3,231 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Superresolution without Separation

    Full text link
    This paper provides a theoretical analysis of diffraction-limited superresolution, demonstrating that arbitrarily close point sources can be resolved in ideal situations. Precisely, we assume that the incoming signal is a linear combination of M shifted copies of a known waveform with unknown shifts and amplitudes, and one only observes a finite collection of evaluations of this signal. We characterize properties of the base waveform such that the exact translations and amplitudes can be recovered from 2M + 1 observations. This recovery is achieved by solving a a weighted version of basis pursuit over a continuous dictionary. Our methods combine classical polynomial interpolation techniques with contemporary tools from compressed sensing.Comment: 23 pages, 8 figure

    ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์„ ์ด์šฉํ•œ ์ˆ˜์ค‘์Œํ–ฅ ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ • ๊ธฐ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ, 2021. 2. ์„ฑ์šฐ์ œ.์‚ผ์ฐจ์› ์Œํ–ฅ ์†Œ์Œ์›์˜ ์œ„์น˜์ถ”์ •์€ ์ž ์ˆ˜์ฒด, ์‚ฐ๋ž€์ฒด, ์บ๋น„ํ…Œ์ด์…˜ ์†Œ์Œ์›์˜ ๋ถ„์„์„ ์œ„ํ•ด ํ•„์ˆ˜์ ์ธ ๊ณผ์ •์ด๋‹ค. ์ „ํ†ต์ ์ธ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์€ ๊ฐ•์ธํ•œ ์œ„์น˜ ์ถ”์ • ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋‚˜, ํ•˜๋‚˜์˜ ์†Œ์Œ์›์˜ ์œ„์น˜๋งŒ์„ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š” ์ €ํ•ด์ƒ๋„์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์ธ๋‹ค. ๊ณ ํ•ด์ƒ๋„์˜ ์œ„์น˜ ์ถ”์ • ๊ฒฐ๊ณผ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด ์ตœ๊ทผ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐ˜์˜ ์œ„์น˜ ์ถ”์ • ๊ธฐ๋ฒ•๋“ค์ด ์‚ฌ์šฉ๋˜์–ด ์ง€๊ณ  ์žˆ๋‹ค. ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฒ•์€ ํฌ์†Œ์„ฑ์„ ๊ฐ€์ง„ ์‹ ํ˜ธ์˜ ํš๋“,์ฒ˜๋ฆฌ,๋ณต์›์— ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ด๋ฉฐ ์˜์ƒ์ฒ˜๋ฆฌ, ์ˆ˜์ค‘์Œํ–ฅ, ์ตœ์ ํ™” ๋ฌธ์ œ ๋“ฑ์—์„œ ๋„๋ฆฌ ํ™œ์šฉ๋˜์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ˆ˜์ค‘ ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ •์„ ์œ„ํ•˜์—ฌ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐฅ์˜ ๊ธฐ๋ฒ•๋“ค์ด ์ ์šฉ๋˜์–ด ์™”์œผ๋ฉฐ ์ „ํ†ต์ ์ธ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์— ๋น„ํ•˜์—ฌ ํ•ด์ƒ๋„ ์ธก๋ฉด์—์„œ ๋” ๋‚˜์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ํ•ด์ƒ๋„ ์ธก๋ฉด์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•์€ ์—ฌ์ „ํžˆ ๋ฌธ์ œ์ ๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ฒซ๋ฒˆ์งธ, ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฒ•์€ ์ „ํ†ต์ ์ธ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์— ๋น„ํ•ด ์ˆ˜์น˜ ์—ฐ์‚ฐ ๊ณผ์ •์ด ๋ถˆ์•ˆ์ „์„ฑ์„ ๊ฐ€์ง„๋‹ค. ๋น„๋ก ๊ณ ํ•ด์ƒ๋„์˜ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ๋‚˜ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฒ•์€ ์ˆ˜์น˜ํ•ด์„ ๊ณผ์ •์—์„œ ๋ถˆ์•ˆ์ •ํ•œ ๋ชจ์Šต์„ ๋ณด์—ฌ์ฃผ๋ฉฐ, ์•ˆ์ •์ ์ธ ๋ณต์›์„ ์ €ํ•ดํ•œ๋‹ค. ๋‘๋ฒˆ์งธ, ๊ธฐ์ €๋ถˆ์ผ์น˜๋กœ ์ธํ•œ ์˜ค์ฐจ๊ฐ€ ์ •ํ™•ํ•œ ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ •์„ ์ €ํ•ดํ•œ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€ 3์ฐจ์› ์†Œ์Œ์›์˜ ์œ„์น˜ ์ถ”์ • ๋ฌธ์ œ๋Š” ์ด๋Ÿฌํ•œ ๊ธฐ์ € ๋ถˆ์ผ์น˜๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ๋ฒ•์ด ์•„์ง๊นŒ์ง€ ๊ฐœ๋ฐœ๋˜์ง€ ๋ชปํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด์˜ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฐ˜์˜ ์œ„์น˜ ์ถ”์ • ๊ธฐ๋ฒ•์ด ๊ฐ€์ง€๋Š” ๋ฌธ์ œ์ ์„ ํŒŒ์•…ํ•˜๊ณ  3์ฐจ์› ์œ„์น˜ ์ถ”์ • ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” ํ–ฅ์ƒ๋œ ์••์ถ•์„ผ์‹ฑ ๊ธฐ๋ฒ•์„ ์†Œ๊ฐœํ•œ๋‹ค. ํƒ์ƒ‰ ๊ณต๊ฐ„ ์‚ฌ์ด์˜ ๋†’์€ ์ƒ๊ด€๊ด€๊ณ„๋กœ ์ธํ•˜์—ฌ ๋ฐœ์ƒํ•˜๋Š” ํ•ด์˜ ๋ถˆ์•ˆ์ •์„ฑ์„ ํ•ด๊ฒฐ์•„๊ธฐ ์œ„ํ•˜์—ฌ ``๋‹ค์ค‘์ฃผํŒŒ์ˆ˜ ์ƒ๊ด€ ์ฒ˜๋ฆฌ๊ธฐ๋ฒ•"์„ ์†Œ๊ฐœํ•˜๊ณ , 3์ฐจ์› ์œ„์น˜ ์ถ”์ •๋ฌธ์ œ์—์„œ ๊ธฐ์ €๋ถˆ์ผ์น˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ``์œ ๋™ ํƒ์ƒ‰ ๊ฒฉ์ž ๊ธฐ๋ฒ•"์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ์ „ํ†ต์ ์ธ ๋น”ํ˜•์„ฑ ๊ธฐ๋ฒ•์— ๋น„ํ•˜์—ฌ ์ •ํ™•ํ•œ ์œ„์น˜ ์ถ”์ • ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ ์‹คํ—˜ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•œ ์œ„์น˜ ์ถ”์ •๊ฒฐ๊ณผ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ด๋Ÿฌํ•œ ์ฃผ์žฅ์„ ๋’ท๋ฐ›์นจํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ˆ˜์ค‘์Œํ–ฅ ์†Œ์Œ์›์˜ 3์ฐจ์› ์œ„์น˜ ์ถ”์ • ๋ฌธ์ œ๋ฅผ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃจ์—ˆ์œผ๋‚˜, ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ์†Œ๋‚˜ ๋ฐ ๋ ˆ์ด๋”, ์Œํ–ฅ ์†Œ์Œ์› ์œ„์น˜ ์ถ”์ • ๋ฌธ์ œ์—๋„ ํšจ๊ณผ์ ์œผ๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Three-dimensional acoustic localization is an essential process to analyze the underwater sound sources such as submarine, scatterer, marine cavitation. Traditional beamforming processors provide robust localization results, however, the results show a low-resolution result which only reveals one dominant source location. In order to obtain the high resolution localization results, compressive sensing(CS) based approaches have been used recently. CS technique is an effective way for acquiring, processing, reconstructing the sparse signal and has wide applicability to many research fields such as image processing, underwater acoustics and optimization problems. For localizing the underwater acoustic sources, CS-based approaches have been adopted in many research fields and have shown better localization performance compared to the traditional beamforming processors in terms of resolution. Despite the performance improvement in resolution, there are still problems that need to be resolved when using the CS-based method. First, the CS-based method does not appear to be robust compared with the traditional beamforming processors. CS-based method provides high-resolution results, however, it suffers from computational instability which hinders the stable reconstruction. Second, basis mismatch error hindrances estimating the exact source locations. Moreover, there is no basis mismatch estimation technique applicable to 3D source localization problem. This dissertation points out the limitation of conventional CS-based localization method and introduces the advanced CS-based localization method which deals with 3D source localization problem. The ``coherent multiple-frequency processing" is introduced to overcome the instability of solution induced by high correlation of spatial grids and ``flexible searching-grid technique" is introduced to solve the basis mismatch problem which is developed for 3D source localization problem. The suggested techniques provide more accurate localization results compared to traditional beamforming processors or conventional CS-based beamforming processors and the arguments are backed with actual experimental data which was conducted in a cavitation tunnel. Though underwater acoustic source localization problems are presented in this dissertation, the proposed technique can be extended to many research fields, such as radar detection, sonar detection, ultrasound imaging.1 Introduction 2 1.1 Issue 1 : Computational Stability 4 1.2 Issue 2 : Basis Mismatch 5 1.3 Organization of the Dissertation 5 2 CS techniques for three-dimensional source localization 9 2.1 Compressive Sensing (CS) 9 2.2 Block-Sparse Compressive Sensing (BSCS) 11 2.3 Sparse Bayesian learning (SBL) 12 2.4 Off-Grid Sparse Bayesian Inference (OGSBI) 14 3 3D CS-based source localization method using multiple-frequency components 18 3.1 Introduction 18 3.2 Block-sparse Compressive Sensing for Incipient Tip Vortex Cavitation Localization 24 3.2.1 System framework for incipient tip vortex cavitation localization 24 3.2.2 Incoherent multiple-frequency localization with compressive sensing 26 3.2.3 Coherent multiple-frequency localization with block-sparse compressive sensing 28 3.3 Localization Results for Incipient TVC 32 3.3.1 Transducer source experiment 33 3.3.2 Incipient TVC Noise Source Experiment 36 3.4 Conclusion 41 3.5 Acknowledgments 43 4 3D CS-based source localization method by reducing the basis mismatch error 48 4.1 Introduction 48 4.2 Off grid system framework for 3D source localization 50 4.2.1 System framework for 3-dimensional off gird source localization 50 4.2.2 Coherent multiple-frequency localization with block-sparse Bayesian learning technique 53 4.2.3 3-dimensional off grid source localization method 55 4.3 Simulation and Experiment Results 62 4.4 Conclusion 65 5 Summary 70 Abstract (In Korean) 73Docto
    • โ€ฆ
    corecore