running on them given sufficient system

resources. The application performance will scale to a point where a bottleneck has

occurred in the testing system, the bottleneck could be any resources included in the

testing environment: the hardware, software, network and the application that is

running.

Performance tuning for a large-scale J2EE application is a complicated issue, which is

related to the resources available. However, by carefully identifying the performance

bottleneck in the system with hardware, software, network, operating system and

application configuration, I can improve the performance of the J2EE applications

running in a Beowulf Cluster. The software bottleneck can be solved by changing the

default settings, on the other hand , hardware bottlenecks are harder unless more

investment are made to purchase higher speed and capacity hardware .

II

Acknowledgement

My greatest appreciation goes to my supervisor: Dr Chris Messom, who has provided

endless support both technically and morally. His broad and insightful understanding

of the technology involved. his willingness to research emerging technology. his

concise yet plain explanation to technically challenging concepts has made my

learning process a pleasant experience .

Thanks to Dr Martin Johnson , Mr Andre Barczak and other people who have

contributed greatly developing the Massey Beowulf computers: the Sisters and the

Helix (the supercomputer) and made it available to us. Of course. thanks to the Allan

Wilson Centre for Mo lecular Eco logy and Evo lution (A WC) for funding the

deve lopment of the supe rcomputer.

Thanks to support from the system administrator James and the manager Lorri.

Also thanks to Massey University for the award of a Vice-Chancellor" s Masterate

Scholarship to support my study financially.

I must also thank the people working in the Open Source communities that have

provided high quality open source software for my study, especially to the people

working on Linux operating system. JBoss Group. Apache Tomcat Project and

PostgreSQL database.

Finally. thanks to my family for their understanding and support. They are my source

of energy and pleasure.

111

Table of Contents
ABSTRACT II

ACKNOWLEDGEMENT 11I

TABLE OF CONTENTS IV

TABLE OFTABLES VII

TABLE OF FIGURESIX

TABLE OF ABBREVIATIONS XI

CHAPTER 1: INTRODUCTION 1

I . I INTRODUCTION I
1.2 MOTi YA TION OF SCALAB ILITY STUDY FOR DISTRIBUTED APPLICA TIO S I
1.3 T ODAY'S TECHNOLOGY SUPPORT FOR SCALABLE APPLICATION 2
1.4 S IGN IFICANCE OF MY STUDY 3
1.5 O VERALL STRUCTURE OF THE THESIS 4
1.6 SUMMARY 6

CHAPTER 2: BACKGROUND KNOWLEDGE 7

2. 1 INTRODUCTION 7
2.2 COMPUTING TECHNOLOGY FOR A DISTRIBUTED SYSTEM 7
2.3 COMPARING J2EE WITH THE COMPETING TECH OLOGIES 9

2. 3.1 COREA 9
2. 3.2J2EE ll
2.3.3 .NET 12
2.3.4 Comparing J2EE with COREA 14
2.3.5 Comparing J2EE with .NET.. 16

2.4 CURRENT STUDY OF THE J2EE APPLICATION SERVER PERFORMANCE 18
2.5 MY RESEARCH APPROACH 22
2.6 SUMMARY 23

CHAPTER 3: HARDWARE FOR THE TEST 25

3.) INTRODUCTION 25
3 .2 INTRODUCTION OF SUPERCOMPUTERS AND B EOWULF CLUSTERS 25
3.3 M ASSEY B EOWULF CLUSTER 27
3.4 SUMMARY 29

CHAPTER 4: SOFTWARE FOR THE TEST 30

4. 1 INTRODUCTION 30
4.2 W HY CHOOSE OPEN SOURCE 30
4 .3 O VER VIEW OF OPEN SOURCE SOFTWARE FOR THE J2EE APPLICATION SEVER 31
4.4 JBoss APPLICATION SERVER 33

4.4. 1 JBoss structure based on JMX standard 33
4.4.2 JBoss Clustering & Naming service ... 34

4. 5 CHOOSING THE DATABASE 36
4 .6 CHOOSING ECPERF AS THE TESTING TOOL KITS 38

4. 6.1 Why choose ECperf. 39

IV

4.7 SUMMARY 42

CHAPTER 5: TEST DESIGN ... 43

5.1 INTRODUCTION 43

5.2 Two TYPES OF THE TESTING ARCH ITECTURE 43

5.2.1 Centralized workload architecture 43
5.2. 2 Distributed workload architecture -14

5.3 TESTING PROGRAMS AND RELATED CONFIGURATION ... 45

5.4 TEST DESIGN FOR SISTERS 46

5.-1.1 Type of planned test -16
5.-1.2 T,1 ·0 hardware architectures for testing the sisters -1 7
5.-1.3 Test design.for JVM test -19
5.-1.-1 Test design for Clustering o_f Session Beans 52
5.-1.5 Test design.for Cluster o_f all EJB 53
5. -I. 6 Test design for two databases 5-1
5.-1. 7 Test with Two partitions and two databases 56

5.5 TEST DESIGN FOR H ELIX 58

5.5.1 Type o_f planned test 58
5.5.2 Test design for J VM test 59
5.5.3 Test design for using the default DB pooling in }Boss 60
5.5.-1 Test design using optimised database pooling in JBoss cluster 61

5 .6 CONCLUSION 61

CHAPTER 6: TEST ON SISTERS 63

6.1 INTRODUCTIO 63

6.2 TEST WITH DIFFERE T JVM HEAP SIZE VALUE 63

6.3 TEST WITH CLUSTERING OF ONLY SESSION BEANS 68

6.3.1 Preliminary tests using the default connections in PostgreSQL. 68
6.3.2 Test by using optimised connections in PostgreSQL 70

6.4 TEST WITH CLUSTERING OF ALL EJ B 74

6.5 TEST WITH FIRST-AVAILABLE LOAD POLICY FOR CLUSTERING OF ALL EJB 76

6.6 TEST WITH TWO DAT ABASES 80

6.7 TEST WITH Two PARTITIONS AND TWO DATABASES··················· ·· ·· ·············· 82
6.8 TEST BY DISABLING THE LOG FILES WITH TWO PARTITION AND TWO DATABASES 85

6.9 DISCUSSIO OF THE SISTERS RESULT 87

6.10 SUMMARY 89

CHAPTER 7: TEST ON HELIX-THE SUPERCOMPUTER 90

7 . 1 INTRODUCTION 90

7.2 JVM HEAP SIZE TEST 90

7.3 TEST USING THE DEFAULT DATA SOURCE POOLING VALUES 94

7.4 T EST USING OPTIMISED DA TA BASE POOLING .. 96

7.5 SUMMARY······ ········· ···· ··· ····· ·· ············ ····· ········ ······· ······· ······ ······· ·· ····· ·················· 98

CHAPTER 8: PERFORMANCE ANALYSIS AND DISCUSSION 100

8.1 INTRODUCTION I 00

8 .2 SCALABILITY ANALYSIS FOR SISTERS AND H ELIX 100

8.3 BOTTLENECK ANALYSIS ... 104

8.4 PERFORMANCE TuNrNG FOR THE CURRENT TESTING SYSTEM 106

8 .5 F URTHER PERFORMANCE IMPROVEMENT DISCUSSION 110
8. 5.1 Scaling the database 110

V

8.5.2 Scaling the JBoss application server 112
8.6 POSSIBLE USE FOR COMMERCIAL APPLICATION 115
8.7 S UMMA RY 117

CHAPTER 9: CONCLUSION ... 119

9.1 INTROD UCTION 119
9.2 CONCLUSION 119

9.2.1 Contributions 119
9. 2. 2 Conclusion 120

9.3 F UTU RE WORK 121

REFERENCE: ... 124

VI

Table of Tables

Table 2.1: Comparison of basic features of J2EE and .NET

Table 2.2: Comparison of more critical features of J2EE and .NET

Table 6.1: Throughput of ECperf as function of the txRate

Table 6.2: JVM Heap Value vs . Maximum TPS Test

Table 6.3: Final Transaction output VS. txRate. (JBoss-Number = I)

Table 6.4: Final Transaction output VS. txRate. (JBoss-Number = I)

Table 6.5: Testing result of cluster all EJB on Sisters

Table 6.6: testing result of cluster all EJB using First Available load-balancing

Table 6. 7: test result with 2 databases

Table 6.8: Transaction output with 2 Partitions and 2 Database systems

Table 6.9 is the transaction output with 2 pa1titions and 2 databases and disabled log

Table 7.1: JVM Heap Value VS. TPS Test

Table 7.2 : Transaction output VS . JBoss Number

Table 7.3: Transaction Output VS . JBoss number in Helix

Table 8.1: Transaction Output in Sisters and Helix (JBoss= l)

Table 8.2 : Transaction Output in Sisters and Helix (JBoss=2)

VII

Table of Figures

Figure 2.1: The CORBA object invocation mechanism

Figure 2.2: the J2EE application architecture

Figure 2.3: .NET Framework

Figure 4.1: The ECperf Architecture

Figure 5.1: Example configuration for the Centralized Workload

Figure 5.2: Example configuration for the Distributed Workload

Figure 5.3: Architecture for Centralized workload using Sisters

Figure 5.4: The architecture for distributed workload using Sisters

Figure 5.5 The hardware architecture for JVM heap value test in Sisters

Figure 5.6: Cluster of only Session Beans

Figure 5.7: Cluster of all Enterprise Beans

Figure 5.8: Clustering all EJB with two databases

Figure 5.9: Test with two partitions and two databases

Figure 5.10: EJB Replication with 2 JBoss Partition & 2 Databases

Figure 5.11: The hardware architecture for JVM heap value test in Helix

Figure 5.12: The hardware architecture for ECperf Test in Helix

Figure 6.1: Throughput as a function of the txRate (-Xmx = 180MB)

Figure 6.2: Maximum throughput as a function of the JVM Heap Size

Figure 6.3: The Transaction Output (TPS) VS. Client Number

Figure 6.4: The Transaction Output (TPS) VS. JBoss Number

Figure 6.5: Transaction Output VS. JBoss number when clustering all EJB

Figure 6.6: Transaction output VS. JBoss number

Figure 6.7: Transaction Output using the distributed architecture

VIII

Figure 6.8 Transaction Output with 2Partitions and 2 Databases

Figure 6.9: Test with 2 partition, 2 DB & disable log file.

Figure 6. 10: All testing results for the sisters

Figure 7.1: Maximum throughput as a function of the JVM Heap Size

Figure 7.2: Transaction Output as a function of the JBoss number

Figure 7.3: Transaction Output VS. JBoss number in Helix

Figure 8.1: Helix and Sisters transaction output with one Jboss

Figure 8.2: Helix and Sisters transaction output with 2 Jboss

Figure 8.3: Example C-JDBC architecture

Figure 8.4: RAIDb-0 example

Figure 8.5 RAIDb-0-1 example

Figure 8.6 Architecture with JBoss and PostgreSQL cluster

IX

ANSI

API

BBop

BSD

CCM

CICS

CLR

CMP

COM

CORBA

COTS

CPU

CSIRO

DBMS

DCOM

EJB

HPC

HTTP

IMS-TM

INRIA

J2EE

JDBC

JDK

JMS

JMX

JNDI

JRE

JSP

JVM

LAN

MPI

Table of Abbreviations

American National Standards Institute

Application Programming Interface

Benchmark Business Operation

Berkeley Software Distribution

CORBA Component Model

Customer Information Control System

Common Language Runtime

Container-Managed Persistence

Component Object Model

Common Object Request Broker Architecture

Commercial off-the-shell

Central Processing Unit

Commonwealth Scientific & Industrial Research Organization

Database Management System

Distributed Component Object Model

Enterprise JavaBeans

High Performance Computing

Hypertext Transfer Protocol

Information Management System Transaction Manager

French National Institute For Research In Computer Science And

Control

Java 2 Platform, Enterprise Edition

Java Database Connectivity

Java Development Kit

Java Message Service

Java Management Extensions

Java Naming and Directory Interface

Java Runtime Environment

Java Server Pages

Java Virtual Machines

Local Area Network

Message-passing Interface

X

MPP

ODBC

OMA

OMG

ORB

PBS

PHP

PYM

RAIDb

RAM

RDBMS

RMI-IIOP

SARs

SFTP

SMP

SOAP

SP!

SSH

SUT

UDDI

UNIX

WAN

WSDL

XML

Massively Parallel Processing

Open Database Connectivity

Object Management Architecture

Object Management Group

Object Request Broker

Portable Batch System

Hypertext Preprocessor

Parallel Virtual Machine

Redundant Arrays of Inexpensive Database

Random Access Memory

Relational Database Management System

Remote Method Invocation Over Internet Inter-Orb Protocol (Rmi

Over liop)

Storage Area Network

Secure File Transfer Protocol Message-passing Interface

Symmetric Multiprocessing

Simple Object Access Protocol

service provider interface

Security Shell

System Under Test

Universal Description Discovery And Integration

Uniplexed Information and Computing System. (It was originally

spelled "Unics.")

Large Area Network

Web Services Description Language

Extensible Markup Language

XI

Chapter 1: Introduction

1.1 Introduction

This thesis presents a study of the performance and scalability of J2EE applications.

In particular, I concentrate on the application server, which is the core component of

the J2EE architecture. I use a cluster of JBoss application servers to test how the

scalability and performance of a J2EE application is effected.

In this introductory chapter, I start with the motivation of the scalability study and

explain why it is important in the business world. Then I give some brief technical

review about how scalability can be achieved using current available hardware and

software . I explain why my particular study is useful and finall y give an overview of

the contents in each chapter.

1.2 Motivation of scalability study for distributed applications

Large-scale distributed systems are becoming increasingly important in the world ,

especially with online business activities. The Internet has greatly improved the

accessibility to online businesses, and the increased accessibility has promoted ever

increasing e-commerce applications. The performance and scalability of an

application is critical for a successful business, as a business application needs to have

high performance to achieve competitive advantages over their competitors.

Performance can refer to many aspects , such as scalability, availability, fault tolerance

and load balancing. I am particular interested in the scalability of an application. A

scalable application has the capacity to serve additional users or transactions without

fundamentally altering the application's architecture or program design . If an

application is scalable, you can maintain steady performance as the load increases

simply by adding additional resources such as servers, processors or memory.

The two most common types of scalability that can be applied to affect the overall

application performance are:

• Horizontal scalability: Adding more servers (web, application or database

servers) to improve performance.

• Vertical scalability: Adding more physical resources (memory, processors or

network cards) to a existing server to improve performance.

The key point of scalability is to decide how well an application will perform when

the size of the problem increases. Scalability is not only critical to maintain current

system functionality in a changing workload, but also a key factor to guarantee the

system can keep up with the growth potential and has the ability to scale to meet

future user ' s demand.

1.3 Today's technology support for scalable application

Today ' s technology has provided high-quality hardware and software to support the

development and deployment of applications with good scalability and high

performance.

For the computer hardware, we have consistently increasing computing power with

the CPU speed doubling every 18 months, while the price of a personal computer is

gradually getting cheaper. Various architectures built on PCs have provided

fundamental support for high performance computing.

Supercomputers, which are the most powerful computers in the world, are getting

more powerful. Beowulf Clusters, which are built using the Commercial off-the-shelf

(COTS) components such as PCs, are gradually becoming more important in the

supercomputer field [7]. A major merit of a Beowulf Cluster is its significant cost

advantages over traditional mainframe supercomputers with similar computing

capacity.

2

The wide adoptions of fast network connections, for either local or large area

networks, as well as the Internet technology have enabled reliable communication

facilities to support high performance applications. Combined with the

supercomputer and the reliable Internet connections, it is much more practical to build

a GRID [20] , a network of supercomputers using today ' s technology.

Software has been developed to take advantage of the hardware architecture to

achieve high performance and scalability. Using a cluster of application servers for a

J2EE application, the application server components such as an EJB can be replicated

across a cluster of application server machine. By load balancing the client request to

members in the application server cluster, each client can interact concurrently with

local copies of the same EJB component. This results in increased accessibility to

computing power. thus, an increased application performance and scalability can be

achieved.

I am gomg to investigate the J2EE application performance usmg open source

software. JBoss, the leading open source application server has recently introduced

cluster support, which I will use for my study.

1.4 Significance of my study

I am going to investigate application scalability using open source software running in

the Beowulf Cluster. The advantage of this approach is that I have total control of the

resource, because the Beowulf Cluster was built and maintained by our department in

the Massey University, and the open source software can be used free of charge with

access to the source code.

From a business point of view, I am using one of the most cost effective combined

hardware and software for running J2EE applications. Building a Beowulf Cluster

cost only 5% to 20% of total cost compared with traditional mainframe

supercomputers with the same computing power [21]. The JBoss application server is

3

free of charge but with most of the features a leading commercial application server

provides. PostgreSQL is the most advanced open source database. By running J2EE

applications using a Beowulf cluster as the hardware, the JBoss cluster, PostgreSQL

as software. I can expect good scalability results. A good scalability result means that

the system could be very useful for developing and deploying cost effective

commercial applications.

1.5 Overall structure of the thesis

The thesis is organised into the following nine chapters:

Chapter 1 introduces the overal I structure of the thesis. I start with the motivation for

the scalability study, followed by current hardware and software technology that can

be used to build scalable applications. I then give reasons why my particular approach

is useful, and finish with the overall thesis structure.

Chapter 2 presents some of the background knowledge necessary for understanding

my study. Three of the most important architectures for building large-scale

distributed applications are presented and compared. this information helps to identify

why I chose the J2EE architecture for my study. I give some of the related literature

review and also state my research hypothesis.

Chapter 3 gives a detailed description of the hardware architecture of my study. I use

the Beowulf Cluster computers in Massey University for my performance study.

Starting with the general architectures of various high performance supercomputers,

the advantages of cluster-based system are discussed. At last, the helix and sisters

clusters in Massey University are introduced in details .

Chapter 4 covers the software used in the study. I have chosen all software from

open source, which I am particularly interested in. I cover the software for running a

distributed applications based on J2EE technology. To be more specific, I give some

detail about why 1 choose the integrated]Boss-Tomcat as the application server and

web server, the PostgreSQL as the database and the ECperf as my testing application.

4

Chapter 5 describes the details of the test design for both the Sisters and Helix. I start

with different types of hardware architecture I will use, followed by some detailed

information about how to run various test programs in the system. The last part gives

my preliminary design selections on the type of test, and briefl y identifies the reason

for that se lection.

Chapter 6 gives detailed testing procedures for my study in Sisters. I have done

various tests based on different hardware architecture, software and the application

configurations. For each type of test, I present with details about the test design and

implementation procedures. Followed by a test result, Analysis and discussion on

these results reveal several important conclusions.

Chapter 7 gives detailed testing procedures for my study in Helix . Again , I have

followed a similar approach used for the Sisters. But the Helix concentrates on some

different aspect of my study and reveals some different results as compared with the

Sisters.

Chapter 8 covers the further analysis and discussions based on the results obtained

on both Sisters and Helix . I have given a broader view on how to further improve the

performance and scalability of my current system. A higher level of discussions about

how to improve the current implementation and use better software features and

hardware architecture are di scussed.

Chapter 9 gives the conclusion to my study. Based on the analysis of testing results

in the previous chapters, I make my final conclusions and show some of the

contributions made by my study. I also anticipated the future work in my research

field.

5

1.6 Summary

I have introduced the overall structure of the thesis. Firstly. I gave the motivation for

the scalability study. followed by the technical support that can be used for building a

scalable application. I then show why my particular approach is useful. Finally, I

listed the major topics of each chapter in the thesis.

6

