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Abstract

Three-dimensional acoustic localization is an essential process to analyze the un-

derwater sound sources such as submarine, scatterer, marine cavitation. Traditional

beamforming processors provide robust localization results, however, the results show

a low-resolution result which only reveals one dominant source location. In order

to obtain the high resolution localization results, compressive sensing(CS) based ap-

proaches have been used recently. CS technique is an effective way for acquiring, pro-

cessing, reconstructing the sparse signal and has wide applicability to many research

fields such as image processing, underwater acoustics and optimization problems. For

localizing the underwater acoustic sources, CS-based approaches have been adopted

in many research fields and have shown better localization performance compared

to the traditional beamforming processors in terms of resolution. Despite the perfor-

mance improvement in resolution, there are still problems that need to be resolved

when using the CS-based method. First, the CS-based method does not appear to be

robust compared with the traditional beamforming processors. CS-based method pro-

vides high-resolution results, however, it suffers from computational instability which

hinders the stable reconstruction. Second, basis mismatch error hindrances estimating

the exact source locations. Moreover, there is no basis mismatch estimation technique

applicable to 3D source localization problem.

This dissertation points out the limitation of conventional CS-based localization

method and introduces the advanced CS-based localization method which deals with

3D source localization problem. The “coherent multiple-frequency processing” is in-

troduced to overcome the instability of solution induced by high correlation of spatial

grids and “flexible searching-grid technique” is introduced to solve the basis mismatch

problem which is developed for 3D source localization problem. The suggested tech-
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niques provide more accurate localization results compared to traditional beamform-

ing processors or conventional CS-based beamforming processors and the arguments

are backed with actual experimental data which was conducted in a cavitation tunnel.

Though underwater acoustic source localization problems are presented in this disser-

tation, the proposed technique can be extended to many research fields, such as radar

detection, sonar detection, ultrasound imaging.

Keywords: Compressive Sensing, Beamforming, Cavitation, Localization, Block-

sparsity, Sparse Bayesian Learning

Student number: 2015-21164
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Chapter 1

Introduction

Marine source localization, such as DOA estimation[1], source localization[2],

sonar detection[3], is an essential process in underwater acoustics. Acoustic source

localization results provide not only spatial information but also the characteristics of

noise sources. For this reason, an accurate source localization processor is essentially

required. TDOA(Time Differential of Arrival) methods[4] and beamforming proces-

sors[5] are popular strategies for localizing the acoustic sources. The TDOA method

calculates the arrival time differences from sources to hydrophones which provides

proper location of acoustic source. But this method is generally conducted in time-

domain, it suffers from background noise and multi-path effect.[4, 6] Beamforming

processors calculate the amplitudes and difference of phases for each hydrophones.

This processor is generally conducted in frequency-domain. Thus, it is robust to back-

ground noise so that it has been widely applied to underwater acoustic source localiza-

tion problems.[2] For the three-dimensional beamforming processor, the localization

results are shown as an ambiguous surface. The ambiguity surface does not provide

distinct source locations but provides an acoustic center.[7] The acoustic center indi-

cates exact source location in the case that only one acoustic source exists in the search

space. However, the acoustic center is not a convincing location of the acoustic source

when there are many distributed sources.
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In recent years, a series of studies on CS-based[8] localization have been developed

in underwater acoustics.[9–14] For example, CS technique have been applied to DOA

estimation problem and have shown that high-resolution DOAs can be presented com-

pared to traditional beamforming processors.[1, 9] Recently, shallow water location

mapping[11] and cavitation noise source localization results[15] have been presented

using CS-based technique and have shown that CS technique is also applicable to

the localization problem in 2-D and 3-D problem. These CS-based localization results

have shown that sparse reconstruction is an effective way to extract the spatially sparse

locations and has capability of high-resolution result compared to traditional beam-

forming processors. Despite the performance improvement in resolution, CS-based

localization methods have problems which could disturb the exact localization result.

First, exact reconstruction is sometimes problematic when the computational complex-

ity is high. Especially, three-dimensional localization system has massive spatial bases

so that stable source reconstruction is problematic.[16] Second, CS-based localization

methods suffer from a basis mismatch issue. When the actual source positions are not

located on the discretized searching grids(i.e., spatial bases), it is referred that there

is a basis mismatch.[17] The basis mismatch is a very critical issue for the CS-based

localization methods, which results in incorrect determination of the number and lo-

cations of the sources. One possible way to reduce the basis mismatch is to exploit the

off grid techniques.[18, 19] However, the off grid techniques have been only developed

for the 1D[20] and 2D[21] cases, the off grid technique which is applicable to 3D case

has not been developed yet.

For these reasons, this dissertation presents advanced CS-based localization meth-

ods to resolve these problems. Two CS-based 3D source localization methods are sug-

gested : “coherent multi-frequency processing” which reduces the computational in-

stability (Chapter 3) and “flexible searching-grid method” which reduces the basis

mismatch error (Chapter 4). These methods provide robust and accurate localization

results compared to conventional CS-based approaches and the arguments are backed
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with simulation and experimental results.

1.1 Issue 1 : Computational Stability

When we receive the acoustic source signal by using the hydrophone, the signal

can be represented in the three representative domains : space, time and frequency.

In the aspect of sparse reconstruction, the acoustic source signals are generally sparse

since the number of searching grids are larger than the number of acoustic sources.

Thus, the signal can be regarded as sparse in the space domain. If the acoustic source

is stationary regardless of time varying, the signal is sparse in space domain and is clus-

tered in time domain. This signal type is referred to be “joint-sparse” or “block-sparse”.

The block-sparse CS is an effective signal reconstruction technique which enhances

the reconstruction performance.The block-sparse CS provides better reconstruction

properties than conventional CS technique when treating the block-sparse signal. For

stationary acoustic sources, the BSCS technique[22] has been widely adopted to solve

the MMVs problem and has shown that recovery performance can be significantly

improved by using the BSCS.[23]

We further assumed that the source emits impulsive and wideband signal. Then,

the signal will be sparse in space domain and will be clustered in frequency domain.

This signal is also “block-sparse” in the spatial-spectral domain. Exploiting this block-

sparse characteristic of the signal, we propose a broadband source localization method

by using BSCS, which is referred to as “coherent multi-frequency processing”.

By promoting the block-sparsity in the spatial-frequency domain, the proposed

localization approach provides the stable and accurate localization results compared to

the conventional CS-based approaches. To validate the localization performance, this

approach is demonstrated on experimental data from a transducer source experiment

and a cavitation source experiment.
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1.2 Issue 2 : Basis Mismatch

Conventional CS-based localization approaches are conducted in discrete spatial

domain. In other words, the approaches employ finite discrete grid points to estimate

the source location by using sparse signal feature. One issue for the conventional CS-

based localization approaches is basis-mismatch, which occurs when the exact K sup-

port (the true source locations of searching grids) does not locate on the discretized grid

point. This basis mismatch results in numerical error and hinders the accurate source

localization. To prevent the basis mismatch error, the off grid techniques have been de-

veloped. The off grid techniques estimate the basis mismatch by usage of the atomic-

norm minimization method[18] or the posterior maximization method[19]. Then, the

estimated basis mismatch errors are compensated to the reconstruction signal.

Unlike CS-based localization methods conducted in 1D and 2D domains, the off

grid technique applicable to 3D domain has not been developed yet. The difficulty

occurs by that first-order linearization of the transfer function is hard to be achieved in

the 3D domain. (Further discussion will be presented in Chapter 4)

In this dissertation, we firstly propose the basis-mismatch error estimation proces-

sor applicable to 3D source localization problem. To resolve the linearization issue, we

introduce the “flexible searching-grid” technique. The position of flexible searching-

grid is designed to be varied with each iteration and to be converged to true source

position regardless of the linearization issue. By reducing the basis-mismatch error,

the proposed off grid technique provides the accurate localization results compared to

the conventional CS-based approaches.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, CS algo-

rithms used in this dissertation are briefly expressed. Chapter 3 introduces the “coher-

ent multiple-frequency processing” and Chapter 4 introduces the “flexible searching

5



grid” technique. Chapter 5 concludes this dissertation with contributions of the re-

search.
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Chapter 2

CS techniques for three-dimensional source localization

In this dissertation, advanced CS-based approaches are developed exploiting the

conventional CS techniques for estimating the precise 3D source locations. In this

chapter, several conventional CS algorithms are briefly explained to improve the reader’s

comprehension. The CS[1] and BSCS[2] algorithms are described in Section 2.1 and

2.2. These algorithms are the basic background of Chapter 3. The SBL[3] and OGSBI[4]

algorithms are described in Section 2.3 and 2.4. These algorithms are the basic back-

ground of Chapter 4.

2.1 Compressive Sensing (CS)

CS[1] is a signal reconstruction technique applicable to sufficiently sparse signals

with less measurement data. Many underwater acoustic source signals have a much

lower level of information than their dimension. For example, the number of underwa-

ter acoustic sources are generally smaller than the number of searching grids.

Let x ∈ CN be an unknown vector representing the complex amplitude of sources

which located in certain grid points y ∈ CM be a measurement vector from sources to

receivers. Then, x and y are related by a linear set of equations which can be described
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as below,

y = Ax + n, (2.1)

where A is a sensing matrix and n is a noise vector. Generally, N is much larger than

M(i.e., N � M), this linear system is underdetermined. However, if K non-zero

components of x are sufficiently small(i.e., x is sparse), then this linear system can be

solved by using the CS principle.

The CS principle assumes that signal to be reconstructed is sparse in some domain.

In other words, the signal should have relatively few non-zero components. Thus, we

can estimate the actual solution by seeking the most sparse solution within the nu-

merous solutions. By using the CS technique, the original K-sparse vector x can be

reconstructed by the following solution.

min
x∈CN

‖x‖0 subject to ‖y −Ax‖2 ≤ ε, (2.2)

where ‖x‖0 and ε denote the number of non-zero components of x and noise error

constraint. Note that Eq. (2.2) is an ill-posed problem since the calculation of l0-norm

is a trivial problem. Thus, Eq. (2.2) should be replaced for reducing the computational

burden as follow.

min
x∈CN

‖x‖1 subject to ‖y −Ax‖2 ≤ ε, (2.3)

(2.2) is referred as the l1-norm minimization method. It has been proven that (2.2)

and (2.3) equally work when x is sufficiently sparse. Then, by solving the Eq. (2.3),

we can obtain the reconstructed signals from a few measurement data.
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Figure 2.1: (a) K=2 sparse solution (b) K=1 sparse solution

2.2 Block-Sparse Compressive Sensing (BSCS)

To reconstruct the origin signal by using the CS-based approach, it is essentially re-

quired that the signal should be represneted as a sparse signal. In many practical ap-

plications, however, finding the sparse representation is problematic. For example,

if non-zero components of the signal are clustered in certain positions, the clusters

are sparse rather than non-zero components are sparse. This clustered signal is called

block-sparse.

In terms of raw CS principle, block-sparse signal is not a sparse signal. However,

by treating the clusters as blocks, BSCS enable this block-sparse signal to be recon-

structed in terms of sparse recovery.

Let x ∈ CNL be a block-sparse signal vector. Then, the signal vector can be

described as block structure.

x = [xblock
1 ; · · · ; xblock

N ]

= [x
(1)
1 , · · · , x̃(L)

1︸ ︷︷ ︸
x̃block
1

, · · · , x(1)
N , · · · , x(L)

N︸ ︷︷ ︸
xblock
N

]T, (2.4)

Then, the sparsity level of this system is determined by the number of non-zero

blocks rather than the number of non-zero components. In other words, reconstruction

procedure is processed to minimize the number of non-zero blocks.
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min
x∈CNL

N∑
n=1

I(‖xblock
n ‖2 > 0) subject to ‖y −Ax‖2 ≤ ε, (2.5)

Eq.(2.6) represent the principle solution of the block-sparse signal reconstruction.

However, Eq.(2.6) is also an ill-posed problem. Instead, Eq. (2.2) can be replaced for

reducing the computational burden as follows.

min
x∈CNL

N∑
n=1

‖xblock
n ‖2 subject to ‖y −Ax‖2 ≤ ε, (2.6)

Figure 2.2: (a) K=3 block-sparse solution (b) K=1 block-sparse solution

2.3 Sparse Bayesian learning (SBL)

Sparse Bayesian Learning(SBL) is a kind of compressive sensing approach which

uses a probabilistic model. In the SBL framework, the sparse signal vector x is treated

as random variables and is reconstructed by maximizing the posterior. The approach

seems to be similar to the MAP processor, however, there are two distinct features

compared to MAP processor.
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First, SBL has a parameterized prior. The parameterized prior can be described as

below.

p(x|γ) =

N∏
i=1

p(xi|γi) (2.7)

where,

p(xi; γi) =
1√

2πγ2
exp(− x

2
i

2γi
) (2.8)

γ is a hyper-parameter vector which controls the sparsity level. Theparameterized

prior allows the posterior probability mass to concentrate at very large values of some

of these γ variables. Thus, the reconstructed x could be sparse. And, as seen in 2.7 and

2.8, these hyperpriors are independent and (usually zero mean) multivariate Gaussian

distribution.

Second, the SBL uses a Gaussian likelihood model.

p(y|x, σ2) =
1

(2πσ2)
N
2

exp(− 1

2σ2
||y −Ax||22) (2.9)

According to 2.9, obtaining maximum likelihood estimates for under this condition

is equivalent to minimizing the l2-norm solution to 2.1 To avoid “over-fitting” issue in

MAP processor, SBL impose a “comprexity” penalty term(i.e., regularisation) to the

prior distribution defined by “hyperpriors”.

By using these features, SBL derives a fully probabilistic posterior model.
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p(x|y,γ, σ2) =
likelihood× prior
normalising factor

=
p(y|x, σ2)× p(x|γ)

p(y|γ, σ2)
(2.10)

In 2.10, unknown parameters are γ, σ2. Thus, we can obtain the sparse solution x

by estimating the proper parameters γ, σ2 which maximize the posterior p(x|y,γ, σ2).

2.4 Off-Grid Sparse Bayesian Inference (OGSBI)

For reducing the basis mismatch, off grid sparse Bayesian inference(OGSBI) ap-

proach had been developed. OGSBI, based on SBL theory, estimates the basis mis-

match by maximizing the posterior of the system below.

y − (A + D∆)x (2.11)

D is a linearization matrix and ∆ is a basis mismatch vector. By maximizing the

posterior, we can directly obtain the basis mismatch factors.

By exploiting the Eq.(2.11), the sparse Bayesian formulation can be derived as

follow

1) sparse signal model to maximize the posterior The posterior distribution can be

described as below.

p(y,x;γ, σ2,∆) = p(y|x;σ2,∆)p(x|γ) (2.12)

where, prior p(x|γ) is multi-variate guassian distribution,

p(x|γ) = CN (x|0,γ) (2.13)
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and liklihood is,

p(y|x;σ2,∆) = (πσ2)−N exp(− 1

σ2
||y − (A + D∆)x||22) (2.14)

According to Bayes’ rule, posterior can be expressed as follow

p(y,x;γ, σ2,∆) = p(y|x;σ2,∆)p(x;γ) (2.15)

2) parameter estimation

The parameter estimation can be conducted by using the EM approach which con-

sists of iterative E-steps and M-steps. (E-steps for estimating x and M-step for esti-

mating the parameters γ, σ2,∆)

(E-step : estimate Σ and x)

µx = Γ(A + D∆)HΣ−1
y y (2.16)

where,

Σ = Γ− Γ(A + D∆)HΣ−1
y (A + D∆)Γ

Σt , σ2IN + (A + D∆)Γ(A + D∆)H
(2.17)

(M-step : estimate σ2,γ,∆)

For estimating the γ, maximize Ey,x;γ,σ2,∆[log p(x|γ)];
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γ = ||xi||22 + Σii, for i = 1, ...., N (2.18)

For estimating the σ2, maximize Ey,x;γ,σ2,∆[log p(y|x;σ2,∆)]

σ2 =
1

N

[
||y − (A + D∆)x||22 + Tr((A + D∆)H(A + D∆)Σ)

]
(2.19)

For estimating ∆, maximizing the Ey,x;γ,σ2,∆[log p(y|x;σ2,∆)] is equivalent to

minimize,

E
{
||y − (A + D∆)x||22

}
=||y − (A + D∆)µx||22 + Tr

{
(A + D∆)Σ(A + D∆)H

}
=∆Q∆ + 2R∆ + C

(2.20)

Thus, the basis mismatch ∆ can be estimated by minimizing the following equa-

tion.

arg min
∆

{
∆Q∆ + 2R∆

}
(2.21)

∆ = Q−1R (2.22)

where,

Q = Re[DHD� (µHx µx + Σ)]

R = Re[diag(µx)DHy −Aµx]− Re[diag(DHAΣ)]
(2.23)
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Chapter 3

3D CS-based source localization method using multiple-

frequency components

3.1 Introduction

Marine propeller cavitation is a dominant noise source phenomenon; [1] thus, it

is essential to infer its inception and, possibly, its precise location. Cavitation is of a

broadband nature, and previous studies to detect and localize the source of cavitation

noise based on the matched-field processing (MFP) method [2] or compressive sensing

(CS) method [3] adopted frequency-domain broadband approaches, producing reason-

able localization results. The CS-based method [4] showed better localization perfor-

mance than that of the MFP-based methods. [5–7] However, the CS-based method is

not robust to noise compared with the MFP-based method. The aim of this study is to

provide a propeller cavitation localization method based on CS that takes advantage of

the robustness of the broadband approach to noise and the high-resolution capability

of the CS-based method. For this purpose, the block-sparse CS [8–11] technique is

adopted, which enables the joint retrieval of multi-frequency components.

Microbubbles incepted by a propeller tip vortex line radiate a short impulse signal

during the processes of growth, split, and collapse, which is called tip vortex cavitation
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(TVC). [1] When the bubbles grow large enough, vortex cavitation can be detected and

localized by optical observation. However, optical observation is unavailable when

optical access is not allowed or when bubbles are too small to be optically observed.

Generally, in the incipient stage of TVC, incepted bubbles are small and invisible to

the bare eye; thus, the optical approach is not an appropriate method. More practically,

acoustical techniques, implemented either in the time domain [12, 13] or frequency

domain, [4–7, 14, 15] can be used to detect and localize the cavitation noise source.

In the time domain, the time difference of arrival (TDOA)-based method is a pop-

ular strategy for source localization. The TDOA-based method achieves source lo-

calization without computational complexity. However, an accurate estimate of the

arrival time is difficult in the presence of the multi-path effect. Generally, in the cav-

itation tunnel test, the received signal is distorted owing to multi-reflection and noisy

environments. The separation of a multi-path signal is sometimes problematic when

the received signal waveform is distorted. To localize the vortex cavitation, Chang and

Dowling [12] used the TDOA-based method and presented the acoustical localization

results. However, they suffered from the effects of reverberation, and additional signal

processing had to be used [12, 13] to obtain the direct-path signal.

One possible way to mitigate the multi-path effect is to implement source localiza-

tion in the frequency domain. When the waveform is distorted owing to the multi-path

effect, frequency-domain measurement data can be alternatively utilized for source

localization. In the case of TVC localization, the MFP-based method using single-

frequency measurement data showed that accurate localization can be achieved de-

spite the presence of the multi-path effect. [6] However, single-frequency measure-

ment data still include a frequency interference pattern, reverberation, and background

noise, all of which hinder accurate localization. Moreover, the single-frequency ap-

proach may not be effective under very low signal-to-ratio (SNR) conditions. These

hindrances can be alleviated by using multi-frequency measurement data. [5–7] Be-

cause the received signal at a single frequency includes frequency-dependent infor-
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mation, such as ambiguity surface patterns [2] or environmental characteristics, com-

bining the frequency-dependent information leads to the minimization of unwanted

information. There are a number of different ways to combine frequency-dependent

information across frequencies, which can be categorized based on the coherence of

the processing method. Incoherent multiple-frequency processing considers each as-

pect of frequency-dependent information independently of each other. Thus, the infor-

mation for each frequency is processed individually and combined by direct averaging

across frequencies. In contrast, coherent multiple-frequency processing considers each

frequency-dependent piece of information cohesively.

The MFP-based method simulates a replica (modeled pressure field induced by a

potential noise source) and compares the replica against the measured pressure field of

a single frequency at a certain location. This process is performed over multiple fre-

quencies of interest. Then, by exploiting the incoherent multiple-frequency processing,

the similarity values are mathematically averaged over frequencies, and the estimation

of potential noise source is reached. In the case of TVC noise source localization, Kim

et al. [6] and Park et al. [7] utilized incoherent broadband MFP and showed successful

localization results. Because TVC transmits broadband noise, the similarities between

the replica and measured pressure field can be compared over multiple frequencies of

interest. Despite the fact that each ambiguity surface at a single frequency includes

frequency-dependent patterns and sidepeaks that hinder accurate localization, the av-

eraged ambiguity surface effectively mitigates these hindrances. As a result, accurate

source localizations were achieved using incoherent broadband MFP. [6, 7]

CS is a signal reconstruction technique [3] applicable to sufficiently sparse signals

with less measurement data and has shown that it can be applied to the underlying

acoustic models which have sparse representations in the basis, such as beamform-

ing [16–18], geo-acoustic inversion [19], near-field acoustic holography [20–22] and

underwater source localization [23]. Particularly, Xenaki et al. [17] utilized CS for

DOA reconstruction to overcome the resolution limit of conventional beamforming
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and showed that the received plane wave signals can be distinguished at high resolu-

tion.

Motivated by the CS-based beamforming method, [16, 17] Choo and Seong [4]

extended the CS technique to the 3d-spherical beamforming problem using incoherent

multiple-frequency processing. Because TVC noise sources can be modeled as few

monopole-type broadband sources, [1, 6, 14] the received signals were approximated

as the superposition of the spherical waves induced by potential noise sources. Then, to

estimate the locations of the potential noise sources, a sparse reconstruction framework

was proposed, assuming that the numerous potential sources are evenly distributed

near the propeller region, and sparse reconstruction was performed for all potential

sources. Exploiting incoherent multiple-frequency processing, the reconstruction pro-

cess was conducted at each frequency, and the reconstructed potential sources were

averaged across frequencies. In this manner, sparse components were shown to be ev-

ident in the averaged solution, which indicates the real source positions.

The CS-based method showed enhanced performance with respect to resolution,

compared with the MFP-based method. Furthermore, the sparse reconstruction frame-

work offers the additional advantage of not requiring the number of potential noise

sources used for localization. When using the MFP-based method, the accuracy of lo-

calization is reliant on selecting how many potential noise sources should be used. [14]

On the contrary, the CS-based method looks for the sparsest solution; thus, it is not

necessary to consider how many potential sources there should be.

Despite the performance improvement in resolution, there are still problems that

need to be resolved using the CS-based method. First, the CS-based method [4] does

not appear to be robust to noise compared with the MFP-based method [6], requiring

higher SNR for stable reconstruction. However, the time duration of the acoustic sig-

nals from cavitation was short, approximately 15 ms long, such that sufficient SNR

could not be obtained from a cavitation event. Thus, the CS-based method can be

applied only to the long-time-sampled data from several cavitation events. Second,

21



the CS-based method shows high-resolution localization result but only reveals one

dominant source location. In other words, the CS-based method has no capacity to

distinguish separate noise sources.

To overcome these shortcomings, we propose an incipient TVC localization method

which consider the multiple frequency components jointly. The method assumes that if

the preassumed positions (grids) of the potential sources coincide with the true source

positions, only the multiple frequency components associated with the corresponding

positions would have non-zero elements. Thus, it can be naturally inferred that these

multi-frequency components share a spatially common sparse representation and are

spectrally grouped together. Exploiting the common sparsity profile assumption, we

provide a signal model that can process the multiple frequency components simultane-

ously and a reconstruction scheme to promote the common sparsity profile. Here, we

refer to this joint multiple frequency handling as ‘coherent multiple-frequency process-

ing’. The coherent multiple-frequency processing can provide enhanced localization

performance since it finds common sparse representations across different frequency

ranges.

To promote the common sparsity profile, we utilize block-sparse CS technique [8]

for the reconstruction scheme. If non-zero entries of solution occur only in several par-

titioned blocks (i.e., the solution has sparse non-zero blocks), such signals are termed

as block-sparse. And block-sparse CS technique provides better reconstruction prop-

erties than conventional CS technique when treating the block-sparse signal. [8] It

has been shown that recovery performance can be significantly improved using block-

sparse CS in the acoustic signal processing problems. For example, in MMV(multiple

measurement vector) problem non-zero elements of every column are temporally cor-

related under the stationary source assumption. Hence, the solution has a small num-

ber of nonzero rows (i.e., the solution is row block-sparse), so that localization per-

formance can be enhanced by promoting spatio-temporal common sparsity. [10, 24–

26] Another interesting application of block-sparse CS is sparse regularization ap-
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proach. [27] In practical applications, many acoustic problems are not sparse but clus-

tered in predefined basis and there is no prior knowledge of how block partitions lie

in the solution. In this case, sparse regularization approach can be a useful tool which

promotes the block-sparsity of the solution, and reconstruction performance can be en-

hanced compared to conventional CS approach. [28–30] Recently, a sparse Bayesian

learning (SBL) framework [31] has been applied to the joint sparse problems. The

SBL framework provides a probabilistic description between the sparse signal and

given measured data, and can be extendedly applied to the block-sparse problem. In

many applications (e.g., MMV [32, 33] and clustered sparse signal [34] problems),

the SBL framework have been effectively used to reconstruct the block-sparse sig-

nals by enforcing a common sparsity profile. In this paper, block-sparse CS technique

was applied to enforce a common sparsity profile of broadband sources. Because the

multiple frequency components associated with the corresponding positions have non-

zero elements, while all others have zero elements, non-zero components occur only in

clusters (i.e., this signal is block-sparse) and can be reconstructed using block-sparse

CS. The reconstruction scheme promotes the common sparsity profile, and thus better

localization performance can be achieved compared to the conventional CS approach.

One contribution of our study is the use of coherent multiple-frequency process-

ing, which provides a simultaneous and accurate reconstruction scheme for localiz-

ing the broadband sources. For each frequency, complex amplitudes of a broadband

source are represented by different dictionaries but share the common spatial grid. To

promote this spatially common sparsity profile, we provide a block-diagonal matrix

system that makes all of the multiple frequency components to be vectorized and the

spatially joint components to be partitioned as a block. Then, we reconstruct complex

amplitudes of multi-frequencies simultaneously exploiting block-sparse CS. Adapting

this joint sparse constraint to the reconstruction process, coherent multiple-frequency

processing achieves improved accuracy compared with incoherent multiple-frequency

processing.
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Another contribution is that the proposed method provides high-resolution capabil-

ity to distinguish separate sources in proximity. Given closely located sources, a low-

resolution model (i.e., MFP [6] and incoherent multiple-frequency processing with

CS [4]) localizes one dominant source around the true sources but cannot distinguish

each source separately. However, the present model achieves high-resolution ability

and estimates closely located TVC noise sources at locations identified visually, even

with short time length signal.

In Section II, we describe coherent multiple-frequency processing using block-

sparse CS model to localize the TVC noise source. Section III provides some experi-

mental results to show the performance of the proposed approach, and the performance

is compared against that of the conventional CS approach. Finally, Section IV provides

the conclusion and contributions of the study.

3.2 Block-sparse Compressive Sensing for Incipient Tip Vor-

tex Cavitation Localization

3.2.1 System framework for incipient tip vortex cavitation localization

Incipient TVC is cavitation observed in the vicinity of the propeller tips, more

specifically, at the top center of the propeller. The noise source by TVC transmits a

monopole-type spherical waveform in all directions and has a broadband frequency

spectrum. [12, 13, 35, 36] In the cavitation tunnel, the noise measured at the hy-

drophones contain multiple paths components, including the direct path and other

paths reflected by tunnel walls. [6] In the experiment, the noise source signal that

corresponds to the direct path is dominant over the others. [6] Considering a single

frequency f monopole source transmission, the received signal through the direct path

at the mth hydrophone y(f)
m can be derived as
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y(f)
m =

e−j(2πf/c)rm

4πrm
x(f) + n(f)

m , (3.1)

where y(f)
m is the measured sound pressure, c is the water sound speed (here, we use

1502 m/s), rm is the distance from the cavitation noise source to the mth hydrophone,

x(f) is a complex amplitude which has magnitude and initial phase of the cavitation

noise, and n(f)
m is the error that involves electric noise, experimental error, or mismatch

between actual phenomena and modeling.

In the localization problem, the search space is discretized by potential noise source

locations, and the objective is to find the actual locations of the (usually few) noise

sources among the assumed potential locations. Let x(f) ∈ CN be an (sparse) un-

known vector we aim to reconstruct, where N is the number of discretized potential

locations of noise sources.

The measurement data at themth hydrophone Eq. (3.1), which is the superposition

of spherical waves from N potential sources, can be expressed using potential noise

sources x(f),

y(f)
m =

N∑
n=1

e−j(2πf/c)rm,n

4πrm,n
x(f)
n + n(f)

m , (3.2)

where rm,n is the distance from the mth hydrophone to the nth potential noise source,

and the unknown vector x(f) is composed of N complex amplitudes. Note that a fine

resolution localization performance is desired; thus, M � N .

Then, the relationship between M hydrophones and N potential noise sources can

be expressed as below

y(f) = A(f)x(f) + n(f), (3.3)

where y(f) is the measurement vector at M hydrophones y(f) ∈ CM , and the (m,n)th
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entry of the matrix A(f) ∈ CM×N is given by,

A(f)
m,n =

e−j(2πf/c)rm,n

4πrm,n
. (3.4)

The nth column of the matrix A(f), a
(f)
n , is the replica vector, which reflects the trans-

mission from the nth potential noise source to the hydrophones.

In the localization method, let the incipient TVC noise compriseK-sparse sources;

then, the incipient TVC localization problem is to find the actual locations of K noise

sources among the assumed N locations (K � N ). Equivalently, it is to find a linear

combination ofK-sparse bases (columns) out of a prioriN bases in the sensing matrix

A(f).

3.2.2 Incoherent multiple-frequency localization with compressive sens-

ing

As the noise source from the incipient TVC has a broadband frequency spectrum,

we can utilize multiple-frequency measurements. Multiple-frequency processing ex-

ploring all the multiple-frequency measurements is an intuitive way to improve the

localization performance.

For single-frequency processing, the incipient TVC localization problem is to re-

cover a linear combination of K-sparse bases (columns) in a priori N bases of the

sensing matrix A(f), Eq. (4.3). Equivalently, it is to recover a sparse solution x. CS

recovers a sparse solution by minimizing the sparsity-enforcing norm (l1-norm), i.e.,

‖x‖1 =
∑N

n=1|xn|.

The incipient TVC localization problem using a single-frequency CS can be solved

by the following the l1-norm minimization problem,

min
x̂(f)∈CN

‖x̂(f)‖1 subject to ‖ŷ(f) − Â(f)x̂(f)‖2 ≤ ε̂, (3.5)
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where ŷ(f) and â
(f)
n are normalized versions of y(f) and a

(f)
n , i.e., ŷ(f) = y(f)/‖y(f)‖2

and â
(f)
n = a

(f)
n /‖a(f)

n ‖2. The nth entry of x̂(f) is (‖an‖2/‖y‖2)xn. The normaliza-

tion causes the candidate bases in A to have the same Euclidean norm, such that it

prevents the bias induced by different distances rm,n. [4, 8] ε̂ is the error floor that

controls the error between measurements and the obtained results with respect to the

l2-norm. With large ε̂, we can obtain a very sparse solution permitting a large amount

of error with poor data fit. With small ε̂, the resulting solution follows the measured

data closely with overfitting, and it is not likely to have a sparse representation.

To utilize multiple frequencies of incipient TVC, incoherent multiple-frequency

processing with CS can be used where single-frequency processing solutions across

the multiple frequencies are applied individually and provide a more stable estimation.

Incoherent multiple-frequency processing with CS involves obtaining a sparse solu-

tion at each single frequency, Eq. (3.5), and taking an average over the obtained sparse

solutions,

x̂incoh =
1

L

L∑
l=1

|x̂(fl)|, (3.6)

where fl is the lth frequency for L frequencies in the TVC frequency spectrum. Then

estimated amplitude of nth potential source which averaged across frequencies can be

written as

sn,incoh = x̂n,incoh (3.7)

where x̂n,incoh stands for nth entry of solution x̂incoh in Eq. (3.6). Therefore, source

locations can be estimated by seeking for the non-zero sn,incoh value.

Note that the corresponding solution x̂ becomes less sparse if the single-frequency

solutions x̂(fl) do not share the non-zero components at the same locations. To take ad-
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vantage of incoherent multiple-frequency processing, the conditions for single-frequency

localization has to be satisfied; that is, high SNR, sufficient length of time-sample data,

or sufficient number of frequencies is required.

3.2.3 Coherent multiple-frequency localization with block-sparse com-

pressive sensing

The multiple-frequency CS-based incipient TVC localization problem can be solved

using coherent multiple-frequency processing with CS. To better understand the coher-

ent multiple-frequency CS structure, we provide an explanation of the multiple mea-

surement vector (MMV) problem. [10, 24, 25] The MMV problem recovers the joint

sparse source signals from a set of L measurement vectors. These vectors share the

same non-zero support, which promotes spatial sparsity; thus, the signal can be recon-

structed with high resolution. With L measurement vectors, this MMV model can be

expressed as below,

Y = AX + N (3.8)

where the MMVs Y ∈ CM×L, the sensing matrix A ∈ CM×N , and the N potential

vectors X ∈ CN×L. For stationary sources, this approach can be utilized to enhance

the localization performance. However, since vortex cavitation is a short-duration noise

source of broadband, the MMV model is not appropriate for the localization method.

Instead of the MMV problem, we introduce the multiple-frequency measurement vec-

tor, which promotes spatial sparsity.

Each single-frequency sparse model, Eq. (3.5), uses a different sensing matrix for

each frequency; thus, MMV formation cannot be utilized for the multiple frequency

measurement vectors. To use multiple-frequency measurement vectors, block-sparse

CS is utilized to combine the set of the single-frequency sparse models into a block-

sparse model, as shown in Fig. 3.1, i.e., multiple-frequency measurement vectors are
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combined into a single vector.

With this concept and L frequencies (f1, · · · , fL) in the TVC frequency spec-

trum, we can extend the normalized version of the sparse measurement model, ŷ(f) =

Â(f)x̂(f), as a block-sparse measurement model,

ỹ = Ãx̃ + ñ, (3.9)

where multiple-frequency measurement vector ỹ ∈ CML, sensing matrix of block-

sparse model Ã ∈ CML×NL (M : number of receivers,N : number of potential sources,

L: number of frequencies). Multiple-frequency measurement vector ỹ and block-sparse

vector x̃ ∈ CNL take the forms,

ỹ = [ỹblock
1 ; · · · ; ỹblock

M ]

= [ỹ
(f1)
1 , · · · , ỹ(fL)

1︸ ︷︷ ︸
ỹblock
1

, · · · , ỹ(f1)
M , · · · , ỹ(fL)

M︸ ︷︷ ︸
ỹblock
M

]T, (3.10)

x̃ = [x̃block
1 ; · · · ; x̃block

N ]

= [x̃
(f1)
1 , · · · , x̃(fL)

1︸ ︷︷ ︸
x̃block
1

, · · · , x̃(f1)
N , · · · , x̃(fL)

N︸ ︷︷ ︸
x̃block
N

]T, (3.11)

and

Ã =


Ãblock

1,1 · · · Ãblock
1,N

...
. . .

...

Ãblock
M,1 · · · Ãblock

M,N

 , (3.12)

where Ãblock
m,n is the (m,n)th partition of the matrix Ã,
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Ãblock
m,n = diag

(
â(f1)
m,n, · · · , â(fL)

m,n

)

=


â

(f1)
m,n 0 · · · 0

0 â
(f2)
m,n · · · 0

...
...

. . .
...

0 0 · · · â
(fL)
m,n

 ,
(3.13)

and â(fl)
m,n is the (m,n)th entry of the matrix Â(fl) in Eq. (3.5). Note that the solution

x̃ is blockwise sparse.

Figure 3.1: (Color online) (a) Conventional compressive sensing (CS) model with mul-

tiple measurement vectors (MMV). Each color indicates temporal difference and the

non-zero components in the measurement vectors share the same dictionaries because

they are temporally correlated (sparsity level is two) and (b) block-sparse CS model

for coherent multiple-frequency processing. Each color indicates frequency difference

and the non-zero components in the measurement vector correspond to the different

dictionaries because they are uncorrelated (block-sparsity level is two).

In Eq. (4.27), we can infer that the unknown parameters to be solved have been in-

creased fromN toNL. This means that if there areK-sparse sources, we should solve

KL sparse problem. Fortunately, a few sources that have broadband characteristics can
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be expressed as block-sparse x̃; thus, we can utilize the block-sparse CS to solve the

more optimalK-sparse problem than theKL-sparse problem. As x̃ isK-block-sparse,

the localization problem is to find a combination of K-sparse column-blocks in a pri-

ori N column-blocks of the block-sparse sensing matrix Ã.

To solve the K-block-sparse system, we use an l2/l1-norm minimization tech-

nique [8] to find the nonzero blocks. Just as the l1-norm minimization technique [3]

used in conventional CS, l2/l1-norm minimization technique minimizes the sum of the

l2-norm of the blocks.

Then, the incipient TVC localization with block-sparse CS is solved using the fol-

lowing formulation:

min
x̃∈CNL

N∑
n=1

‖x̃block
n ‖2 subject to ‖ỹ − Ãx̃‖2 ≤ ε̃, (3.14)

where x̃block
n =

[
x̃

(f1)
n , · · · , x̃(fL)

n

]T
and ε̃ is the error floor, in which the role is similar

to that of ε̂ in Eq. (3.5). Note that sparsity is imposed on the l2-norm of the blocks of

vector x̃.

Referring to Eq. (3.5) and Eq. (3.14), the dimension of unknown vector to be re-

constructed have been increased x(f) ∈ CN to x̃ ∈ CNL, where x̃ is a block-sparse

vector.

We considered the problem of reconstructing a block-sparse vector that represents

the broadband acoustic sources. As these sources are sparse and broadband, entries of

the block corresponding to real source positions will all be nonzero. Thus, the problem

of using block-sparse CS will not increase the sparsity, even though the number of

unknown parameters are increased but rather enhance the sparsity. [8]

To localize the TVC sources, we consider the case of only a few broadband sources,

i.e., x̃ is block-sparse. We assume that the TVC sources are sparse; thus, the spatial

candidates (number of potential sources) are not increased compared with the number

of incoherent parameters (number of potential sources). This means that the increased
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number of unknown parameters do not increase the sparsity (i.e., block-sparsity) for

this problem. As expressed in Eq. (3.14), we search for candidates representing the

real source signal. Using the block-sparse concept, this means that certain potential

sources radiate a broadband signal, rather than a tonal signal, and signal vectors will

be reconstructed only with fully filled blocks or fully blank blocks. Therefore, ampli-

tude of nth potential source for coherent multiple-frequency processing can be written

as

sn,coh = ||x̃block
n ||2 (3.15)

where x̃block
n stands for nth block of solution x̃ in Eq. (4.27) and source locations can

be estimated by seeking for the non-zero sn,coh value.

3.3 Localization Results for Incipient TVC

In this section, we apply the block-sparse CS to measurement data from the cavi-

tation tunnel experiments for incipient TVC localization. Two experiments were con-

ducted with a transducer source (known source position) and an incipient TVC noise

source. For a localization search grid with potential noise sources, the potential sources

are evenly distributed near the true source location at a 0.05 m interval for the trans-

ducer source case and a 0.01 m interval for the incipient TVC noise source case.

The objective of the transducer source experiment is to validate the block-sparse CS

localization algorithm and compare the localization results from coherent multiple-

frequency processing to those from incoherent multiple-frequency processing. The

objective of the incipient TVC noise source experiment is to demonstrate the high-

resolution capabilities and robustness of the block-sparse CS in the incipient TVC

localization.
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3.3.1 Transducer source experiment

The high-resolution performance of block-sparse CS, coherent multiple-frequency

processing, is validated with experimental data from cavitation tunnel experiments,

and it is compared with conventional CS and incoherent multiple-frequency process-

ing.

The configuration of the transducer source experiment is shown in Fig. 3.2(a).

One transducer source (ITC-1001) with known location information was located in

the cavitation tunnel and was transmitting a broadband signal, whose spectrum ranged

from 7 to 37 kHz. The data set was collected on M = 6 hydrophones (B&K 8103)

mounted beneath the upper part of the cavitation tunnel. Here, we set the potential

transducer noise sources (the localization search grid) to be evenly distributed near

the true source location with a 0.05 m interval over a three-dimensional volume (x-

axis: -0.5–0.5 m, y-axis: -1.4–0 m, z-axis: -1.5–1.5 m), i.e., the number of candidates

N = 37, 149 (21× 29× 61).

Coherent multiple-frequency processing with block-sparse CS is compared to in-

coherent multiple-frequency processing with conventional CS [4], as shown in Fig.

3.3. Here, we use L = 10 frequencies ([7, 10, 13, 16, 19, 22, 25, 28, 31, 34] kHz).

We have chosen error floors ε̂
(
Eq. (3.5)

)
and ε̃

(
Eq. (3.14)

)
for the results to have a

sparsity level of three. Coherent multiple-frequency processing estimates the true loca-

tion of the transducer source with one significant component, but incoherent multiple-

frequency processing fails to localize the source.

The localization performance of incoherent multiple-frequency processing can be

improved by processing many frequency components, as shown in Fig. 3.4. The num-

ber of processed frequencies varies from L = 30
(
Fig. 3.4(b)

)
to L = 120

(
Fig.

3.4(d)
)

in the 7–37 kHz frequency band. Incoherent multiple-frequency processing

with conventional CS requires a sufficient number of meaningful single-frequency pro-

cessing solutions that localize the true source location. Still, even though a number of

frequencies are considered as in Fig. 3.4(d), the dominant source, which character-
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Figure 3.2: (Color online) Schematic plan of hydrophones and potential noise sources

(search grid) for (a) the transducer source experiment and (b) the incipient tip vortex

cavitation (TVC) source experiment.
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Figure 3.3: (Color online) Source localization with experimental data for the trans-

ducer source, of which location is known, with (a) conventional CS (incoherent

multiple-frequency processing) and (b) block-sparse CS (coherent multiple-frequency

processing) on the y-z plane at a fixed x = 0 m. The three largest source amplitudes

(Eq. (3.7) and Eq. (3.15)) are plotted and each amplitude are normalized to maximum

amplitude of one.
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Figure 3.4: (Color online) Same as Fig. 3.3., except for incoherent processing with

different numbers of processed frequencies.

izes the overall multiple-frequency pressure field, is not noticeably distinguished from

the other candidates without sufficiently high SNR. Note that this localization can be

regarded as 1-sparse problem. However, it is apparent from Fig. 3.3 and Fig. 3.4.

that incoherent multiple-frequency processing cannot provide stable localization re-

sult without sufficiently high SNR and without a sufficient number of measurement

information.

3.3.2 Incipient TVC Noise Source Experiment

In this section, block-sparse CS for incipient TVC localization is applied to the

experimental data from the cavitation tunnel experiment. The configuration of the in-

cipient TVC source experiment is shown in Fig. 3.2(b). The data set was collected

on M = 6 hydrophones (B&K 8103) mounted on the hull surface of the model ship

above the propeller.

Incipient TVC is observed at the top center of the propeller near the propeller tip,
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Figure 3.5: (Color online) (a) Visual observation of TVC and (b) measured acoustic

data in the incipient TVC stage. The acoustic data in the time domain is bandpass-

filtered (20-50 kHz).

as shown in Fig. 3.5(a). Noise induced by the incipient TVC is emitted in all directions

and can be modeled as a monopole source. [6] The TVC noise has a broadband fre-

quency spectrum, [1] and bandpass-filtered (20–50 kHz) acoustic measurement data

in the time domain is shown in Fig. 3.5(b). Readers are referred to Refs. [4, 6] for

detailed discussions on the experimental configuration.

Here, we set the potential TVC noise sources (the localization search grid) to be

evenly distributed near the top center of the propeller with a 0.01 m interval over a

three-dimensional volume (x-axis: -0.05–0.3 m, y-axis: -0.15–0.15 m, z-axis: -0.15–

0.15 m), i.e., the number of candidates N = 34, 596 (36× 31× 31). We have chosen

the error floors ε̂
(
Eq. (3.5)

)
and ε̃

(
Eq. (3.14)

)
for the results to have a sparsity level of

three (here, we manually selected error floor for 0.3). Then, we have solved Eq. (3.5)

and Eq. (3.14) by utilizing the CVX toolbox [37].

Table 3.1. shows the numerical results for the coherent multiple-frequency pro-

cessing and the incoherent multiple-frequency processing. To examine the localization

performance for multiple noise sources, localization errors between simulated sources

and estimated sources are analyzed comparing the coherent multiple-frequency pro-

cessing with the incoherent multiple-frequency processing. We generated randomly
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Figure 3.6: (Color online) Source localization with experimental data for the cavitation

source with (a) conventional CS (incoherent multiple-frequency processing) and (b)

block-sparse CS (coherent multiple-frequency processing). The three largest source

amplitudes (Eq. (3.7) and Eq. (3.15)) are plotted and each amplitude are normalized to

maximum amplitude of one.
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Table 3.1: Mean localization error simulation result in terms of sparsity level. The

source numbers are sorted from large to small amplitude (source 1 is the largest one).

Case
Coherent processing Incoherent processing

Source 1 Source 2 Source 3 Source 1 Source 2 Source 3

Sparsity = 1 0.0004 m - - 0.0003 m - -

Sparsity = 2 0.0019 m 0.0039 m - 0.1151 m 0.1513 m -

Sparsity = 3 0.0176 m 0.0203 m 0.0299 m 0.1338 m 0.1674 m 0.1796 m

distributed (on the search grids) monopole sources with random amplitudes (normal-

ized between 0.5 and 1.0) and random phases ([0-2π]) over selected frequencies ([20 :

2.5 : 50] kHz). The number of generated monopole sources are selected according to

the sparsity level (= 1-3). Complex Gaussian noise is added to the measurement with

a 20 dB signal-to-noise ratio (which is similar to that of the cavitation measurement

data) and the rest of simulation setup is the same as real TVC experimental configura-

tion. Then the localization was conducted for each processing and localization errors

were estimated in terms of the number of the sources (=sparsity level) as illustrated

in Table 3.1. It is apparent from Table 3.1. that coherent multiple-frequency process-

ing is accurate over various sparsity levels (note that spatial grid is evenly distributed

with a 0.01 m interval) and localization errors grow as the sparsity level increases. We

can infer that coherent multiple-frequency processing has the capability to distinguish

spatially separate sources. However, incoherent multiple-frequency processing only

works in the case of sparsity level 1. This means that incoherent multiple-frequency

processing is not the proper method for multiple-source localization problem.

Then, the processes are applied to experimental TVC data and coherent multiple-

frequency processing with block-sparse CS
(
Fig. 3.6(b)

)
is compared to incoher-

ent multiple-frequency processing with conventional CS [4]
(
Fig. 3.6(a)

)
. As inco-

herent multiple-frequency processing requires a sufficient number of frequencies to

be processed, different numbers of frequencies are considered: L = 13 frequencies
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Figure 3.7: (Color online) Histogram of the locations of the largest estimated sources

for 200 cavitation events on (a) the y-z plane at a fixed x = 0 m and (b) the x-y plane

at a fixed z = 0 m.

([20 : 2.5 : 50] kHz) for coherent multiple-frequency processing and L = 121 fre-

quencies ([20 : 0.25 : 50] kHz) for incoherent multiple-frequency processing.

Coherent multiple-frequency processing estimates two locations around the top

center of the propeller and at the downstream direction
(
Fig. 3.6(b)

)
. Because the tip

vortex line is induced at the back of the propeller, the localization result corresponds

to the visual observation
(
Fig. 3.5(a)

)
. In contrast, incoherent multiple-frequency pro-

cessing fails to estimate a dominant location, and it localizes one near the top of the

propeller but with the second largest component
(
Fig. 3.6(a)

)
.

Fig. 3.7. shows the distribution of the largest components of the localization re-

sults for 200 cavitation events
(
Fig. 3.5(b)

)
. The localization results are concentrated

around the top center of the propeller
(
Fig. 3.7(a)

)
and at the downstream direction(

Fig. 3.7(b)
)
. Note that, the variability of the estimated locations in the x-axis is small.

The multiple-frequency data with block-sparse CS reveals that block-sparse CS

enables coherent multiple-frequency processing over multiple frequencies and acous-

tically localizes the TVC noise source in accordance with the visual signature of the

TVC.
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3.4 Conclusion

The purpose of this section is to localize the incipient TVC noise sources via

block-sparse CS. CS is applied in the sparse nature of the TVC noise sources. Given

that TVC noise radiates a broadband signal, multiple-frequency processing improves

performance in localization over single-frequency processing. For coherent multiple-

frequency processing, which jointly considers the measured data at multiple frequen-

cies, block-sparse CS is utilized.

In contrast to incoherent multiple-frequency processing using conventional CS, co-

herent multiple-frequency processing provides accurate localization results, even with

a fewer number of processed frequencies. Also, coherent multiple-frequency process-

ing does not need long-time-sampled data with a time-invariant signal assumption to

obtain high resolution in incoherent multiple-frequency processing.

The real data results indicate that the block-sparse CS is capable of localizing the

incipient TVC noise sources, and the estimated locations correspond with the visual

observations of TVC.
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Table 3.2: Summary of the proposed method

Coherent Multiple-frequency Processing

Methodologies

• Block-spare compressive sensing(BSCS)

• Convex optimization(l2/l1-norm minimization)

• Promoting the joint sparse property

Advantages

• High-resolution localization results

• Noise robustness

Limitations

• Vulnerable to basis mismatch error

• Fine spatial grid points are required
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Chapter 4

3D CS-based source localization method by reducing

the basis mismatch error

4.1 Introduction

Three-dimensional acoustic source localization is a trivial problem in underwater

acoustics since the received signals are superposed induced by the acoustic sources.

To track each acoustic source location, the received signal should be properly decom-

posed to several source components and noise components, however, several mismatch

factors(such as reverberation, heavy noise, multi-path effect) hinder the accurate esti-

mation. Thus, effective signal processing which reducing the mismatch error is es-

sentially required for localizing the accurate source positions. Compressive sensing

based approach is an effective way to reconstruct acoustic source information. How-

ever, the processing is conducted in discretized bases, basis mismatch error should be

occured. Although off-grid approaches, which prevent the basis mismatch error, were

proposed to acoustic source localization problems, the approaches are only applicable

to the 1-dimensional problems(e.g., DOA estimation problem) and the 2-dimensional

problems(e.g., 2D plane-wave beamforming problem). In this paper, we suggest the

off-grid approach using the SBL algorithm applicable to 3-dimensional problems. As
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far As we know, this is the first 3-dimensional localization method which can resolve

the basis-mismatch issue.

Localization of propeller cavitation is a representative 3d source localization prob-

lem in underwater acoustics. Cavitation emits broadband impulse signal and can be

simply modeled as a few monopole type sources. In the case that noise merely exists,

the traditional TDOA-based method, which is conventionally used in the source lo-

calization problem, can be an effective method to localize the cavitation. Chang and

Dowling used the TDOA-based[1, 2] method and presented the cavitation localization

results. However, they suffered from the effects of reverberation and used additional

signal processing to obtain the direct-path signal. On the other hand, the MFP-based

method [3–7] showed that accurate localization can be achieved despite the presence

of the multi-path effect. However, these results provide only ambiguous information

of source locations such as the ambiguity surface and the acoustic center, so that the

results did not present the distinct source locations. CS is a signal reconstruction tech-

nique[8]

applicable to sufficiently sparse signals with less measurement data and has shown that

it can be applied to the underlying acoustic models which have sparse representations

in the basis.[9–15] The CS-based methods, applied to the cavitation localization prob-

lem[16, 17], showed enhanced performance with respect to resolution compared with

the MFP-based methods. However, these CS-based localization processes were con-

ducted in the discretized spatial grid points so that the basis mismatch error was not

considered. To enhance the localization performance, reducing the basis mismatch er-

ror is essentially required. In this chapter, we present a off-grid technique which is ap-

plicable to the 3-dimensional localization problem based on the SBL(sparse Bayesian

learning) approaches.

The SBL is a kind of compressive sensing technique which takes a probabilistic

approach to reconstruct the sparse signal. [18] The SBL technique set the probabilistic
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relationship between the measurement vector and the solution vector. Then, the SBL

seeks for an optimized solution vector by maximizing the posterior. In underwater

signal processing, the SBL technique had been widely used for source localization

problem and had shown that it has better localization performance in terms of accuracy

compared to the traditional localization methods.[19–22] The OGSBI [23] is a kind of

the SBL based technique which reduces the basis mismatch error. Unlike the atomic

norm minimization based approaches[24–26], OGSBI based approaches are robust to

noise, have fewer global minima. For these reasons, We have studied OGSBI based

off grid technique and suggest a CS-based localization method which works for 3-

dimensional source localization problems.

One contribution of our study is that we firstly propose an off-grid localization

method for spherical wave beamforming problems. To estimate the basis mismatch in

the 3-dimensional space, we introduce flexible grid points which are varying with each

iteration. Another contribution is providing the multi-frequency processing exploiting

the BSBL approach. The Coherent multi-frequency processing[17] promotes spectral

joint sparsity so that numerical instability can be resolved. We provide BSBL[27]

based coherent multi-frequency processing which provides stable localization result

for broadband sources.

The rest of this chapter is organized as follows. In Sec. 4.2, we propose an off-grid

technique which can be applied to 3D source localization problems. Sec. 4.3 provides

some simulated and experimental results to show the performance of the proposed

approach. Finally, Sec. 4.4 provides the conclusion and contributions of the study.

4.2 Off grid system framework for 3D source localization

4.2.1 System framework for 3-dimensional off gird source localization

The broadband noise source transmits a monopole-type spherical waveform in all

directions. Considering a single frequency f monopole source transmission, the re-
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ceived signal through the direct path at the mth hydrophone t(f)
m can be derived as

t(f)
m =

e−j(2πf/c)rm

4πrm
w(f) + n(f)

m , (4.1)

where t(f)
m is the measured sound pressure, c is the water sound speed, rm is the dis-

tance from the cavitation noise source to the mth hydrophone, w(f) is a complex am-

plitude which has magnitude and initial phase of the cavitation noise, and n(f)
m is the

error that involves electric noise, experimental error, or mismatch between actual phe-

nomena and modeling.

In the localization problem, the search space is discretized by potential noise source

locations, and the objective is to find the actual locations of the (usually few) noise

sources among the assumed potential locations. Let w(f) ∈ CN be an (sparse) un-

known vector we aim to reconstruct, where N is the number of discretized potential

locations of noise sources.

The measurement data at themth hydrophone, which is the superposition of spher-

ical waves from N potential sources, can be expressed using potential noise sources

w(f),

t(f)
m =

N∑
n=1

e−j(2πf/c)rm,n

4πrm,n
w(f)
n + n(f)

m , (4.2)

where rm,n is the distance from the mth hydrophone to the nth potential noise source,

and the unknown vector w(f) is composed of N complex amplitudes. Note that a fine

resolution localization performance is desired; thus, M � N .

Then, the relationship between M hydrophones and N potential noise sources can

be expressed as below

t(f) = A(f)w(f) + n(f), (4.3)
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where t(f) is the measurement vector at M hydrophones t(f) ∈ CM , and the (m,n)th

entry of the matrix A(f) ∈ CM×N is given by,

A(f)
m,n =

e−j(2πf/c)rm,n

4πrm,n
. (4.4)

The nth column of the matrix A(f), a
(f)
n , is the replica vector, which reflects the trans-

mission from the nth potential noise source to the hydrophones.

For localizing the multi-frequency sources, we can extend the normalized version

of the sparse measurement model, t̃(f) = Ã(f)w̃(f), as a block-sparse measurement

model with L frequencies (f1, · · · , fL)

t̃ = Ãw̃ + ñ, (4.5)

where multiple-frequency measurement vector ỹ ∈ CML, sensing matrix of block-

sparse model Ã ∈ CML×NL (M : number of receivers,N : number of potential sources,

L: number of frequencies). Multiple-frequency measurement vector t̃ and block-sparse

vector w̃ ∈ CNL take the forms,

t̃ = [̃tblock
1 ; · · · ; t̃block

M ]

= [t̃
(f1)
1 , · · · , t̃(fL)

1︸ ︷︷ ︸
t̃block
1

, · · · , t̃(f1)
M , · · · , t̃(fL)

M︸ ︷︷ ︸
t̃block
M

]T, (4.6)

w̃ = [w̃block
1 ; · · · ; w̃block

N ]

= [w̃
(f1)
1 , · · · , w̃(fL)

1︸ ︷︷ ︸
x̃block
1

, · · · , w̃(f1)
N , · · · , x̃(fL)

N︸ ︷︷ ︸
x̃block
N

]T, (4.7)

and
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Ã =


Ãblock

1,1 · · · Ãblock
1,N

...
. . .

...

Ãblock
M,1 · · · Ãblock

M,N

 , (4.8)

where Ãblock
m,n is the (m,n)th partition of the matrix Ã,

Ãblock
m,n = diag

(
â(f1)
m,n, · · · , â(fL)

m,n

)

=


â

(f1)
m,n 0 · · · 0

0 â
(f2)
m,n · · · 0

...
...

. . .
...

0 0 · · · â
(fL)
m,n

 ,
(4.9)

and â(fl)
m,n is the (m,n)th entry of the matrix Ã(fl). Note that the solution x̃ is blockwise

sparse. Readers are referred to Sec.3.2.3. for detailed description.

4.2.2 Coherent multiple-frequency localization with block-sparse Bayesian

learning technique

To estimate the broadband source locations, we adopted the block-sparse Bayesian

learning(BSBL) method. In the BSBL framework, the amplitudes of each potential

noise source w̃i ∈ CL are assumed as parameterized multivariated Gaussian distribu-

tion.

p(w̃i; γi,Bi) ∼ N (0, γiBi), i = 1, · · · , N (4.10)

where γi is a hyperparameter controlling the block-sparsity and Bi ∈ RL×L is a

intra-block correlation matrix which captures the correlation structure of the i-th block.
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Under the assumption that the prior of w̃ satisfies p(w̃; {γi,Bi}i)) ∼ N (0,Σ0) and

noise vector satisfies p(ñ;λ) ∼ N (0, σ2I), the the posterior of w̃ can be described as,

p(w̃|̃t; {γi,Bi}Ni=1) = N (µw̃,Σw̃) (4.11)

where Σ0 is a covariance matrix of system (Σ0 = diag{γ1B1, · · ·, γNBN}) and σ2 is

a noise variance. Then below stochastic model can be adopted to solve the spectrally

joint sparse problem.

µw̃ = Σ0Ã
H
(
σ2I + ÃΣ0Ã

H
)−1

t̃, (4.12)

Σw̃ =
(
Σ0
−1 +

1

σ2
ÃHÃ

)−1
+ t̃ (4.13)

Then, the parameters can be estimated by using the Type-II maximum likelihood

procedure. This is equivalent to minimizing the following equation,

log |σ2I + ÃΣ0Ã
H |+ t̃H

(
σ2I + ÃΣ0Ã

H
)−1

t̃ (4.14)

And the following Expectation Maximization method(EM-method) can be applied

to learning the γi, σ2 and Bi.

γi =
1

L
Tr
[
Bi
−1
(
Σi
w̃ + µiw̃µ

i
w̃
H)]

(4.15)
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σ2 =
||̃t− Ãµw̃||22 + Tr(Σw̃ÃHÃ)

M
(4.16)

Bi = B(∀i) =
1

N

N∑
i=1

Σi
w̃ + µiw̃µ

i
w̃
H

γi
(4.17)

After a few iterations, we can finally obtain the sparse amplitudes of potential noise

sources as w̃ ≈ µw̃.

4.2.3 3-dimensional off grid source localization method

In the 3-dimensional source localization problem, estimating the basis mismatch

error is a trivial problem since the following reasons.

1. Considering the spherical spreading noise source, first-order approximation of

the transfer function is not available.

2. To estimate the basis mismatch error, the three-axis components of the basis

mismatch error should be jointly considered.

In the traditional OGSBI framework, there is no way to solve these problems since

basis mismatch error could not be linearized with the fixed basis. Instead, we introduce

a basis that varies with each iteration. If the basis represents the exact source locations,

there is no need to consider the basis mismatch error. In this chapter, we will show how

the proposed basis, namely “flexible grid points”, could reduce the basis mismatch

error.

To treat the basis mismatch error, we formulated the new relationship between the

measurement vector and the solution vector as below.

t̃ =
(
Ã + D̃xdiag(∆x) + D̃ydiag(∆y) + D̃zdiag(∆z)

)
w̃ + ñ, (4.18)
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where ∆x,∆y,∆z are the directional basis mismatch error vector and D̃x, D̃y, D̃z

are the directional first order derivative of Ã corresponding to each potential source

locations.

D̃x =
∂

∂x


Ãblock

1,1 · · · Ãblock
1,N

...
. . .

...

Ãblock
M,1 · · · Ãblock

M,N



D̃y =
∂

∂y


Ãblock

1,1 · · · Ãblock
1,N

...
. . .

...

Ãblock
M,1 · · · Ãblock

M,N



D̃z =
∂

∂z


Ãblock

1,1 · · · Ãblock
1,N

...
. . .

...

Ãblock
M,1 · · · Ãblock

M,N



(4.19)
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∆x = [∆xblock
1 ; · · · ; ∆xblock

N ]

= [∆x
(f1)
1 , · · · ,∆x(fL)

1︸ ︷︷ ︸
∆xblock

1

, · · · ,∆x(f1)
N , · · · ,∆x(fL)

N︸ ︷︷ ︸
∆xblock

N

]T

∆y = [∆yblock
1 ; · · · ; ∆yblock

N ]

= [∆y
(f1)
1 , · · · ,∆y(fL)

1︸ ︷︷ ︸
∆yblock

1

, · · · ,∆y(f1)
N , · · · ,∆y(fL)

N︸ ︷︷ ︸
∆yblock

N

]T

∆z = [∆zblock
1 ; · · · ; ∆zblock

N ]

= [∆z
(f1)
1 , · · · ,∆z(fL)

1︸ ︷︷ ︸
∆zblock

1

, · · · ,∆z(f1)
N , · · · ,∆z(fL)

N︸ ︷︷ ︸
∆zblock

N

]T

(4.20)

Note that each directional basis mismatch value is equivalent when they are located

in the same ith block(e.g., the elements of ∆x
(fj)
i are all equivalent for ∀j). Thus,

directional basis mismatch error vectors can be described as below.

t̃ =
(
Ã + D̃x∆X + D̃y∆Y + D̃z∆Z

)
w̃ + ñ

= Φw̃ + ñ
(4.21)

where Φ is the newly updated basis and ∆X,∆Y,∆Z are the block diagonal

matrix with,

Φ = Ã + D̃x∆X + D̃y∆Y + D̃z∆Z (4.22)

∆X = diag(∆x1IL, · · · ,∆xNIL)

∆Y = diag(∆y1IL, · · · ,∆yNIL)

∆Z = diag(∆z1IL, · · · ,∆zNIL)

(4.23)
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This model presents a new approach which can reduce the basis mismatch error in

3-dimensional localization problem.

1. Inference of basis : If all sparse sources are lie on the basis Φ, directional basis

mismatch error matrix ∆X,∆Y,∆Z should be zero. Thus, we seeks for the

basis with ∆X = ∆Y = ∆Z = 0

2. Inference of parameters : There are 6 unknown parameters γ,B, σ2,∆x,∆y,∆z.

In the EM approach, we can obtain the all unknown parameters by using a Type

II maximum likelihood procedure.

Then the BSBL-based approach in Sec.4.2.2 can be utilized to estimate the un-

known parameters. The stochastic model is exactly the same as on grid BSBL model

as below.

log |σ2I + ΦΣ0Φ
H |+ t̃H

(
σ2I + ΦΣ0Φ

H
)−1

t̃ (4.24)

Note that the basis matrix Φ is treated as a variable in this case. Then the Expec-

tation Maximization method(EM-method) can be applied to learning the γi, σ2 and Bi.

γi =
1

L
Tr
[
Bi
−1
(
Σi
w̃ + µiw̃µ

i
w̃
H)]

(4.25)

σ2 =
||̃t−Φµw̃||22 + Tr(Σw̃ΦHΦ)

M
(4.26)

Bi = B(∀i) =
1

N

N∑
i=1

Σi
w̃ + µiw̃µ

i
w̃
H

γi
(4.27)
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For the estimation of the basis mismatch error ∆x,∆y,∆z, we should maximize

the following expectation,

E{log p(̃t|w̃, σ2,∆x,∆y,∆z)}

= E{||̃t− (Ã + D̃x∆X + D̃y∆Y + D̃z∆Z)w̃||22}
(4.28)

This equation is equivalent to the following equation.

E{||̃t− (Ã + D̃x∆X + D̃y∆Y + D̃z∆Z)w̃||22}

= ||̃t− (Ã + D̃x∆X + D̃y∆Y + D̃z∆Z)µw̃}||22

+
N∑
i=1

Tr
[
Σw̃,i(Ãi + D̃x,i∆Xi)

H(Ãi + D̃x,i∆Xi)
]

+

N∑
i=1

Tr
[
Σw̃,i(Ãi + D̃y,i∆Yi)

H(Ãi + D̃y,i∆Yi)
]

+
N∑
i=1

Tr
[
Σw̃,i(Ãi + D̃z,i∆Zi)

H(Ãi + D̃z,i∆Zi)
]

(4.29)

where [Ãi, D̃x,i, D̃y,i, D̃z,i] are the i-th blocks of [Ã, D̃x, D̃y, D̃z] and [Σw̃,i,∆Xi,∆Yi,∆Zi]

are the i-th diagonal blocks of [Σw̃,∆X,∆Y,∆Z]. This equation can be simply sum-

marized by,

E{log p(̃t|w̃, σ2,∆x,∆y,∆z)}

= ∆xT (Qx,1 + Qx,2)∆x− 2(Rx,1 + Rx,2)∆x+ Cx

+ ∆yT (Qy,1 + Qy,2)∆y − 2(Ry,1 + Ry,2)∆y + Cy

+ ∆zT (Qz,1 + Qz,2)∆z − 2(Rz,1 + Rz,2)∆z + Cz

(4.30)
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where,

Qx,1 =

L∑
j=1

(D̃H
x,fj

D̃x,fj )� µw̃,fjµw̃,fj
H)

Qy,1 =
L∑
j=1

(D̃H
y,fj

D̃y,fj )� µw̃,fjµw̃,fj
H)

Qz,1 =
L∑
j=1

(D̃H
z,fj

D̃z,fj )� µw̃,fjµw̃,fj
H)

Rx,1 = Re
[ L∑
j=1

diag(µw̃,fj )D̃
H
x,fj

(tfj − Ãµw̃,fj )
]T

∆x

Ry,1 = Re
[ L∑
j=1

diag(µw̃,fj )D̃
H
y,fj

(tfj − Ãµw̃,fj )
]T

∆y

Rz,1 = Re
[ L∑
j=1

diag(µw̃,fj )D̃
H
z,fj

(tfj − Ãµw̃,fj )
]T

∆z

(4.31)

And [Qx,2,Qy,2,Qz,2,Rx,2,Ry,2,Rz,2] are the diagonal matrices and (i, i)th el-

ement of each matrix can be described as below

Q
(i,i)
x,2 = Tr(Σw̃,iD̃

H
x,iD̃x,i)

Q
(i,i)
y,2 = Tr(Σw̃,iD̃

H
y,iD̃y,i)

Q
(i,i)
z,2 = Tr(Σw̃,iD̃

H
z,iD̃z,i)

R
(i,i)
x,2 = Tr(2Σx,i Re(ÃH

i D̃x,i))

R
(i,i)
y,2 = Tr(2Σy,i Re(ÃH

i D̃y,i))

R
(i,i)
z,2 = Tr(2Σz,i Re(ÃH

i D̃z,i))

(4.32)
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Then, the directional basis mismatch values which maximize the expectation should

satisfy following equations.

∂

∂x

[
∆xT (Qx,1 + Qx,2)∆x− 2(Rx,1 + Rx,2)∆x+ Cx

]
= 0

∂

∂y

[
∆yT (Qy,1 + Qy,2)∆y − 2(Ry,1 + Ry,2)∆y + Cy

]
= 0

∂

∂z

[
∆zT (Qz,1 + Qz,2)∆x− 2(Rz,1 + Rz,2)∆z + Cz

]
= 0

(4.33)

Thus, the directional basis mismatch errors could be obtained as follow.

∆x = (Qx,1 + Qx,2)−1(Rx,1 + Rx,2)

∆y = (Qy,1 + Qy,2)−1(Ry,1 + Ry,2)

∆z = (Qz,1 + Qz,2)−1(Rz,1 + Rz,2)

(4.34)

Note that these estimated values just provide us whether the present grid points

have a basis mismatch errors or not since the linear approximation of 3-dimensional

grid points is not available. Thus, we have to update the basis according to these esti-

mated values until ∆x,∆y,∆z going to be zero. By using the estimated values, we

update the following matrices.
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Φ(new) ← Ã(old) + D̃(old)
x ∆X + D̃(old)

y ∆Y + D̃(old)
z ∆Z

Ã(new) ← Φ(old)

D̃
(new)
x ← ∂

∂x
Ã(new)

D̃
(new)
y ← ∂

∂y
Ã(new)

D̃
(new)
z ← ∂

∂z
Ã(new)

(4.35)

4.3 Simulation and Experiment Results

Figure 4.1: (a) Simulation Condition for 4 monopole type source localization with

basis mismatch (b) Transducer source experiment setup

To validate the proposed methods, the localizations with simulated and experimen-

tal data were conducted. Fig.4.1.(a) shows the simulated data which have 4 monopole

type sources and Fig.4.1.(b) shows the experimental data which have 1 monopole type

source. For the localization, 21 frequency components and 45 hydrophones were used

and grid points were uniformly distributed with 0.05m grid span.
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Figure 4.2: Simulated data localization results (a) CBF (b) MVDR (c) Conventional

CS-based method (d) Proposed method

Fig.4.2. shows the localization results with simulated data. The traditional beam-

forming processors(Fig.4.2.(a) and Fig.4.2.(b)) only show the ambiguous results. Con-

ventional CS-based method(Fig.4.2.(c)) shows the sparse source locations, however,

localization accuracy is poor since the method could not reduce the basis mismatch er-

ror. In other hand, the proposed method(Fig.4.2.(d)) reveals the exact source positions.

Fig.4.3. shows the localization result of broadband transmitter. By reducing the

basis mismatch, the result of the proposed method indicates one sparse source posi-

tion(Fig.4.3.(a)). However, Conventional CS-based method(Fig.4.3.(b)) does not seek

a sparse solution.

Moreover, source localization using the real cavitation experiment data is con-
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Figure 4.3: Transducer source localization results (a) Proposed method (b) Conven-

tional CS method

Figure 4.4: (a) TVC visual observation (b) Pop type TVC signal

ducted. As shown in FIg.4.4., we used pop type cavitation signal data to validate the

proposed method in this localization procedure. FIg.4.5. shows the localization results

using the traditional beamforming processor(CBF). FIg.4.6. shows the localization re-

sults using the proposed off grid method. It is shown that the estimated source location

is not lied on the initial grid points. This means that the proposed method can localize

the noise source considering the basis mismatch error.
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Figure 4.5: Localization results of Conventional Beamforming

Figure 4.6: Localization results of proposed method

4.4 Conclusion

The purpose of this chapter is to localize the broadband noise source accurately

by reducing the basis mismatch error. To estimate the exact basis mismatch error, the

coherent multiple-frequency processing and the OGSBI based approach are proposed.

In contrast to the coherent multiple-frequency processing, the proposed method pro-

vides accurate localization results regardless of basis mismatch issue. However, it was

shown that the proposed method is not robust to noise compared to conventional CS-
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Table 4.1: Summary of the proposed method

3D off-grid source localization method

Methodologies

• Block-spare Bayesian learning(BSBL)

• Stochastic model (Type-II maximum likelihood pro-

cedure)

• Adopting the coherent multiple-frequency process-

ing

Advantages

• Reduce the modeling error induced by basis mis-

match

• Computational efficiency

Limitations
• Degraded performance under heavy background

noise

based methods. In this work, off grid technique which is applicable to 3D source lo-

calization problem is firstly presented and the technique is validated with simulation

and experiment results.
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Chapter 5

Summary

For localizing the acoustic source, compressive sensing (CS) techniques have been

applied to wide applications. The CS-based localization methods have been shown a

high resolution capability and robustness against measurement noise. However, con-

ventional CS-based localization methods suffer from computational instability and ba-

sis mismatch error. In this dissertation, 2 novel methodologies are presented in order

to overcome the limitations of conventional CS technique.

Contributions of this dissertation are as follows :

• We introduced a CS-based method for localizing the three-dimensional acoustic

source and developed the processing which deals with multiple frequency com-

ponents jointly(methodology 1). The developed model enhances the localization

accuracy and the reconstruction stability compared to conventional CS-based

model by promoting the spectrally joint sparsity.

• We firstly developed an off grid method applicable to the three-dimensional lo-

calization problem(methodology 2). By reducing the basis mismatch error, we

could obtain the accurate localization results and reduce the computational bur-

den. The simulated and experimental results demonstrated advantages of the
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proposed method, including capability to prevent the basis mismatch.

• We studied tip vortex cavitation phenomenon exploiting the localization re-

sults. We verify that estimated source locations are physically meaningful and

matched for visual observation results.

Figure 5.1: Comparison of the localization results : no basis mismatch is present,

SNR=10dB
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Figure 5.2: Comparison of the localization results : no basis mismatch is present,

SNR=0dB

Figure 5.3: Comparison of the localization results : basis mismatch is present(basis

mismatch = 0.01m, grid span = 0.05m), SNR=10dB
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초 록

압축센싱기반접근법을이용한

수중음향소음원의위치추정기법연구

박민석

조선해양공학과

서울대학교대학원

삼차원음향소음원의위치추정은잠수체,산란체,캐비테이션소음원의분석을

위해필수적인과정이다.전통적인빔형성기법은강인한위치추정결과를제공하

나, 하나의 소음원의 위치만을 구분할 수 있는 저해상도의 결과를 보인다. 고해상

도의 위치 추정 결과를 얻기 위해 최근 압축센싱 기반의 위치 추정 기법들이 사용

되어지고있다.압축센싱기법은희소성을가진신호의획득,처리,복원에효과적인

방법이며 영상처리, 수중음향, 최적화 문제 등에서 널리 활용되어지고 있다. 수중

소음원의위치추정을위하여압축센싱기밥의기법들이적용되어왔으며전통적인

빔형성기법에비하여해상도측면에서더나은성능을보여주었다.
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하지만이러한해상도측면의성능향상에도불구하고압축센싱기반의방법은

여전히 문제점들을 가지고 있다. 첫번째, 압축센싱 기법은 전통적인 빔형성 기법

에 비해 수치 연산 과정이 불안전성을 가진다. 비록 고해상도의 성능을 보여주나

압축센싱 기법은 수치해석 과정에서 불안정한 모습을 보여주며, 안정적인 복원을

저해한다.두번째,기저불일치로인한오차가정확한소음원의위치추정을저해한

다.게다가 3차원소음원의위치추정문제는이러한기저불일치를해결할수있는

기법이아직까지개발되지못하였다.

본논문은기존의압축센싱기반의위치추정기법이가지는문제점을파악하고

3차원위치추정문제를다룰수있는향상된압축센싱기법을소개한다.탐색공간

사이의높은상관관계로인하여발생하는해의불안정성을해결아기위하여 “다중

주파수 상관 처리기법”을 소개하고, 3차원 위치 추정문제에서 기저불일치 문제를

해결할수있는 “유동탐색격자기법”을소개한다.제안된기법은전통적인빔형성

기법에비하여정확한위치추정결과를제공하며실험데이터를통한위치추정결

과를 이용하여 이러한 주장을 뒷받침하였다. 본 연구에서는 수중음향 소음원의 3

차원위치추정문제를중점적으로다루었으나,제안된기법은소나및레이더,음향

소음원위치추정문제에도효과적으로적용될수있을것으로기대된다.

주요어:압축센싱,빔형성,캐비테이션,위치추정,블록희소성,베이지안학습

학 번: 2015-21164
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