research

Superresolution without Separation

Abstract

This paper provides a theoretical analysis of diffraction-limited superresolution, demonstrating that arbitrarily close point sources can be resolved in ideal situations. Precisely, we assume that the incoming signal is a linear combination of M shifted copies of a known waveform with unknown shifts and amplitudes, and one only observes a finite collection of evaluations of this signal. We characterize properties of the base waveform such that the exact translations and amplitudes can be recovered from 2M + 1 observations. This recovery is achieved by solving a a weighted version of basis pursuit over a continuous dictionary. Our methods combine classical polynomial interpolation techniques with contemporary tools from compressed sensing.Comment: 23 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions