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In the first part of this survey paper we present a short account on some impor-
tant properties of orthogonal polynomials on the real line, including computational methods
for constructing coefficients in the fundamental three-term recurrence relation for orthogonal
polynomials, and mention some basic facts on Gaussian quadrature rules. In the second part
we discuss our Mathematica package OrthogonalPolynomials (see [2]) and show some ap-
plications to problems with strong nonclassical weights on (0, +∞), including a conjecture for
an oscillatory weight on [−1, 1]. Finally, we give some new results on orthogonal polynomials
on radial rays in the complex plane.
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1. Introduction to orthogonal polynomials on R

The main concepts in the theory of orthogonal polynomials can be found
in [16], [1], [5], [10]. Suppose dµ(t) is a positive measure on R with finite or
unbounded support, for which all moments µk =

∫
R tkdµ(t) exist and are finite.

Then the inner product

(p, q) =
∫

R
p(t)q(t)dµ(t)

is well defined for any polynomials p, q ∈ P and gives rise to a unique system of
monic orthogonal polynomials πk(t) ≡ πk(dµ; t) = tk + terms of lower degree,
k = 0, 1, . . ., such that

(πk, πn) = ||πn||2δkn =

{
0, n 6= k,

||πn||2, n = k.
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Because of the property (tf, g) = (f, tg), these polynomials satisfy the three–
term recurrence relation

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, 2 . . . , (1)

with π0(t) = 1 and π−1(t) = 0, where (αk) = (αk(dµ)) i (βk) = (βk(dµ)) are
sequences of recursion coefficients which depend on the measure dµ. The coeffi-
cient β0 may be arbitrary, but it is convenient to define it by β0 = µ0 =

∫
R dµ(t).

Unfortunately, these coefficients are known explicitly only for some narrow
classes of orthogonal polynomials. For example, if the measure dµ is absolutely
continuous, i.e., dµ(t) = w(t)dt, and its weight function w satisfies Pearson’s
differential equation we have the so-called classical orthogonal polynomials (Ja-
cobi, the generalized Laguerre, and Hermite polynomials). The recursion coef-
ficients for such polynomials are known explicitly. For orthogonal polynomials
for which these coefficients are not known we use the term strong non-classical
polynomials.

The concept of orthogonality can be introduced also via a linear moment
functional L for which is L(tk) = µk, k ∈ N0. In that case {πn}n∈N0 are called
orthogonal polynomials with respect to the moment functional L if

• deg πn(t) = n,

• L(πn(t)πm(t)) = 0, n 6= m,

• L(π2
n(t)) 6= 0.

If the sequence of orthogonal polynomials exists for a given linear func-
tional L, then L is called quasi–definite (regular) linear functional. The neces-
sary and sufficient conditions for the existence of orthogonal polynomials {πn}
with respect to the linear functional L are that for each n ∈ N the Hankel
determinants

∆n =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−1

µ1 µ2 µn
...

µn−1 µn µ2n−2

∣∣∣∣∣∣∣∣∣
6= 0.

If L(πn(t)2) > 0, then such a functional L is called positive definite. In
that case, we can define (p, q) = L(p(t)q(t)), so that the orthogonality with
respect to the moment functional L is consistent with the standard definition of
orthogonality with respect to an inner product. For orthogonality on R we can
put

L(p(t)) =
∫

R
p(t)dµ(t) =

∫

R
p(t)w(t) dt.
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The coefficients in the three-term recurrence relation can be expressed in terms
of Hankel determinants (or by Darboux’s formulae) as:

αk =
∆′

n+1

∆n+1
−∆′

n

∆n

(
=
L(tπk(t)2)
L(πk(t)2)

)
, βk =

∆n−1∆n+1

∆2
n

(
=

L(πk(t)2)
L(πk−1(t)2)

)
, (2)

where ∆′
n denotes the determinant obtained from ∆n when the last column

[µn−1 µn . . . µ2n−2]T is replaced by [µn µn+1 . . . µ2n−1]T .
Associated with the three-term recurrence relation is the Jacobi matrix

J(dµ) =




α0
√

β1 0√
β1 α1

√
β2

√
β2 α2

. . .
. . . . . .

0




.

Its leading principal minor matrix of order n will be denoted by Jn(dλ).
In the constructive theory of (strong non-classical) orthogonal polyno-

mials the basic computational problem is the following: For a given measure
dµ and for given n ∈ N, generate the first coefficients αk(dµ) and βk(dµ),
k = 0, 1, 2, . . . , n − 1. In numerical construction three approaches are well-
known: method of moments, Stieltjes procedure, and Lanczos algorithm.

1.1. Method of (modified) moments. The recursion coefficients αk

and βk in (1) can be computed from well-known formulae (2) in terms of Hankel-
type determinants, but in that case an excessive complexity and an extreme
numerical instability are appeared. To avoid these problems, one can attempt
to use the so-called modified moments mk =

∫
R pk(t)dµ(t), k = 0, 1, 2, . . ., where

pk are some monic polynomials of degree k “close” in some sense to the desired
polynomials πk. Usually, we suppose that pk satisfy a three-term recurrence
relation of the form (1), with recursion coefficients ak (∈ R) and bk (≥ 0)
(instead of αk and βk). Then there is a unique map % : R2n → R2n that takes
the first 2n modified moments into the desired n recurrence coefficients αk and
βk, i.e., [mk]2n−1

k=0 7→ [αk, βk]n−1
k=0 . An algorithm for realizing this map (modified

Chebyshev algorithm) was given by Gautschi [3] (see also [5, pp. 76–78] and
[10, pp. 160–162]).

For ak = bk = 0 we have pk(t) = tk and the moments mk reduce to the
standard moments µk. This map for standard moments [µk]2n−1

k=0 7→ [αk, βk]n−1
k=0 is

severely ill-conditioned when n is large. Namely, it is very sensitive with respect
to small perturbations in the moment information (in the first 2n moments).
An analysis of such maps in detail can be found in the book [5, Chap. 2].
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Using modified moments the corresponding map can become remarkably well-
conditioned, especially for measures with a finite support.

2.2. Discretization methods. The basic idea for these methods is an
approximation of the given measure dµ by a discrete N -point measure, usually
using an appropriate quadrature rule,

dµ(t) ≈ dµN (t) =
N∑

k=1

wkδ(t− xk), wk > 0,

where δ is the Dirac delta function. Thereafter, the desired recursion coefficients
are approximated by those of the discrete measure

αk(dµ) ≈ αk(dµN ), βk(dµ) ≈ βk(dµN ).

For sufficiently large N , the approximate coefficients are computed by the dis-
cretized Stieltjes-Gautschi procedure or Lanczos algorithm. The corresponding
inner product is a finite sum

(p, q)N =
∫

R
p(t)q(t) dµN (t) =

N∑

k=1

wkp(xk)q(xk).

In the first procedure, the computation of the recursive coefficients goes over
Darboux’s formulae for k ≤ n − 1, where N is taken such that N À n. An
alternative approach is the Lanczos algorithm, which is based on ideas of Lanczos
and Rutishauser (for details see [5, pp. 97–98]).

2. Quadratures of Gaussian type

The n-point Gaussian quadrature formula

∫

R
f(t)dµ(t) =

n∑

ν=1

Aνf(τν) + Rn(f),

is exact on the space of polynomials of degree at most 2n − 1, i.e., Rn(f) = 0
for each f ∈ P2n−1. Numbers τν are called nodes, and Aν weights or Christoffel
numbers. Node polynomial πn(t) = (t−τ1) · · · (t−τn) is orthogonal with respect
to the measure dµ(t). The characterization of the Gauss-Christoffel quadratures
via an eigenvalue problem for the Jacobi matrix has become the basis of current
methods for generating this kind of quadratures. The most popular of them is
one due to Golub and Welsch (see [8]). Their method is based on determining



Special Classes of Orthogonal Polynomials . . . 173

the eigenvalues and the first components of the eigenvectors of the symmetric
tridiagonal Jacobi matrix Jn(dµ).

Theorem 1. The nodes τk in the Gauss-Christoffel quadrature rule,
with respect to a positive measure dµ, are the eigenvalues of the n-th order Jacobi
matrix Jn(dµ), constructed by coefficients in the three–term recurrence relation
for the monic orthogonal polynomials πn(dµ; ·). The weights Ak are given by

Ak = β0v
2
k,1, k = 1, . . . , n,

where β0 = µ0 =
∫
R dµ(t) and vk,1 is the first component of the normalized

eigenvector vk corresponding to the eigenvalue xk,

Jn(dµ)vk = xkvk, vT
k vk = 1, k = 1, . . . , n.

The Golub and Welsch procedure [8] was implemented in several pro-
gramming packages including the most known ORTHPOL developed by Gautschi
[4] in 1994.

3. Software

The previous mentioned package ORTPOL, written in FORTRAN, is
a package of routines for generating orthogonal polynomials and Gauss-type
quadrature rules and it was a yeast for a progress in this subject. Package OPQ
was developed also by Gautschi in 2004, is written in Matlab (see [6]) and
is companion for the book [5]. There is also SOPQ written by the same author
which implements some symbolic possibilities in Matlab.

In this section we give a short account of our Mathematica package
OrthogonalPolynomials (see [2]). Package performs the construction of orthog-
onal polynomials and quadrature formulae. Also, this package has implemented
almost all classes of orthogonal polynomials studied up to date.

3.1. Implementation of some symbolic algorithms. Chebyshev
algorithm can be represented as the mapping of the sequence of moments of the
measure dµ, µk =

∫
R xkdµk(x), k = 0, 1, . . . , 2n − 1, into the coefficients of the

three-term recurrence relation. Algorithm is rational and nonlinear and it can
be represented using recurrence relation which uses only addition and multipli-
cation of the operations. In a similar way the modified Chebyshev algorithm is
also realized.

Laurie’s algorithm can be expressed as the mapping between the three–
term recurrence coefficients of the measure dµ into the three–term recurrence
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coefficients from which it is possible to get the parameters (nodes and weights)
of the Gauss–Kronrod quadrature formula using QR-algorithm. Algorithm is
also nonlinear and rational; the only operations involved are addition and mul-
tiplication.

The Christoffel modification algorithms are ones which give answer to the
following problems. Suppose we are given three–term recurrence coefficients αk

and βk for the measure dµ. What are the corresponding three–term recurrence
coefficients for the measures dµ(x)/(z − x) and (z − x)dµ(x)?

3.2. Implemented functions. For all supported classes of orthogonal
polynomials, the package provides the basic information. Function operating on
the classes are the following:

• aThreeTermRecurrence-function returns three–term recurrence coeffi-
cients of the referenced polynomial class. It is implemented in the format of the
pure function. It can return coefficients of the three–term recurrence relation in
the closed analytic form.

• aNorm-function returns the norm of monic polynomials of the referenced
class. It is implemented in the format of the pure function. It is able to to return
closed analytic expression of the norm of the referenced polynomial class.

• aNumerator returns numerator polynomials of the given order for the
referenced polynomial class. It is also implemented in the format of the pure
function.

• aKernel returns the kernel polynomial of the referenced polynomial
class. It is implemented in the format of the pure function.

Functions which are specific for the continuous class of polynomials are
the following:

• aWeight returns the weight function with respect to which referenced
class is orthogonal. It is also pure function.

• aGetInterval returns the interval of the orthogonality, i.e., the support
of the measure.

Functions specific for the discrete polynomial class are the following:
• aDistribution represents the distribution function with respect to

which referenced polynomials are orthogonal to, where distribution function is
given by ψ(x) =

∫ x
−∞ dµ(x).

• aSupport returns the supporting set of the measure. However it is clear
that support can be an infinite set, that is why function produces a message
about the supporting set and also returns few points of the supporting set. The
number of returned points is given as the parameter of the function.

Keywords for the quadrature formulae are the following:
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• aGaussian is a construction of the Gaussian quadrature formulae. It is
possible to perform construction for all supported classes of the orthogonal poly-
nomials. In the case the function aNodesWeights is called for the construction of
this type of quadrature rules. Function aGaussianNodesWeights is called which
performs computation. Function aGaussianNodesWeights has different calling
formats. It is possible to call function aGaussianNodesWeights for the class of
polynomials which is not supported and for which coefficients of the three–term
recurrence relation are known, if the construction with QR-algorithm is wanted,
or for which we know good starting values for the Pasquini algorithm.

• aRadau and aLobatto perform constructions of the Gauss-Radau and
the Gauss-Lobatto quadrature formulae, respectively. It is possible to con-
struct the Gauss-Radau (Gauss-Lobatto) quadrature formula calling directly the
function aRadauNodesWeights (aLobattoNodesWeights) or calling the function
aNodesWeights (aNodesWeights). It is possible to construct the Gauss-Radau
(Gauss-Lobatto) quadrature formula for all supported polynomial classes for
which this formula has a meaning.

• aKronrod performs the construction of Gauss-Kronrod quadrature for-
mulae. It is possible to construct the Gauss-Kronrod quadrature formula di-
rectly calling the function aKronrodNodesWeights or by calling aNodesWeights
with the keyword aKronrod. Construction can be performed for all supported
polynomial classes for which the Gauss-Kronrod quadrature formula exists, i.e.,
for which the additional nodes of the Gauss-Kronrod formula are inside the
supporting set of the measure. If the additional nodes of The Gauss-Kronrod
quadrature formula are not inside the supporting set, a construction can be
performed using Laurie algorithm.

• aTuran performs the construction of Gauss-Turan quadrature formu-
lae. It is possible to construct the Gauss-Turan quadrature formula calling the
function aTuranNodesWeights or aGaussianNodesWeights using the keyword
aTuran. Construction is possible for all supported classes of the polynomials
with a positive orthogonality measure.

• aSigma performs the construction of generalized Gaussian quadrature
formulae for multiple nodes. It is possible to perform the construction using the
function aSigmaNodesWeights or the function aNodesWeights using the key-
word aSigma. Construction is possible for all supported classes of polynomials
with the positive orthogonality measure.

4. Examples of some nonclassical weights on R+

In this section we consider some (strong) nonclassical measures dµ(x) =
w(x)dx on R+ for which the recursive coefficients αk(dµ) and βk(dµ), k =
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0, 1, . . . , n − 1, must be determined numerically. Usually, the method of (mod-
ified) moments is not applicable in a standard machine arithmetic for a suffi-
ciently large n, because of ill-conditioned process. For this reason, a construction
of recursive coefficients must be carefully realized by an application of the dis-
cretized Stieltjes-Gautschi procedure. Then, these coefficients can be used in a
construction of Gaussian quadratures. Such nonclassical quadratures were used
in the last two decades in many applications in physics, economics, etc. Some
of them were also useful in summation of slowly convergent series (cf. [7], [11],
[12]).

Today, however, by using software packages with capabilities of variable-
precision arithmetic and with symbolic computations, it is possible to use di-
rectly the method of moments. Here, we mention a few such cases.

1◦ One side exponential weight w(t) = exp(−ts). The moments are

µk =
∫ +∞

0
tkw(t)dt =

1
s
Γ

(
k + 1

s

)
, k ∈ N0, s > 0.

Gamma function can be evaluated to arbitrary numerical precision in Math-
ematica (see [15]). To obtain the three-term recursion coefficients using our
package OrthogonalPolynomials, for example for s = 4 and n ≤ 40 with
WorkingPrecision->80, one only needs to execute the following commands:

In[1]:= << orthogonalPolynomials`

In[2]:= s = 4; mom = Table @Gamma@Hk + 1L � sD � s, 8k, 0, 80 <D;

In[3]:= 8al, be < = aChebyshevAlgorithm @mom, WorkingPrecision ® 80D;

Taking the WorkingPrecision sufficiently large, for example to be 160, it
is possible to get the maximal relative error in the previous obtained coefficients
{al,be}.
In[4]:= 8al160, be160< = aChebyshevAlgorithm@mom, WorkingPrecision ® 160D;

In[5]:= N@Max@al � al160 - 1, be � be160 - 1DD

Out[5]= 1.21657 ´ 10-41

According this result we can conclude that at least 40 decimal digits in
the coefficients {al,be} are exact. It means that we can compute the param-
eters (nodes and weights) in all n-point Gaussian formulae for n ≤ 40 with
the same precision, because the Golub–Welsch algorithm is well-conditioned. In
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our package OrthogonalPolynomials this algorithm is realized by the function
aGaussianNodesWeights.

The values of {al,be} to 20 digits (in order to save space) are the fol-
lowing:

In[6]:= N@al, 20D

Out[6]= 80.48887053372346189882, 0.62818641522278629241,
0.72749846252899886372, 0.79316667767856890602,
0.84550068070369304183, 0.88947385732675106451, 0.92768720002591623186,
0.96165664416000938487, 0.99234724686775554666, 1.0204171215207083426,
1.0463372701512168196, 1.0704575902650673656, 1.0930458350503219779,
1.1143119096302551335, 1.1344237100022280517, 1.1535178319357899849,
1.1717070362388493989, 1.1890855902011758356, 1.2057331762846359415,
1.2217178089736984983, 1.2370980493338568790, 1.2519247122938861248,
1.2662422009683794311, 1.2800895623911959874, 1.2935013321592688828,
1.3065082170504410548, 1.3191376518033485778, 1.3314142571083574230,
1.3433602192753623498, 1.3549956072375764124, 1.3663386389969644140,
1.3774059069596455613, 1.3882125696011830242, 1.3987725153686710336,
1.4090985035455914421, 1.4192022858878477709, 1.4290947121207110513,
1.4387858218192631640, 1.4482849247441745112, 1.4576006713440198665<

In[7]:= N@be, 20D

Out[7]= 80.90640247705547707798, 0.098994721290579866816,
0.12360391490491043276, 0.14843255336839211574,
0.17037577312509127245, 0.18993643166658240538, 0.20774334942915538575,
0.22418006982753043827, 0.23951438841450045697, 0.25393872995188821220,
0.26759613325099209474, 0.28059611114038540344, 0.29302459285560838809,
0.30495041336522100910, 0.31642969274957242875, 0.32750888063257769802,
0.33822692827534905141, 0.34861687395582608134, 0.35870702352900726373,
0.36852184526261103904, 0.37808265888878377732, 0.38740817374168433837,
0.39651491440644919575, 0.40541756128132547144, 0.41412922591731055504,
0.42266167575240335412, 0.43102551914423687151, 0.43923035893723932450,
0.44728492085744145841, 0.45519716159467914078, 0.46297436036204744636,
0.47062319691513053549, 0.47814981839813125783, 0.48555989691048566686,
0.49285867931994947221, 0.50005103056042679311, 0.50714147142587357943,
0.51413421169130767423, 0.52103317924773004456, 0.52784204582164591569<

By the commands

{n10, w10} = aGaussianNodesWeights[10, al, be, WorkingPrecision -> 30,
Precision -> 20];

N[{n10, w10}, 20]

we obtain the parameters {n10, w10} of the 10-point Gaussian formula with
respect to the exponential weight w(t) = e−t4 on (0, +∞):

{0.020910958172875507809, 0.10797068631427716171, 0.25562328785749218991,
0.44893748090362466665, 0.66900160738867166048, 0.89859468409016216374,
1.1272235953202294099, 1.3520533630572184144, 1.5771033460898674163,
1.8173858305642309824},
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{0.053411949182865253872, 0.11931457846424081532, 0.17270920978259131748,
0.20156537177553722183, 0.18599086303177089234, 0.11992799310002205324,
0.045095152077344811358, 0.0079124481479888566100,
0.00047014632630322120166, 4.7651668126347300673*10^-6}}

Recently, quadratures with these exponential weights have been used
in [9].

2◦ Einstein’s weight w(t) = ε(t) = t/(et − 1) on (0, +∞). The moments
are

µk =
∫ +∞

0
tkw(t)dt = (k + 1)!ζ(k + 2), k ∈ N0,

where zeta function can be evaluated to arbitrary numerical precision. Further-
more, for certain special arguments, Zeta (in Mathematica) automatically
evaluates to exact values. Thus, as in the previous case, a direct application of
the method of moments gives recursion coefficients, as well as the parameters of
quadratures.

Integrals with Einstein’s weight frequently appear in solid state physics,
e.g. the total energy of thermal vibration of a crystal lattice can be expressed in
the form

∫ +∞
0 f(t)ε(t) dt, where f(t) is related to the phonon density of states.

Also, such kind of integrals can be used to sum infinite series,

+∞∑

k=1

ak =
∫ +∞

0
f(t)ε(t) dt,

if the general term of the series, ak = −F ′(k), is the negative derivative of the
Laplace transform F (s) =

∫ +∞
0 f(t)e−st dt evaluated at s = k of some known

function f . For details on these applications to summation of slowly convergent
series see [7].

3◦ Fermi’s weight w(t) = ϕ(t) = 1/(et + 1) on (0, +∞). Yet, another
weight which appears in the theory of slowly convergent series is the Fermi
weight function ϕ(t) on (0, +∞). The moments are given by

µk =
∫ +∞

0

tk

et + 1
dt =

{
log 2, k = 0,

(1− 2−k)k!ζ(k + 1), k > 0.

Integrals with Fermi’s weight are encountered in the dynamics of electrons
in metals. Also, Gaussian quadratures with respect to this weight function can
be used in summation of the slowly convergent series of the form

∑+∞
k=1(−1)kak

(see [7]).
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3◦ Hyperbolic weight w(t) = 1/ cosh2 t on (0, +∞). The moments are

µk =
∫ +∞

0
tkw(t)dt =





1, k = 0,

log 2, k = 1,

Ckζ(k), k ≥ 2,

where Ck = (2k−1 − 1)k!/4k−1. Computation of Ck is based on the following
lemma:

Lemma 1. For k ≥ 2 we have
∫ +∞

0

xk

cosh2 x
dx = k!ζ(k)

2k−1 − 1
4k−1

.

P r o o f. Starting from the equality (cf. [14, p. 361])
∫ +∞

0
xα−1(tanh ax− 1) dx = 21−αa−αΓ(α)ζ(α)(21−α − 1), a > 0, <α > 0,

an integration by parts gives
∫ +∞

0
xα−1(tanh ax− 1) dx = − a

α

∫ +∞

0

xα

cosh2 ax
dx.

Now, putting a = 1 and α = k ≥ 2 we get the desired result.
Quadrature formulae with respect to this hyperbolic weight function and

an application to summation of slowly convergent series were discussed in [11]
and [12].

4◦ The weight w(t) = exp(−ts − t−s), s > 0 on (0, +∞). For this exotic
weight function, the moments are

µk =
∫ +∞

0
tkw(t)dt =

2
s
K(k+1)/s(2),

where Kr(z) is the modified Bessel function of the second kind. Mathematica
evaluates Kr(z) using the following function Bessel[r,z], and function Kr can
be evaluated with arbitrary precision, so that we can directly apply the method
of moments to computation of recursive coefficients. This weight function has
an application in the weighted polynomial approximation on R+.
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5. A conjecture for an oscillatory weight on [−1, 1]

Software packages with capabilities of variable-precision arithmetic and
symbolic computations, as our package OrthogonalPolynomials, enable us to
investigate problems with exotic weights and identify some properties, and after
that prove them or state some conjectures.

Let dµ(x) = xeimπxχ([−1, 1];x) dx, m ∈ N, where χ(A; · ) is the charac-
teristic function of the set A. In [13] we investigated the existence of orthogonal
polynomials πk with respect to the functional

L(p) =
∫ 1

−1
p(x)dµ(x), µk = L(xk), k ∈ N0,

as well as several of their properties (three–term relation, differential equation,
etc.). Also, we considered related quadrature rules and give applications of
such quadrature rules to some classes of integrals involving highly oscillatory
integrands. For example, we proved that for every m ∈ N the monic orthogonal
polynomials πk exist uniquely and satisfy the three-term recurrence relation

πk+1(x) = (x− iαk)πk(x)− βkπk−1(x), k ∈ N0,

with π0(x) = 1 and π−1(x) = 0.
Using software OrthogonalPolynomials we determined analytic expres-

sions for recursion coefficients for αk and βk (k ≤ 20) and stated the following
conjecture:

Conjecture 1. Let ak(z) and ck(z) be algebraic polynomials with
integer coefficients of degree rk and sk, respectively, i.e., ak(z) = Akz

rk + · · ·
and ck(z) = zsk + · · · . If ζ = mπ and and k ≥ 2, then

αk =
ak(ζ2)

ζck−1(ζ2)ck(ζ2)
, βk = Bk

ck−2(ζ2)ck(ζ2)
ζ2ck−1(ζ2)2

,

where

An =




−k2 − 1

4
(k odd),

k2 + 10k + 8
4

(k even),
Bk =

{
1 (k odd),

−k2 (k even),

and

rk =
k(k + 1)

2
, sk =





(k + 1)2

4
(k odd),

k(k + 2)
4

(k even),
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Here we can mention that the complexity of expressions for αk and βk

increases exponentially with k, but also there is an efficient algorithm for their
numerical construction (see [13]).

6. Orthogonality on radial rays in C
In this section we consider the following linear functional

L(p) =
n∑

k=1

∫ 1

0
p(rkxeiϕk) dµk(x),

where rk, k = 1, . . . , n, are given real numbers and ϕk, k = 1, . . . , n, are angles
from the interval (−π, π], and dµk, k = 1, . . . , n, are positive finite measures
supported on [0, 1] (see Fig. 1). It can be easily proved that L is a linear
functional acting on the linear space of all polynomials P.

Figure 1: Radial rays in the complex plane C

In the case ϕk = 0, k = 1, . . . , n, we have a case on the real line R, with a
positive definite functional. However, if at least one ϕk 6= 0, we get completely
different situation. We cannot even state that L is regular functional, i.e., the
existence of the corresponding orthogonal polynomials is not granted. But, in
some special cases we are able to prove that the functional L is regular.

Suppose we have dµk = dµ, k = 1, . . . , n. Then, we can expresses the
moments of L in the following form

Mν = L(zν) = mν

n∑

k=1

rν
keiνϕk ,
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for ν ∈ N0, where mν , ν ∈ N0, are moments of the measure dµ.

Theorem 5. Suppose rk ∈ Q and ϕk = kζπ, k = 1, . . . , n, where
ζ ∈ R \Q is an algebraic number. If all of dµk are Lebesgue measures, then the
associated moment functional L(p) =

∑n
k=1

∫ 1
0 p(rkxeikζπ)dx, p ∈ P, is regular.

The proof relies on the Hilbert problem of proving transcendency of αβ

for α and β algebraic, α 6= 0, 1 and β irrational. Namely, we can use Gelfond
result and choose α = −1 and β = ζ in order to get transcendency of eiζπ, which
in turn guaranties that the Hankel determinants for the sequence of moments
Mν , ν ∈ N0, are non-vanishing.

In the rest of this paper, we present some numerical results. Consider
linear functional of the following form

L(p) =
3∑

k=1

∫ 1

0
p(xeik5

√
2π/21)dx, p ∈ P.

According to the previous theorem this functional is regular. The modulus of
recursion coefficients for k = 0, 1, . . . , 400 are presented in Fig. 2. The corre-
sponding arg βk, k = 0, 1, . . . , 400, are displayed in Fig. 3.

100 200 300 400

1

2

3

4

100 200 300 400

0.5

1

1.5

2

2.5

3

Figure 2: The coefficients |αk| (left) and |βk| (right), k = 0, 1, . . . , 400

Finally, we present a distribution of zeros of the orthogonal polynomials
πn(z). For example, if n = 201 all zeros of π201(z) are displayed in Fig. 4
(left). The rays are presented by solid lines. As we can see zeros are distributed
symmetrically with respect to the given radial rays. But, a perturbation of the
middle ray gives a modified distribution of zeros presented in Fig. 4 (right).

Under condition of the uniform boundedness of sequences of three-term
recurrence coefficients (i.e., boundedness of the Jacobi operator J), the well-
known results of H. Stahl can be applied. In that case the essential spectrum of
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Figure 3: arg βk for k = 0, 1, . . . , 400
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Figure 4: Distribution of zeros of π201(z) for given rays (left) and for the case
when the middle ray is perturbed (right)

J is given by the set of smallest capacity which contains ends of the rays, i.e.,
the points rke

iϕk , k = 1, . . . , n, and the origin 0.
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