5,251 research outputs found

    3-Factor-criticality of vertex-transitive graphs

    Full text link
    A graph of order nn is pp-factor-critical, where pp is an integer of the same parity as nn, if the removal of any set of pp vertices results in a graph with a perfect matching. 1-Factor-critical graphs and 2-factor-critical graphs are factor-critical graphs and bicritical graphs, respectively. It is well known that every connected vertex-transitive graph of odd order is factor-critical and every connected non-bipartite vertex-transitive graph of even order is bicritical. In this paper, we show that a simple connected vertex-transitive graph of odd order at least 5 is 3-factor-critical if and only if it is not a cycle.Comment: 15 pages, 3 figure

    Hamilton cycles in dense vertex-transitive graphs

    Get PDF
    A famous conjecture of Lov\'asz states that every connected vertex-transitive graph contains a Hamilton path. In this article we confirm the conjecture in the case that the graph is dense and sufficiently large. In fact, we show that such graphs contain a Hamilton cycle and moreover we provide a polynomial time algorithm for finding such a cycle.Comment: 26 pages, 3 figures; referees' comments incorporated; accepted for publication in Journal of Combinatorial Theory, series
    corecore