1,429 research outputs found

    Special Classes of Orthogonal Polynomials and Corresponding Quadratures of Gaussian Type

    Get PDF
    MSC 2010: 33C47, 42C05, 41A55, 65D30, 65D32In the first part of this survey paper we present a short account on some important properties of orthogonal polynomials on the real line, including computational methods for constructing coefficients in the fundamental three-term recurrence relation for orthogonal polynomials, and mention some basic facts on Gaussian quadrature rules. In the second part we discuss our Mathematica package Orthogonal Polynomials (see [2]) and show some applications to problems with strong nonclassical weights on (0;+1), including a conjecture for an oscillatory weight on [¡1; 1]. Finally, we give some new results on orthogonal polynomials on radial rays in the complex plane

    Sampling functions for multimode homodyne tomography with a single local oscillator

    Full text link
    We derive various sampling functions for multimode homodyne tomography with a single local oscillator. These functions allow us to sample multimode s-parametrized quasidistributions, density matrix elements in Fock basis, and s-ordered moments of arbitrary order directly from the measured quadrature statistics. The inevitable experimental losses can be compensated by proper modification of the sampling functions. Results of Monte Carlo simulations for squeezed three-mode state are reported and the feasibility of reconstruction of the three-mode Q-function and s-ordered moments from 10^7 sampled data is demonstrated.Comment: 12 pages, 8 figures, REVTeX, submitted Phys. Rev.

    Gradimir Milovanovic - a master in approximation and computation part ii

    Get PDF

    Quantum statistical properties of the radiation field in a cavity with a movable mirror

    Get PDF
    A quantum system composed of a cavity radiation field interacting with a movable mirror is considered and quantum statistical properties of the field are studied. Such a system can serve in principle as an idealized meter for detection of a weak classical force coupled to the mirror which is modelled by a quantum harmonic oscillator. It is shown that the standard quantum limit on the measurement of the mirror position arises naturally from the properties of the system during its dynamical evolution. However, the force detection sensitivity of the system falls short of the corresponding standard quantum limit. We also study the effect of the nonlinear interaction between the moving mirror and the radiation pressure on the quadrature fluctuations of the initially coherent cavity field.Comment: REVTeX, 9 pages, 5 figures. More info on http://www.ligo.caltech.edu/~cbrif/science.htm

    Direct sampling of exponential phase moments of smoothed Wigner functions

    Get PDF
    We investigate exponential phase moments of the s-parametrized quasidistributions (smoothed Wigner functions). We show that the knowledge of these moments as functions of s provides, together with photon-number statistics, a complete description of the quantum state. We demonstrate that the exponential phase moments can be directly sampled from the data recorded in balanced homodyne detection and we present simple expressions for the sampling kernels. The phase moments are Fourier coefficients of phase distributions obtained from the quasidistributions via integration over the radial variable in polar coordinates. We performed Monte Carlo simulations of the homodyne detection and we demonstrate the feasibility of direct sampling of the moments and subsequent reconstruction of the phase distribution.Comment: RevTeX, 8 pages, 6 figures, accepted Phys. Rev.

    Fast Bayesian Optimal Experimental Design for Seismic Source Inversion

    Full text link
    We develop a fast method for optimally designing experiments in the context of statistical seismic source inversion. In particular, we efficiently compute the optimal number and locations of the receivers or seismographs. The seismic source is modeled by a point moment tensor multiplied by a time-dependent function. The parameters include the source location, moment tensor components, and start time and frequency in the time function. The forward problem is modeled by elastodynamic wave equations. We show that the Hessian of the cost functional, which is usually defined as the square of the weighted L2 norm of the difference between the experimental data and the simulated data, is proportional to the measurement time and the number of receivers. Consequently, the posterior distribution of the parameters, in a Bayesian setting, concentrates around the "true" parameters, and we can employ Laplace approximation and speed up the estimation of the expected Kullback-Leibler divergence (expected information gain), the optimality criterion in the experimental design procedure. Since the source parameters span several magnitudes, we use a scaling matrix for efficient control of the condition number of the original Hessian matrix. We use a second-order accurate finite difference method to compute the Hessian matrix and either sparse quadrature or Monte Carlo sampling to carry out numerical integration. We demonstrate the efficiency, accuracy, and applicability of our method on a two-dimensional seismic source inversion problem
    • …
    corecore