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GRADIMIR MILOVANOVIĆ – A MASTER IN
APPROXIMATION AND COMPUTATION

PART II

Themistocles M. Rassias and Miodrag M. Spalević

This Special Issue of the journal Applicable Analysis and Discrete Mathe-
matics is dedicated to the 70th birth anniversary of the eminent Serbian mathe-
matician and Academician professor Gradimir V. Milovanović. This Issue is split
into two parts, with the first being published in 2019, and the second one in
2020. Most of the papers featured within this Special Issue have been presented
at the Mediterranean International Conference of Pure & Applied
Mathematics and Related Areas in Antalya-Turkey, October 26–29, 2018
(http://micopam2018.akdeniz.edu.tr/home/).

The Preface in Part II of this Special Issue of the journal Applicable Analysis
and Discrete Mathematics is devoted to an analysis of Milovanović’s scientific results
obtained during the last decade.

A detailed account of Prof. G.V. Milovanović’s mathematical work, on the
occasion of his 60th birthday, is featured in the papers:

[1] Aleksandar Ivić: The scientific work of Gradimir V. Milovanović,

[2] Walter Gautschi: My collaboration with Gradimir V. Milovanović,

[3] Themistocles M. Rassias: On Some Major Trends in Mathematics,

which are published in the book: “Approximation and Computation: In
Honor of Gradimir V. Milovanović, Springer Optimization and Its Appli-
cations 42, W. Gautschi et al. (eds.), DOI 10.1007/978-1-4419-6594-3 16, Springer
Science+Business Media, New York, LLC 2011.” Here, we review again, in short,
some important scientific results of Milovanović from that period, in order to show
their influence on and connection with the results obtained in the last decade.
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Milovanović has obtained important results in several areas of Numerical
Analysis, Approximation Theory, and Special Functions, with many applications
in various fields of Mathematics, Physics, and Engineering.

Figure 1: Mediterranean International Conference of Pure & Applied Mathematics
and Related Areas in Antalya-Turkey, October 26–29, 2018

The topics to which he made his most important contributions include: Poly-
nomials (extremal problems, inequalities and zeros); Orthogonal polynomials and
systems (constructive theory, new applications, software implementation); Approx-
imations by polynomials and splines; Interpolation processes; Quadrature processes
(constructive theory of quadratures of Gaussian type, error estimate, quadrature
with multiple nodes, integration of highly oscillating functions); Integral equations;
Summation of slowly convergent series; Special functions, polynomials and special
numbers; etc.

Henceforth, instead of Prof. Gradimir V. Milovanović we mostly use GVM
for shortness.

Prof. Gradimir V. Milovanović is one of the best mathematicians that Serbia
has ever had, as stressed by Serbian academician Ivić in [1]. Ivić quotes also
that: “A topic which had absorbed GVM for a long time is the “introduction
of new concepts of orthogonality”. For example, one can mention orthogonality
on the semicircle, on a circular arc, on the radial rays, orthogonality of Müntz
polynomials, multiple orthogonality, s- and σ-orthogonality, etc.” The renowned
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mathematician Walter Gautschi, one of the founders of modern numerical analysis,
wrote in [2]: “My collaboration with Gradimir V. Milovanović over a time interval
of about 15 years, from 1983 to 1997, is described concerning work on a variety of
topics in the area of orthogonal polynomials, Gauss-type quadrature, and some of
their applications.” and “In looking back on my collaboration with Gradimir, I can
only marvel at the spontaneity and originality of his input, which often reduced my
own role to one of implementor and organizer. It has been truly a pleasure to work
together with Gradimir, and I am sure I am sharing this feeling with the many
other individuals who have had the privilege of collaborating with Gradimir.”

Their cooperation continued in the following years. As already mentioned,
this collaboration began in the mid-1980s, just as Walter was developing his con-
structive theory of orthogonal polynomials, which significantly influenced the de-
velopment of Gradimir’s scientific career, and he became one of Walter’s closest
collaborators. The constructive theory of orthogonal polynomials opened the door
for extensive computational work on orthogonal polynomials and their various ap-
plications.

Figure 2: ACTA 2017 (November 30 – December 2, 2017), Belgrade: L. Reichel,
GVM, M.M. Spalević (left); Y. Simsek, W. Gautschi, GVM and G. Mastroianni
(right)

At the invitation of Walter Gautschi, and on the occasion of Elsevier’s project
“Numerical analysis 2000”, Milovanović was invited to write a chapter “Quadrature
with multiple nodes, power orthogonality, and moment-preserving spline approx-
imation” as an expert in the field of quadrature with multiple nodes for Vol. 5
“Quadrature and orthogonal polynomials” (W. Gautschi, F. Marcellan, and L. Re-
ichel, eds.), which was published also in the journal J. Comput. Appl. Math. 127
(2001), 267–86. As part of the extensive three-volume project “Walter Gautschi:
Selected Works with Commentaries” (C. Brezinski, A. Sameh, eds.), published by
Birkhäuser, Basel, 2014, Milovanović wrote two chapters: Chapter 11: Orthogonal
polynomials on the real line, and Chapter 23: Computer algorithms and software
packages, showing Walter’s scientific work in these areas. At the end of 2018, Milo-
vanović and his associate Spalević organized an international symposium ACTA
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2017: Approximation and Computation – Theory and Applications at
the Serbian Academy of Sciences and Arts in Belgrade on the occasion of the
90th anniversary of Walter Gautschi with a large number of prominent scientists
from around the world. On the same occasion, in the spring of the following
year, Milovanović was one of the three plenary lecturers at Purdue Confer-
ence on Scientific Computing and Approximation (March 30–31, 2018),
organized at the Department of Computer Science at Purdue University, IN, USA
(https://www.cs.purdue.edu/sca/).

Figure 3: Purdue Conference (2018): Nick Higham, Alex Pothen, W. Gautschi,
GVM (left); Ron Devore and GVM (right)

In 2018 Gautschi and Milovanović published an interesting paper in the jour-
nal Electron. Trans. Numer. Anal. (ETNA) on Binet-type orthogonal polynomials
and their zeros, and very recently they completed a work on orthogonal polyno-
mials relative to a Marchenko-Pastur probability measure, which was introduced
in 1967 by the Ukrainian mathematicians Vladimir Alexandrovich Marchenko and
Leonid Andreevich Pastur, working on the asymptotic theory of large random ma-
trices. Gautschi and Milovanović have introduced two-parameter generalization
and provided an efficient algorithm for constructing the corresponding orthogonal
polynomials, as well as the coefficients in their three-term recurrence relations. In
special cases, these orthogonal polynomials are identified in terms of Chebyshev
polynomials of all four kinds and explicit expressions for all coefficients are derived.

In the next sections, we mention a few fields where most important contribu-
tions by GVM lie.

1. GVM AND POLYNOMIALS

The crowning achievement of GVM in this field is his extensive monograph
(written jointly with D.S. Mitrinović and Th. M. Rassias) “Topics in Polynomi-
als: Extremal Problems, Inequalities, Zeros”, World Scientific, Singapore, 1994,
XIV+822 pp. This is a famous work, called by many the “Bible of Polynomials”.
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Th.M. Rassias, D.S. Mitrinović and G.V. Milovanović (Belgrade, 1988)

1.1. Classical orthogonal polynomials

Let Pn be the set of all algebraic polynomials of degree not exceeding n. Define
the norms

||f ||∞ := max
−16t61

|f(t)| and ||f ||r :=

(∫ ∞
−∞
|f(t)|rdλ(t)

)1/r

, r > 1,

where dλ(t) is a given non-negative measure on the real line (with compact support
or otherwise), for which all the moments

µk :=

∫ ∞
−∞

tk dλ(t), k = 0, 1, . . . ,

exist and µ0 > 0. When r = 2 we have the norm

||f ||2 =

(∫ ∞
−∞
|f(t)|2 dλ(t)

)1/2

,

and then the inner product is defined by (f, g) :=
∫∞
−∞ f(t)g(t) dλ(t). A standard

case of orthogonal polynomials is when dλ(t) = w(t)dt, where w(t) is non-negative,
all its moments exist and µ0 > 0. An important case are the classical orthogonal
polynomials on an interval of orthogonality (a, b) ∈ R. One can take the following
intervals:

(a, b) = (−1, 1), (0,+∞) or (−∞, +∞)

with the inner product

(f, g) =

∫ b

a

f(t)g(t)w(t) dt.
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Orthogonal polynomials {Qn(t)} on (a, b) with this inner product are called classical
orthogonal polynomials if w(t) satisfies the differential equation

d

dt

(
A(t)w(t)

)
= B(t),

where B is a polynomial of the first degree and

A(t) =


1− t2, if (a, b) = (−1, 1),

t, if (a, b) = (0,∞),

1, if (a, b) = (−∞,∞).

The classical orthogonal polynomial Qn(t) is a solution of A(t)y′′+B(t)y′+λny = 0
with an explicit constant λn.

1.2. Extremal problems of Markov-Bernstein type for poly-
nomials

There are many results on extremal problems and inequalities for the class Pn of
all algebraic polynomials of degree at most n. A. A. Markov (1889) solved the
extremal problem of determining

An = sup
P∈Pn

||P ′||∞
||P ||∞

.

The best constant is An = n2 and the extremal polynomial is P ∗(t) = cTn(t), where
Tn(t) = cos(n arc cos t) is the Chebyshev polynomial of the first kind of degree n
and c is an arbitrary constant, alternatively An = T ′n(1),

||P ′||∞ 6 n2||P ||∞ (P ∈ Pn).

V. Markov (half brother of A. Markov) in 1892 proved that

||P (k)||∞ 6 T (k)
n (1)||P ||∞ (P ∈ Pn),

and Bernstein in 1912 proved that

||P ′||∞ 6 n||P ||
(
||f || = max

|z|61
|f(z)|, P ∈ Pn

)
.

When combined these results yield

(1) |P ′(t)| 6 min

{
n2,

n√
1− t2

}
(−1 6 t 6 1).

Excluding only certain particular cases, the best constantAn(k, p) in a general
Markov type inequality

||P (k)||p 6 An(k, p)||P ||p (1 ≤ k ≤ n)
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in Lp-norm (p > 1) is still not known, even for p = 2 and w(t) = 1 on [−1, 1].
The case p = 2 was independently investigated by Dörfler (1987) and GVM (1987).
GVM obtained the best constant in terms of eigenvalues of a five diagonal matrix
and reduced it to two sequences of some orthogonal polynomials.

Guessab and Milovanović (1994) considered a weighted L2-analogue of Bern-
stein’s inequality which can be stated as

||
√

1− t2 P ′(t)||∞ 6 n||P ||∞.

Using the norm ||f ||2 = (f, f) with a classical weight w(t) they determined the best
constant Cn,m(w) (1 6 m 6 n) in the inequality

(2) ||Am/2P (m)|| 6 Cn,m(w)||P ||,

where A is defined before. Namely for all polynomials P ∈ P the inequality (2)
holds true, with the best constant

Cn,m(w) =
√
λn,0λn,1 · · ·λn,m−1,

where λn,k = −(n − k) (1/2 · (m+ k − 1)A′′(0) +B′(0)). Equality holds in (2) if
and only if P is a multiple of the classical polynomial Qn(t) orthogonal with respect
to the weight function w(t).

Agarwal and Milovanović (1991) proved that, for all polynomials P ∈ P,(
2λn +B′(0)

)
||
√
AP ′||2 6 λ2

n||P ||2 + ||AP ′′||2,

with equality again iff P is a multiple of the classical polynomial Qn(t) orthogonal
with respect to the weight function w(t). Here, λn = λn,0.

Extremal problems of Markov-Bernstein type and corresponding inequali-
ties have recently attracted the interest of GVM, who jointly with his colleagues
Narendra Govil and Robert Gardner is currently working on the completion of a
monograph on this subject which is to be published by Elsevier.

1.2.1. L2–inequalities with Laguerre measure for nonnegative polynomi-
als

Varma (1981) investigated the problem of determining the best constant Cn(α) in
the L2–inequality

||P ′||2 6 Cn(α)||P ||2

for polynomials with nonnegative coefficients, with respect to the generalized La-
guerre weight function w(t) = tαe−t (α > −1) on [0, ∞ ). If Pn is an algebraic
polynomial of degree n with nonnegative coefficients, then for α > 1

2 (
√

5−1) Varma
proved that∫ ∞

0

(P ′n(t))2w(t) dt 6
n2

(2n+ α)(2n+ α− 1)

∫ ∞
0

(Pn(t))2w(t) dt.
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The equality holds for Pn(t) = tn. For 0 6 α 6 1/2

(3)

∫ ∞
0

(P ′n(t))2w(t) dt 6
1

(2 + α)(1 + α)

∫ ∞
0

(Pn(t))2w(t) dt.

Moreover (3) is the best possible in the sense that for Pn(t) = tn+λt the expression
on the left-hand side of (3) can be made arbitrarily close to the one on the right-
hand side if λ is sufficienlty large. The ranges α < 0 and 1/2 < α < 1/2·(

√
5−1) are

not covered by Varma’s results. This gap was filled by GVM (1985). He determined

(4) Cn(α) = sup
P∈Wn

||P ′||2

||P ||2

for all α ∈ (−1, ∞), where

Wn :=

{
P

∣∣∣∣ P (t) =
n∑
ν=0

aνt
ν , a0 > 0, a1 > 0, . . . , an−1 > 0, an > 0

}
.

There are several other results obtained by GVM, including extremal prob-
lems for higher derivatives, other weight functions, as well as dirrerent metrics.

1.2.2. Extremal problems for the Lorentz class of polynomials

Extremal problems for the Lorentz class of polynomials with respect to the Jacobi
weight w(t) = (1 − t)α(1 + t)β , α, β > −1, were investigated by Milovanović and
Petković (1988). Let Ln be the Lorentz class of polynomials

P (t) :=
n∑
ν=0

bν(1− t)ν(1 + t)n−ν (bν > 0 for ν = 0, 1, . . . , n).

In their work they determined the best constant C
(k)
n (α, β) := sup ||P ′||2/||P ||2,

where the supremum is over the polynomials from Ln for which P (i−1)(±1) = 0 for
i = 1, . . . , k. A particular result was already obtained by Erdős and Varma (1986).

1.3. Orthogonal polynomials on radial rays

Milovanović (1997, 2002) studied orthogonal polynomials on radial rays in the com-
plex plane and presented several applications of his results. Let M ∈ N and

as > 0, s = 1, 2, . . . , M, 0 6 θ1 < θ2 < · · · < θM < 2π.

Consider points zs = asεs, εs = eiθs (s = 1, 2, . . . ,M) and define the inner
product

(f, g) :=
M∑
s=1

e−iθs

∫
`s

f(z)g(z) |ws(z)| dz,
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Figure 4: The rays in the complex plane (M = 6)

where `s are the radial rays in the complex plane which connect the origin and the
points zs, while ws(z) are suitable complex weights. The case M = 6 is shown in
Fig. 4. Precisely, ωs(x) = |ws(z)| = |ws(xεs)| are weight functions on (0, as). One
can write this as

(f, g) :=

M∑
s=1

∫ as

0

f(xεs)g(xεs)ωs(x) dx,

and for M = 2, θ1 = 0, θ2 = π,

(f, g) =

∫ a1

0

f(x)g(x)ω1(x) dx+

∫ a2

0

f(−x)g(−x)ω2(x) dx,

that is,

(f, g) =

∫ b

a

f(x)g(x)ω(x) dx

with a = −a2, b = a1 and

ω(x) =

{
ω1(x), if 0 < x < b,

ω2(−x), if a < x < 0.

GVM proved the existence and uniqueness of orthogonal polynomials on radial
rays πN (z) (N = 0, 1, 2, . . .). He considered the numerical construction of these
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polynomials, recurrence relations, connections with standard polynomials orthog-
onal on R, as well as many other properties, including some interesting classes of
orthogonal polynomials with rays of equal lengths, distributed equidistantly in the
complex plane, and with same weights on the rays.

In the symmetric case with even numbers of rays (M = 2m), GVM obtained
analytic results for the recurrence coefficients for all classical weight functions (Ja-
cobi, generalized Laguerre, Hermite). In the simple symmetric (Legendre) case
with four rays (M = 4) and

(f, g) =

∫ 1

0

[
f(x)g(x) + f(ix)g(ix) + f(−x)g(−x) + f(−ix)g(−ix)

]
dx,

he proved the recurrence relation

πN+2(z) = z2πN (z)− bNπN−2(z), N ≥ 2; πN (z) = zN , N ≤ 3,

where the coefficient bN (N = 4n+ ν; n = [N/4]) is given by

b4n+ν =


16n2

(8n+ 2ν − 3)(8n+ 2ν + 1)
if ν = 0, 1,

(4n+ 2ν − 3)2

(8n+ 2ν − 3)(8n+ 2ν + 1)
if ν = 2, 3.

In the general case, using some kind of the discretized Stieltjes-Gautschi procedure,
GVM numerically constructed the coefficients βkj in the relation

πk(z) = zπk−1(z)−
k∑
j=1

βkjπj−1(z), βkj =
(zπk−1, πj−1)

(πj−1, πj−1)
(1 ≤ j ≤ k).

Regarding the zero distribution of πN (z), Milovanović proved that all the
zeros of the orthogonal polynomial πN (z) lie in the convex hull of the rays L =
`1 ∪ `2 ∪ · · · ∪ `M .

Among several examples we mention here one of his interesting examples for
asymmetric case, with five rays (M = 5), defined by points in the complex plane
(2018): z1 = 6, z2 = 5e9πi/14, z3 = 2e4πi/5, z4 = 5e6πi/5, z5 = 5e7πi/4, with weight
functions transformed to (0, 1): ω1(x) = 1 (Legendre weight), ω2(x) = 1/

√
x(1− x)

(Chebyshev weight of the first kind), ω3(x) =
√
x(1− x) Chebyshev weight of

the second kind), ω4(x) =
√
x/(1− x) (Chebyshev weight of the fourth kind),

ω5(x) =
√

(1− x)/x (Chebyshev weight of the third kind), respectively.

Zeros of πN (z) for N = 20 and N = 100 are presented in Figure 5.

Following Ivić [1] we mention here two of Milovanović’s applications of these
polynomials in Physics and Electrostatic. The first one is a physical problem con-
nected with a non-linear diffusion equation, where the equations for the dispersion
of a buoyant contaminant can be approximated by the Erdogan-Chatwin equation

∂tc = ∂y

{[
D0 +

(
∂yc
)2
D2

]
∂yc
}
,
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Figure 5: Zeros of πN (z) for N = 20 (left) and N = 100 (right)

where D0 is the dispersion coefficient appropriate for neutrally-buoyant contam-
inants, and D2 represents the increased rate of dispersion associated with the
buoyancy-driven currents. Smith (1982) obtained analytic expressions for the sim-
ilarity solutions of this equation in the limit of strong non-linearity (D0 = 0), i.e.,

∂tc = D2∂y

[(
∂yc
)3]

,

both for a concentration jump and for a finite discharge. He also investigated the
asymptotic stability of these solutions. It is interesting that the stability analysis
for the finite discharge involves a family of orthogonal polynomials YN (z), such that

(1− z4)Y ′′N − 6z3Y ′N +N(N + 5)z2YN = 0.

The degree N is restricted to the values 0, 1, 4, 5, 8, 9, . . ., so that the first few
(monic) polynomials are:

1, z, z4 − 1

3
, z5 − 5

11
z, z8 − 14

17
z4 +

21

221
, z9 − 18

19
z5 +

3

19
z, . . . .

These polynomials are a special case of Milovanović’s polynomials orthogonal
on the radial rays in the complex plane for M = 4 and ω(x) = (1− x4)1/2x2.

The second application is an electrostatic interpretation of the zeros of poly-
nomials πN (z). It is a nontrivial generalization of the first electrostatic interpre-
tation of the zeros of Jacobi polynomials given by Stieltjes in 1885. Namely, an
electrostatic system of M positive point charges all of strength q, which are placed
at fixed points ξs given by

ξs = exp
(2(s− 1)πi

M

)
(s = 1, 2, . . . ,M)
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and a charge of strength p (> −(M−1)/2) at the origin z = 0, as well as N positive
free unit charges, positioned at z1, z2, . . ., zN , is in electrostatic equilibrium if these
points zk are zeros of the polynomial πN (z) orthogonal with respect to the inner
product

(f, g) =

∫ 1

0

(
M∑
s=1

f
(
xes
)
g
(
xes
))

ω(x) dx,

with the weight function ω(x) = (1 − xM )2q−1xM+2(p−1). This polynomial can be
expressed in terms of the monic Jacobi polynomials

πN (z) = 2−nzν P̂ (2q−1,(2p+2ν−1)/M)
n (2zM − 1),

where N = Mn+ ν, n = [N/M ].

This area has recently been in the focus of Milovanović’s interest again.

2. GVM AND INTERPOLATION PROCESSES AND INTEGRAL
EQUATIONS

Interpolation of functions is one of the basic parts of Approximation Theory.
There are many books on approximation theory, yet only a few of them are ex-
clusively devoted to interpolation processes. The classical books on interpolation
address numerous negative results, i.e., results on divergent interpolation processes,
usually constructed over some equidistant system of nodes. In this section, follow-
ing [1], we give an account of the recent comprehensive monograph “Interpolation
Processes: Basic Theory and Applications” (Springer, 2008), written jointly by
GVM and Giuseppe Mastroianni. This work is a crowning achievement of GVM’s
work in this expanding field. This new book of GVM and Mastroianni deals mainly
with new results on convergent interpolation processes in uniform norm, for alge-
braic and trigonometric polynomials, not yet published in other textbooks and
monographs on Approximation Theory and Numerical Mathematics. Basic tools
in this field (orthogonal polynomials, moduli of smoothness, K-functionals, etc.),
as well as some selected applications in numerical integration, integral equations,
moment-preserving approximation and summation of slowly convergent series are
also given.

The first chapter provides an account of basic facts on approximation by
algebraic and trigonometric polynomials introducing the most important concepts
regarding the approximation of functions.

The second chapter of this nice book is devoted to orthogonal polynomials on
the real line and the weighted polynomial approximation. For polynomials orthog-
onal on the real line the authors give the basic properties and introduce and discuss
the associated polynomials, functions of the second kind, Stieltjes polynomials, as
well as the Christoffel functions and numbers. The classical orthogonal polynomials
as the most important class of orthogonal polynomials on the real line are treated
in detail, as well as new results on the so-called nonclassical orthogonal polynomi-
als, including methods for their numerical construction. Introducing the weighted
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functional spaces, moduli of smoothness and K-functionals, the weighted best poly-
nomial approximations on (−1, 1), (0,+∞) and (−∞,+∞) are also treated, as well
as the weighted polynomial approximation of functions having interior isolated sin-
gularities.

Trigonometric approximation is considered in Chapter 3. Approximations
by sums of Fourier and Fejér and de la Vallée Poussin means are presented. Their
discrete versions and the Lagrange trigonometric operator are also investigated. As
a basic tool for studying approximating properties of the Lagrange and de la Vallée
Poussin operators the authors consider the so-called Marcinkiewicz inequalities.
Besides the uniform approximation they also investigate the Lagrange interpolation
error in the Lp-norm (1 < p < +∞) and give some estimates in the L1-Sobolev
norm, including some weighted versions.

Chapter 4 treats algebraic interpolation processes {Ln(X )}n∈N in the uni-
form norm, starting with the so-called optimal system of nodes X , which provides
Lebesgue constants of order log n and the convergence of the corresponding in-
terpolation processes. Moreover, the error of these approximations is near to the
error of the best uniform approximation. Beside two classical examples of the

well-known optimal systems of nodes (zeros of the Jacobi polynomials P
(α,β)
n (x)

(−1 < α, β 6 −1/2) and the so-called Clenshaw’s abscissas), they introduce more
general results for constructing interpolation processes at nodes with an arc sine
distribution having Lebesgue constants of order logn.

The final chapter provides some selected applications in numerical analysis.
In the first section on quadrature formulae they present some special Newton-Cotes
rules, the Gauss-Christoffel, Gauss-Radau and Gauss-Lobatto quadratures, the so-
called product integration rules, as well as a method for the numerical integration of
periodic functions on the real line with respect to a rational weight function. Also,
they include the error estimates of Gaussian rules for some classes of functions.
The second section is devoted to methods for solving the Fredholm integral equa-
tions of the second kind. The methods are based on the so-called Approximation
and Polynomial Interpolation Theory and lead to the construction of polynomial
sequences converging to the exact solutions in some weighted uniform norms. Also,
the authors consider some kinds of moment-preserving approximations by polyno-
mials and splines, as well as two recent methods of summation of slowly convergent
series based on integral representations of series and an application of Gaussian
quadratures. We will write about these methods in more detail in the next section.

2.1. Fredholm integral equations of the second kind

Some basic facts on integral equations, in particular for Fredholm integral equations
of the second kind (FK2), have been presented in the last chapter of the previous
mentioned monograph “Interpolation Processes: Basic Theory and Applications”
by Mastroianni and Milovanović (2008). In some classifications one can find the
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so-called Fredholm integral equations of the third kind (FK3),

h(y)f(y) + µ

∫
A

k(x, y)f(x)w(x) dx = g(y), y ∈ A,

where k(x, y) is the kernel, w is a given weight function, g and h are known func-
tions, µ ∈ R is a parameter, and f is an unknown function.

If h(y) 6= 0 on A, then after dividing FK3 by h and absorbing it into k and
g, FK3 reduces to FK2

(5) f(y) + µ

∫
A

k(x, y)f(x)w(x) dx = g(y), y ∈ A.

However, if h(y) = 0 on A, FK3 reduces to FK1

µ

∫
A

k(x, y)f(x)w(x) dx = g(y), y ∈ A.

In the literature many numerical methods have been proposed for solving
integral equations. Sometimes, they are developed for specific type of kernels. In
his research GVM, jointly with Mastroianni and sometimes with his associates,
mainly investigated numerical methods for computing approximate solutions of
some classes of Fredholm integral equations of the second kind. Such methods
are based on Approximation and Polynomial Interpolation Theory and lead to the
construction of a polynomial sequence converging to the exact solution in some
weighted uniform norm. However, the construction of such a sequence requires
the solution of systems of linear equations that might be ill-conditioned. In their
approach, special attention is paid to providing well-conditioned systems of linear
equations (except for the usual log factor) for Fredholm integral equations of the
second kind (FK2) given by (5), as well as for its two-dimensional analogous (2013)

(6) f(y) + µ

∫
D

k(x,y)f(x)w(x)dx = g(y), y ∈ D.

For example, in the cases when A = [−1, 1] and A = [0,+∞), with w(x) =

(1 − x)α(1 + x)β , α, β > −1, and w(x) = xαe−x
β

, α > −1, β > 1/2, respec-
tively, Mastroianni and GVM (2009) considered the corresponding Fredholm in-
tegral equations (5) in the spaces of continuous functions equipped with certain
uniform weighted norms. Assuming the continuity of the kernel k(x, y) they used
Nyström methods and proved the stability, the convergence, as well as the well-
conditioning of the corresponding matrices. The last property is derived only from
the continuity of the kernel and not from its special form. Error estimates and
numerical tests are also included.

An interesting class of Fredholm integral equations of the second kind (5),
with respect to the exponential weight function w(x) = exp(−(x−α + xβ)), α > 0,
β > 1, on A = (0,+∞), was considered by Mastroianni, GVM and Notarangelo
(2017). The kernel k(x, y) and the function g(x) in such kind of equations can
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grow exponentially with respect to their arguments, when they approach to 0+

and/or +∞. The authors proposed a simple and suitable Nyström-type method
for solving these equations. The study of the stability and the convergence of this
numerical method is based on the results on weighted polynomial approximation
and “truncated” Gaussian rules presented in earlier papers of these authors. A
priori error estimates are derived and some numerical examples are presented, as
well as a comparison with other Nyström methods.

3. GVM AND QUADRATURE PROCESSES

Numerical integration begins with Newton’s idea (1676) for finding the weight
coefficients A1, A2, . . ., An in the so-called n-point quadrature formula

(7) I(f) =

∫ b

a

f(t) dt ≈ Qn(f) = A1f(τ1) +A2f(τ2) + · · ·+Anf(τn),

for given (usually equidistant) n points (nodes) τ1, τ2, . . . , τn, such that (7) is exact
for all algebraic polynomials of degree of precision d at most n − 1, i.e., for each
f ∈ Pn−1. We write d = d(Qn) ≥ n− 1.

Starting from the work of Newton and Cotes and combining it with his earlier
work on the hypergeometric series, Gauss (1814) develops his famous method of
numerical integration which dramatically improved the earlier method of Newton
and Cotes. Today these formulae with maximal degree of precision d are known
as the Gauss-Christoffel quadrature formulae. It has been proven in the meanwhile
that the nodes τk, k = 1, 2, . . . , n, are zeros of the polynomial of degree n, which is
orthogonal to Pn−1 with respect to a given measure dµ(x).

3.1. Construction of Gaussian quadratures

Passing to modern theory, we mention some non-classical measures: dµ(t) = w(t) dt
for which the recursion coefficients αk(dµ), βk(dµ), k = 0, 1, . . . , n− 1, in the fun-
damental three-term recurrence relation for the corresponding (monic) orthogonal
polynomials,

(8) πk+1(t) = (t− αk(dµ))πk(t)− βk(dµ)πk−1(t), k = 0, 1, . . . ,

with π0(t) = 1 and π−1(t) = 0, have been provided in the literature and used in
the construction of the Gaussian quadratures,∫

R
f(t)w(t)dt =

n∑
k=1

Akf(τk) +Rn(f),

using the Golub-Welsch algorithm (1969). For example, such well-known weight
functions are:

1. One-sided Hermite weight w(t) = exp(−t2) on [0, c], 0 < c 6 +∞.
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2. Logarithmic weight w(t) = tα log(1/t), α > −1 on (0, 1).

3. Airy weight w(t) = exp(−t3/3) on (0,+∞).

4. Reciprocal gamma function w(t) = 1/Γ(t) on (0,+∞).

5. Bose–Einstein’s and Fermi’s weight functions on (0,+∞),

w1(t) = ε(t) =
t

et − 1
and w2(t) = ϕ(t) =

1

et + 1
.

For w1(t), w2(t), w3(t) = ε(t)2 and w4(t) = ϕ(t)2, Gautschi and Milovanović
(1985) performed the first systematic investigation on the derivation of quadrature
rules with high-precision, determined the recursion coefficients αk and βk, and
presented an application of the corresponding Gauss-Christoffel quadratures to the
summation of slowly convergent series, whose general term is expressible in terms of
a Laplace transform or its derivative (the method of Laplace transform). Moreover,
integrals with these weights frequently occur in connection with the evaluation, in
the independent particle approximation, of thermodynamic variables for solid state
physics problems both for boson systems (which associate measures dµ(t) = ε(t)dt)
and for fermion systems (which associate measures dµ(t) = ϕ(t)dt).

6. The hyperbolic weights on (0,+∞),

(9) w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
.

The recursion coefficients αk, βk, for k < 40 were obtained by Milovanović (1995).
The main application of these quadratures is the summation of slowly convergent
series, with the general term ak = f(k). Such a method known as the method of
contour integration was given by GVM (1995).

Recent progress in symbolic computation and variable–precision arithmetic
now makes it possible to generate the coefficients αk and βk in the three–term re-
currence relation (8) directly by using the original Chebyshev method of moments in
sufficiently high precision or even in symbolic form. Respectively symbolic/variable–
precision software for orthogonal polynomials is available: Gautschi’s package SOPQ
in Matlab and the Mathematica package OrthogonalPolynomials, developed
by Cvetković and Milovanović (2004). Thus, all that is required is a procedure for
symbolic or numerical calculation of the moments in variable–precision arithmetic.
Such an approach enables us to overcome the numerical instability.

For example, GVM and Cvetković (2012) determined the moments for the
previous weight functions.

The moments of the Bose-Einstein’s weight function can be calculated exactly

µk(ε) =

∫ +∞

0

tkε(t)dt = (k + 1)!ζ(k + 2), k ∈ N0,
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where the zeta function can be evaluated to arbitrary numerical precision, while
the moments of the Fermi-Dirac function as

µk(ϕ) =

∫ +∞

0

tk

et + 1
dt =

{
log 2, k = 0,

(1− 2−k)k!ζ(k + 1), k > 0.

A general problem with the weight function w(t) = [ε(t)]r, where r ∈ N, can be

also considered in a similar way. In that case, the corresponding moments µ
(r)
k (ε),

r > 1, can be obtained recursively by

µ
(r)
k (ε) =

k + r

r − 1
µ

(r−1)
k (ε)− µ(r−1)

k+1 (ε).

For example, µ
(2)
k (ε) = (k + 2)![ζ(k + 2)− ζ(k + 3)], k ∈ N0

The moments for hyperbolic functions (9) are

(10) µ
(1)
k =

∫ +∞

0

tkw1(t)dt =


1, k = 0,

log 2, k = 1,

Ckζ(k), k ≥ 2,

where Ck = (2k−1 − 1)k!/4k−1, and

µ
(2)
k =

∫ +∞

0

tkw2(t)dt =


1, k = 0,

k
(π

2

)k
|Ek−1|, k (odd) ≥ 1,

2k

4k
(
ψ(k−1)(1/4)− ψ(k−1)(3/4)

)
, k (even) ≥ 2,

where Ek are Euler’s numbers, defined by the generating function

2

et + e−t
=

+∞∑
k=0

Ek
tk

k!
,

and ψ(z) is the so–called digamma function, i.e., the logarithmic derivative of the
gamma function, given by ψ(z) = Γ′(z)/Γ(z).

7. The weight w(α,β)(t) = exp(−t−α − tβ), α, β > 0, on (0,+∞). In the case
α = β, the moments are

µ
(β,β)
k =

∫ +∞

0

tkw(β,β)(t) dt =
2

β
K(k+1)/β(2), k ∈ N0,

where Kr(z) is the modified Bessel function of the second kind. In the Mathe-
matica package this function is implemented as BesselK[r,z], and its value can
be evaluated with an arbitrary precision. GVM (2015) considered also the more
complicated cases when α 6= β, and obtained, that in some cases for integer (or
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rational) values of parameters, the moments can be expressed in terms of the Meijer
G–function, e.g.,

µ
(1,2)
k =

1

2k+2
√
π
G3,1

2,4

(
1

4

∣∣∣∣ − ;−
−k+1

2 ,−k2 , 0;−

)
, k ≥ 0;

µ
(2,1)
k =

2k√
π
G3,1

2,4

(
1

4

∣∣∣∣ − ;−
0, k+1

2 , k+2
2 ;−

)
, k ≥ 0;

µ
(3,1)
k =

3k+1/2

2π
G4,1

2,5

(
1

27

∣∣∣∣ − ;−
0, k+1

3 , k+2
3 , k+3

3 ;−

)
, k ≥ 0;

µ
(1/2,3/2)
k =

1

32k+5/2π
G4,1

2,5

(
1

27

∣∣∣∣ − ;−
− 2k+2

3 ,− 2k+1
3 ,− 2k

3 , 0;−

)
, k ≥ 0.

In some cases GVM obtained the recursive coefficients αk and βk in symbolic
form, very often for some exotic weights.

8. The Stieltjes-Wigert weight function

w(x) :=


1√

2πσx
exp
[
− log2(x)

2σ2

]
, if x > 0,

0, if x ≤ 0,

has the moments given by

µk =

∫ +∞

0

xkw(x)dx = qk
2/2, k ∈ N0 (q = eσ

2

).

GVM (2015) obtained the coefficients in the three-term recurrence relation in an
analytic form,

αk = qk−1/2
(
qk+1 + qk − 1

)
; β0 = 1, βk = q3k−2

(
qk − 1

)
, k = 0, 1, . . . .

8. For the weight function on R given by

w(x) =
x2e−πx

(1− e−πx)2
=
( x

2 sinh(πx/2)

)2

=
1

4
[wA(x/2)]2,

where wA(x) is the Abel weight on R, GVM (2015) determined the moments in
terms of Bernoulli numbers

µk =

 0, k is odd,

(−1)k/22k+2Bk+2

π
, k is even,

and then the recurrence coefficients

β0 = µ0 =
2

3π
, βk =

k(k + 1)2(k + 2)

(2k + 1)(2k + 3)
, k ∈ N.
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9. Similarly, for the weight function on R, given by

w(x) = x2 eπx/2 + e−πx/2

(eπx/2 − e−πx/2)2
= 2 cosh

πx

2

( x

2 sinh(πx/2)

)2

,

GVM (2015) obtained the moments

µk =


0, k is odd,

2k+3

π
(2k+2 − 1)|Bk+2|, k is even,

and then the recurrence coefficients

β0 = µ0 =
4

π
, βk =

{
(k + 1)2, k is odd,

k(k + 2), k is even.

10. Recently GVM (Numer. Algorithms, 2017) has considered symbolic-
numeric computation of orthogonal polynomials and Gaussian quadratures with
respect to the cardinal B-spline.

3.2. Moment-preserving spline approximation and quadra-
tures

An interesting application of Gaussian–type formulas concerns the so-called moment-
preserving spline approximation of a given function f on [0,+∞) (or on a finite
interval, e.g. [0, 1]). Such kind of problems appeared in Physics, for example in
the approximation of the Maxwell velocity distribution by a linear combination of
Dirac δ-functions or in the corresponding approximation by a linear combination
of Heaviside step functions. In order to get a stable method for this kind of ap-
proximation, Gautschi and Milovanović (1986) found new applications of Gaussian
type of quadratures.

Let f be a given function defined on the positive real line R+ = [0,+∞) and
sn,m be a spline of the form

sn,m(t) =
n∑
ν=1

aν(tν − t)m+ , 0 6 t < +∞,

where the plus sign on the right is the cutoff symbol, meaning that u+ = u if
u > 0 and u+ = 0 if u 6 0, 0 < t1 < · · · < tn, aν ∈ R. They considered the
moment-preserving spline approximation f(t) ≈ sn,m(t) such that∫ +∞

0

sn,m(t)tjdV =

∫ +∞

0

f(t)tjdV, j = 0, 1, . . . , 2n− 1,

where dV is the volume element depending on the geometry of the problem. In some
concrete applications in Physics, up to unimportant numerical factors, dV = td−1dt,
where d = 1, 2, 3 for rectilinear, cylindric, and spherical geometry, respectively.
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For fixed n,m ∈ N, d ∈ {1, 2, 3} and certain conditions on f they proved
(1986) that the spline function sn,m exists uniquely if and only if the measure

dλm(t) =
(−1)m+1

m!
tm+df (m+1)(t)dt on [0,+∞)

admits an n-point Gauss-Christoffel quadrature formula∫ +∞

0

g(x) dλm(x) =
n∑
ν=1

λ(n)
ν g(τ (n)

ν ) +Rn(g; dλm)

with distinct positive nodes τ
(n)
ν , where Rn(g; dλm) = 0 for all g ∈ P2n−1.

Approximation on a compact interval was considered by Frontini, Gautschi
and Milovanović (1987).

3.3. Summation of slowly convergent series

There are many methods for fast summation of slowly convergent series. GVM
mainly worked on the so-called summation/integration procedures. The basic idea
in such procedures is to transform the sum to an integral with respect to some
weight function on R (or R+), and then to approximate this integral by a finite
quadrature sum,

+∞∑
k=1

(±1)kf(k) =

∫
R
g(x)w(x)dx ≈

N∑
ν=1

Aνg(xν),

where the function g is connected with f in some way. Thus, these procedures need
two steps:

(a) Methods of transformation
∑
⇒

∫
;

(b) Construction of Gaussian quadratures∫
R
g(x)w(x)dx =

N∑
ν=1

Aνg(xν) +Rn(f),

where w is a non-classical weight.

3.3.1. Method of Laplace transform

In this part we mention only the basic idea of the method of Laplace transform.

Suppose that the general term of series is expressible in terms of the Laplace
transform, or its derivative, of a known function.

Let f(s) =

∫ +∞

0

e−stg(t)dt, Re s ≥ 1. Then

T =
+∞∑
k=1

f(k) =
+∞∑
k=1

∫ +∞

0

e−ktg(t)dt =

∫ +∞

0

(
+∞∑
k=1

e−kt

)
g(t)dt,
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i.e.,

T =

∫ +∞

0

e−t

1− e−t
g(t)dt =

∫ +∞

0

t

et − 1

g(t)

t
dt.

Thus, the summation of series is now transformed to an integration problem
with respect to the Bose-Einstein weight function ε(t) = t/(et − 1) on R+, which
is considered by Gautschi and GVM (1985) (se also Subsection 3.1).

Similarly, for “alternating” series, we have

(11) S =
+∞∑
k=1

(−1)kf(k) =

∫ +∞

0

1

et + 1
(−g(t))dt,

where the Fermi-Dirac weight function on R+, ϕ(t) = 1/(et + 1), appears on the
right-hand side in (11).

3.3.2. Hyperbolic weight functions and
∑
⇒
∫

transformation

In this part we present an idea of GVM from 1994 on an alternative summa-
tion/integration procedure for the series

(12) Tm,n =
n∑

k=m

f(k) and Sm,n =
n∑

k=m

(−1)kf(k),

where m,n ∈ Z (m < n ≤ +∞) and the function f is holomorphic in the region

(13)
{
z ∈ C

∣∣ Re z ≥ α, m− 1 < α < m
}
.

The method of transformation “sum” to “integral” requires the indefinite integral
F of f chosen so as to satisfy the following decay properties,

(C1) F is a holomorphic function in the region (13);

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫
R

e−c|t|
∣∣F (x+ it/π)

∣∣dt = 0,

where c = 2 or c = 1, when we consider Tm,n or Sn,m, respectively.

Let m− 1 < α < m, n < β < n+ 1, δ > 0, and

G =
{
z ∈ C : α ≤ Re z ≤ β, |Im z| ≤ δ

π

}
.

Using contour integration of a product of functions z 7→ f(z)g(z) over the rectangle
Γ = ∂G in the complex plane, where g(z) = π/ tanπz and g(z) = π/ sinπz, by
Cauchy’s residue theorem, GVM obtained

Tm,n =
1

2πi

∮
Γ

f(z)
π

tanπz
dz and Sm,n =

1

2πi

∮
Γ

f(z)
π

sinπz
dz.
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After integration by parts, these formulas reduce to

Tm,n =
1

2πi

∮
Γ

( π

sinπz

)2

F (z)dz, Sm,n =
1

2πi

∮
Γ

( π

sinπz

)2

cosπz F (z)dz,

where F is an integral of f .

Finally, setting α = m− 1/2, β = n+ 1/2, and letting δ → +∞, under con-
ditions (C1), (C2), and (C3), the previous integrals over Γ reduce to the weighted
integrals over (0,+∞), which yield the transformations

(14)
+∞∑
k=m

f(k) =

∫ +∞

0

w1(t)Φ

(
m− 1

2
,
t

π

)
dt

and

(15)
+∞∑
k=m

(−1)kf(k) = (−1)m
∫ +∞

0

w2(t)Ψ

(
m− 1

2
,
t

π

)
dt,

where the weight functions are given by

(16) w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
,

respectively. Here F is an integral of f , as well as

Φ(x, y) = −1

2
[F (x+ iy) + F (x− iy)] = −ReF (x+ iy)

and

Ψ(x, y) =
1

2i
[F (x+ iy)− F (x− iy)] = ImF (x+ iy).

The second task is a numerical construction of Gaussian quadratures with
respect to the hyperbolic weights w1 and w2, defined in (16),

(17)

∫ +∞

0

g(t)ws(t)dt =
N∑
ν=1

ANν,sg(τNν,s) +RN,s(g) (s = 1, 2),

with weights ANν,s and nodes τNν,s, ν = 1, . . . , N (s = 1, 2), which are exact for all
g ∈ P2N−1, was solved by GVM (1994).

The moments of the hyperbolic weights w1 and w2 have been presented earlier
in Subsection 3.1. The convergence of the previous quadrature formulas (17) is very
fast for sufficiently regular integrands.

3.4. Quadratures with multiple nodes and error estimate

One may consider Quadratures with multiple nodes, where η1, . . . , ηm (η1 < · · · <
ηm) are given fixed (or prescribed) nodes, with multiplicities m1, . . . ,mm, and
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τ1, . . . , τn, with τ1 < · · · < τn, are free nodes, with given multiplicities n1, . . . , nn,
respectively. The quadrature formula is

(18) I(f) =

∫
R
f(t) dλ(t) ∼= Q(f),

where

(19) Q(f) =
n∑
ν=1

nν−1∑
i=0

Ai,νf
(i)(τν) +

m∑
ν=1

mν−1∑
i=0

Bi,νf
(i)(ην),

with an algebraic degree of exactness at least M + N − 1 where M =
∑m
ν=1mν

and N =
∑n
ν=1 nν . If m = 0 and the last quadrature formula is of Gaussian type,

i. e., it has the maximal degree of exactness N + n − 1 (nν are positive integers),
then it is called Chakalov-Popoviciu quadrature formula, and in the special case
(nν are equal positive integers) it is called Turán quadrature formula. It has been
proved (Stancu) that the Chakalov-Popoviciu quadrature formula is based on the
zeros of a σ-orthogonal, and the Turán quadrature formula is based on the zeros of
an s-orthogonal polynomial, respectively.

At the Third Conference on Numerical Methods and Approximation Theory
(Nǐs, 1987) GVM presented a stable method with quadratic convergence for numer-
ically constructing s-orogonal polynomials, whose zeros are nodes of Turán quadra-
tures. The basic idea of the method of numerically constructing s-orthogonal poly-
nomials with respect to the measure dµ(t) on the real line R is a reinterpretation of
the s-orthogonality in terms of implicitly defined standard orthogonality. Further
progress in this direction was made by Gautschi and Milovanović (1997). After
Milovanović’s survey (2001), where he established a connection between quadra-
tures, s and σ-orthogonality and moment-preserving approximation with defective
splines, the interest for this subject rapidly increased. A very efficient method for
constructing quadratures with multiple nodes was given recently by Milovanović,
Spalević and Cvetković (2004).

For Turán and Chakalov-Popoviciu quadrature formulas (with m = 0 in (19)),
including their Kronrod, Radau and Lobatto extensions, of integrands analytic on
the interior of a simple closed curve Γ in the complex plane encompassing the
interval [−1, 1], Milovanović and Spalević (jointly with their younger collaborators
Pranić and Pejčev) performed a detailed and rigorous analysis for effective error
estimates.

Therefore, let Γ be a simple closed curve in the complex plane encompassing
the interval [−1, 1] and let D be its interior. Here in (18), dλ(t) = w(t) dt and the
closed support is the interval [−1, 1]. Suppose f is a function that is analytic in D
and continuous on D. Taking any system of n distinct points {τ1, . . . , τn} in D (in
particular in (−1, 1)) and n positive integers n1, . . . , nn, the error in the Hermite
interpolating polynomial of f at a point t ∈ D (in particular in (−1, 1)) can be
expressed in the form (Gončarov (1954), Mysovskih (1969))

(20) rn(f ; t) = f(t)−
n∑
ν=1

nν−1∑
i=0

lν,if
(i)(τν) =

1

2πi

∮
Γ

f(z)Ωn(t)

(z − t)Ωn(z)
dz,
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where lν,i(t) are the fundamental functions of Hermite interpolation and

Ωn(z) =
n∏
ν=1

(z − τν)nν .

By multiplying (20) by the weight function w(t) and integrating in t over
(−1, 1) we get a contour integral representation for the remainder term Rn(f) in a
quadrature formula with multiple nodes:

(21) Rn(f) = I(f)−
n∑
ν=1

nν−1∑
i=0

Ai,νf
(i)(τν) =

1

2π i

∮
Γ

Kn(z;w)f(z) dz,

where now, the integral (18) has the form I(f) =
∫ 1

−1
f(t)w(t) dt,

Ai,ν =

∫ 1

−1

lν,i(t)w(t) dt

and the kernel Kn(z) = Kn(z;w) is given by

Kn(z;w) =
%n(z;w)

Ωn(z)
, %n(z;w) =

∫ 1

−1

Ωn(t)

z − t
w(t) dt, z ∈ C \ [−1, 1].

The integral representation (21) leads directly to the error estimate

(22) |Rn(f)| ≤ l(Γ)

2π

(
max
z∈Γ
|Kn(z)|

)(
max
z∈Γ
|f(z)|

)
,

where l(Γ) is the length of the contour Γ.

On the other hand, one can consider also the error bound:

(23) |Rn(f)| ≤ 1

2π

(∮
Γ

|Kn(z)| |dz|
)(

max
z∈Γ
|f(z)|

)
,

which is evidently stronger than (22) since∮
Γ

|Kn(z)| |dz| ≤ l(Γ)

(
max
z∈Γ
|Kn(z)|

)
.

In order to obtain the estimates (22) and (23) one needs to study the magni-
tude of |Kn(z)| on Γ or the quantity

Ln(Γ) :=
1

2π

∮
Γ

|Kn(z)| |dz|,

respectively.

A common choice for the contour Γ is one of the confocal ellipses with foci
at the points ∓1 and the sum of semi-axes ρ > 1,

Eρ =

{
z ∈ C : z =

1

2

(
ρeiθ + ρ−1e−iθ

)
, 0 ≤ θ < 2π

}
.
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For such Γ Milovanović and Spalević studied the estimates (22) and (23) (2003,
2005), including some that are based on the expansion of the error term Rn(f) in se-
ries, for the Gauss-Turán quadrature formulas (nν = 2s+1, ν = 1, 2, . . . , n; s ∈ N0)
when w is one of four generalized Chebyshev weight functions. These results were
generalisations of the analogous ones obtained for the standard Gauss quadratures
and their error estimates by Gautschi and Varga (1983, 1990) and Hunter (1995).
Milovanović and Spalević published on the subject a sequence of more than 10
papers in the period 2003-2010. In two of their papers (2005) and (2007) on the
subject, they use circles instead of ellipses. In 2013 they, jointly with Pejčev, solved
a conjecture posted in the paper from 2003, proving in that way a general error
bound based on expansion of the error term Rn(f) in the series, for the Gauss-Turán
quadrature formula with the Chebyshev weight function of the first kind.

In respect to the quadratures with multiple nodes, we mention here the recent
results by Milovanović and Spalević (2014, 2019). They continued with analyzing
quadrature formulas of high degree of precision for computing the Fourier coeffi-
cients in expansions of functions with respect to a system of orthogonal polynomi-
als, initiaded recently by Bojanov and Petrova (2009). Milovanović and Spalević
extend the results by Bojanov and Petrova. Construction of new Gaussian quadra-
ture formulas for the Fourier coefficients of a function, based on the values of the
function and its derivatives, is considered. Milovanović and Spalević proved the
existence and uniqueness of Kronrod extensions with multiple nodes of standard
Gaussian quadrature formulas with multiple nodes for several weight functions, in
order to construct some new generalizations of quadrature formulas for the Fourier
coefficients. For the quadrature formulas for the Fourier coefficients based on the
zeros of the corresponding orthogonal polynomials they construct Kronrod exten-
sions with multiple nodes and highest algebraic degree of precision. For this very
desirable kind of extensions there do not exist any results in the theory of standard
quadrature formulas. A numerically stable procedure for the construction of some
quadrature formulas with multiple nodes for Fourier coefficients has been proposed
recently by them jointly with R. Orive (2019). Finally, we mention a recent survey
paper by Milovanović, Pranić and Spalević (2019) dealing with new contributions
to the theory of Gaussian quadrature formulas with multiple nodes published after
2001, including numerical construction, error analysis, and applications. The first
part was published in “Numerical analysis 2000” by GVM.

3.5. Orthogonality with respect to a moment functional and
corresponding quadratures

In the previous sections the inner product was always positive definite provided
the existence of the corresponding orthogonal polynomials with real zeros in the
support of the measure. Such zeros appeared as the nodes of the Gaussian formulas.
However, there are more general concepts of orthogonality with respect to a given
linear moment functional L on the linear space P of all algebraic polynomials. Due
to linearity, the value of the linear functional L at every polynomial is known if the
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values of L are known at the set of all monomials, i.e., if we know L(xk) = µk, for
each k ∈ N0. In that case we can introduce a system of orthogonal polynomials
{πk}k∈N0

with respect to the functional L if for all nonnegative integers k and
n we have that πk(x) is a polynomial of degree k, L(πk(x)πn(x)) = 0, if k 6=
n, L(π2

n(x)) 6= 0.

3.5.1. Orthogonality on the semicircle and quadratures

Let w be a weight function which is positive and integrable on the open interval
(−1, 1), though possibly singular at the endpoints, and which can be extended to
a function w(z) holomorphic in the half disc D+ =

{
z ∈ C : |z| < 1, Im z > 0

}
.

Consider the following “inner product”:

(f, g) =

∫
Γ

f(z)g(z)w(z)(iz)−1dz =

∫ π

0

f
(
eiθ
)
g
(
eiθ
)
w
(
eiθ
)
dθ,

where Γ is the circular part of ∂D+ and all integrals are assumed to exist (possibly)
as appropriately defined improper integrals. The existence of the corresponding
orthogonal polynomials {πn}n∈N0 is not guaranteed.

The case w = 1 was considered by Gautschi and Milovanović (1986). The
existence and uniqueness of polynomials orthogonal on the unit semicircle were
proved.

A more general case of the complex weight was considered by Gautschi, Lan-
dau and Milovanović (1987). Under the condition Reµ0 = Re

∫ π
0
w
(
eiθ
)

dθ 6= 0,
they proved that the orthogonal polynomials {πn}n∈N0

exist uniquely and that they
can be represented in the form

πn(z) = pn(z)− iθn−1pn−1(z),

where

θn−1 = θn−1(w) =
µ0pn(0) + iqn(0)

iµ0pn−1(0)− qn−1(0)
.

Here the pk’s are standard (real) polynomials orthogonal with respect to the inner
product

[f, g] =

∫ 1

−1

f(x)g(x)w(x)dx,

and the qk’s are the corresponding associated polynomials of the second kind:

qk(z) =

∫ 1

−1

pk(z)− pk(x)

z − x
w(x)dx.

3.6.2. Orthogonal polynomials for oscillatory weights

Let w be a given weight function on [−1, 1] and dµ(x) = xw(x)eiζxdx, where ζ ∈ R.
One could consider the existence of the orthogonal polynomials πn with respect to
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the functional

L(p) =

∫ 1

−1

p(x)dµ(x), µk = L(xk), k ∈ N0.

Two cases are intensively studied by Milovanović–Cvetković (2005):

1. Case w(x) = 1, ζ = mπ, m ∈ Z \ {0},

2. Case w(x) = 1/
√

1− x2, ζ ∈ R.

A possible application of these quadratures is in the numerical calculation of
integrals involving highly oscillatory integrands, in particular for the calculation of
Fourier coefficients.

3.6. Nonstandard quadratures of Gaussian type

All previous quadrature rules use the information on the integrand only at some
selected points xk, k = 1, . . . , n (the values of the function f and its derivatives
in the cases of rules with multiple nodes). Such quadratures will be called the
standard quadrature formulae. However, in many cases in Physics and technical
sciences it is not possible to measure the exact value of the function f at points xk,
so that a standard quadrature cannot be applied. On the other side, some other
information on f can be available, like the average

1

2hk

∫
Ik

f(x)dµ(x)

of this function over some nonoverlapping subintervals Ik, with length of Ik equal
to 2hk, and their union which is a proper subset of supp(dµ). One may also know
a fixed linear-combination of the values of this function, e.g.

af(x− h) + bf(x) + cf(x+ h)

at some points xk, where a, b, c are constants and h is a sufficiently small positive
number, etc.

If the information data {f(xk)}nk=1 in the standard quadrature is replaced by
{(Ahkf)(xk)}nk=1, where Ah is an extension of some linear operator Ah : P → P,
h > 0, we get a non-standard quadrature formula∫

R
f(x)dµ(x) =

n∑
k=1

wk(Ahkf)(xk) +Rn(f).

This kind of quadratures is based on operator values for a general family of linear
operators Ah, acting of the space on algebraic polynomials, such that the degrees
of polynomials are preserved.
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A typical example for such operators is the average (Steklov ) operator men-
tioned above, i.e.,

(Ahp)(x) =
1

2h

∫ x+h

x−h
p(x)dx, h > 0, p ∈ P.

The first idea involves the so-called interval quadratures. Let h1, . . . , hn be
nonnegative numbers such that

(24) a < x1 − h1 6 x1 + h1 < x2 − h2 6 x2 + h2 < · · · < xn − hn 6 xn + hn < b,

and let w(x) be a given weight function on [a, b]. Using the previous inequalities it
is obvious that we have 2(h1 + · · ·+ hn) < b− a.

Bojanov and Petrov (2001) proved that the Gaussian interval quadrature rule
of the maximal algebraic degree of exactness 2n− 1 exists, i.e.,

(25)

∫ b

a

f(x)w(x)dx =
n∑
k=1

wk
2hk

∫ xk+hk

xk−hk
f(x)w(x)dx+Rn(f),

where Rn(f) = 0 for each f ∈ P2n−1. If hk = h, 1 6 k 6 n, they also proved the
uniqueness of (25). In 2003 they proved the uniqueness of (25) for the Legendre
weight (w(x) = 1) for any set of lengths hk > 0, k = 1, . . . , n, satisfying the
condition (24).

Milovanović–Cvetković (2004), by using properties of the topological degree
of non-linear mappings, proved that the Gaussian interval quadrature formula is
unique for the Jacobi weight function w(x) = (1−x)α(1+x)β , α, β > −1, on [−1, 1]
and they proposed an algorithm for numerical construction. For the special case of
the Chebyshev weight of the first kind and the special set of lengths, an analytic
solution can be given.

Bojanov and Petrov (2005) proved the existence and uniqueness of the weighted
Gaussian interval quadrature formula for a given system of continuously differen-
tiable functions, which constitute an ET system of order two on [a, b].

The cases with interval quadratures on unbounded intervals with the classical
generalized Laguerre and Hermite weights have been investigated by Milovanović
and Cvetković (2005, 2007).

They also considered the nonstandard quadratures with some special opera-
tors of the form

(Ahp)(x) =
1

2h

∫ x+h

x−h
p(t)dt, (Ahp)(x) =

m∑
k=−m

akp(x+ kh)

or

(Ahp)(x) =
m−1∑
k=−m

akp (x+ (k + 1/2)h) and (Ahp)(x) =
m∑
k=0

bkh
k

k!
Dkp(x),

where m is a fixed natural number and Dk = dk/dxk, k ∈ N0.
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3.7. Generalized Birkhoff-Young quadrature formulas

In 1950 G. Birkhoff and D. M. Young derived a quadrature formula for numerical
integration of analytic and harmonic functions in the complex domain over the line
segment [a−h, a+h] in five points a, a±h, a± ih (i =

√
−1), with algebraic degree

d = 5. After several results by Lyness and Delves (1967), Lyness and Moler (1967),
Lyness (1969), Lether (1976), in 1978 D. D- . Tošić derived a one-parametric family
of five-point quadrature rules of this type with degree of exactness d = 7. Later in
1982 GVM and R. Ž. D- ord-ević obtained such a formula with nine nodes and degree
of exactness d = 13.

In 2011, jointly With his collaborators Cvetković and Stanić, GVM derived
a generalized N -point Birkhoff-Young quadrature of interpolatory type, with the
Chebyshev weight, whose nodes are characterized by an orthogonality relation.

Several types of quadratures of Birkhoff-Young type, as well as a sequence
of the weighted generalized quadrature rules and their connection with multiple
orthogonal polynomials, have been recently considered by Milovanović (2017). Be-
sides a result on the generalized (4n+ 1)-point Birkhoff-Young quadrature, general
weighted quadrature formulas of Birkhoff-Young type with the maximal degree of
exactness have been established. It includes a characterization and uniqueness of
such rules, as well as numerical construction of nodes and weight coefficients. An
explicit form of the node polynomial of such kind of quadratures with respect to
the generalized Gegenbauer weight function is obtained. Finally, a sequence of gen-
eralized quadrature formulas is studied and their node polynomials are interpreted
in terms of multiple orthogonal polynomials. The construction of multiple orthogo-
nal polynomials, defined using orthogonality conditions spread out over r different
measures, as well as weighted quadratures of Gaussian type were considered earlier
by GVM and Stanić in 2003 (see also Chapter 26 in the monograph Nonlinear
Analysis: Stability, Approximation, and Inequalities (P. Georgiev, P.M.
Pardalos, H.M. Srivastava, eds.).

3.8. Gaussian quadrature for Müntz systems

Gaussian integration can be extended in a natural way to non-polynomial functions,
considering a system of linearly independent functions

(26) {P0(x), P1(x), P2(x), . . .} (x ∈ [a, b]),

usually chosen to be complete in some suitable space of functions. If dσ(x) is a
given nonnegative measure on [a, b] and the quadrature rule

(27)

∫ b

a

f(x) dσ(x) =
n∑
k=1

Akf(xk) +Rn(f)

is such that it integrates exactly the first 2n functions in (26), we call the rule
(27) Gaussian with respect to the system (26). The existence and uniqueness of
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a Gaussian quadrature rule (27) with respect to the system (26), or for short a
generalized Gaussian formula, is always guaranteed if the first 2n functions of this
system constitute a Chebyshev system on [a, b]. Then, all the weights A1, . . . , An
in (27) are positive.

The generalized Gaussian quadratures for Müntz systems go back to Stieltjes
in 1884. Taking Pk(x) = xλk on [a, b] = [0, 1], where 0 6 λ0 < λ1 < · · · , Stieltjes
showed the existence of Gaussian formulae. A numerical algorithm for constructing
the generalized Gaussian quadratures was recently investigated by Ma, Rokhlin and
Wandzura (1996), but it is ill conditioned.

Milovanović and Cvetković (2005) presented an alternative numerical method
for constructing the generalized Gaussian quadrature (5) for Müntz polynomials,
which is exact for each

f ∈M2n−1(Λ) = span
{
xλ0 , xλ1 , . . . , xλ2n−1

}
.

Besides the properties of orthogonal Müntz polynomials on (0, 1) and their con-
nection with orthogonal rational functions, GVM presented also a method for the
numerical evaluation of such generalized polynomials (1999). His method is rather
stable and simpler than the previous one, since it is based on orthogonal Müntz
systems.

Figure 6: At a relaxing moment with the family: Vladica, Irena, Gradimir and
Dobrila (Restaurant “Kalenić”, Belgrade, 2017)
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4. GVM AND OTHER FIELDS

Professor Milovanović has further notable works in other fields as well, such
as the integration of fast oscillatory functions, special functions, especially of hy-
pergeometric type and theorems on their summation, special numbers, as well as in
the field of iterative processes, optimization theory and the domain of inequalities,
with which his scientific career began. The applications of his theoretical results
in the fields of Electrical Engineering, Physics and Telecommunications are also
significant.

5. THE BIBLIOGRAPHY OF GVM

The full bibliography, covering all periods of the rich scientific activity of
GVM, can be found at the web site:

http://www.mi.sanu.ac.rs/~gvm/

***

In this volume the following contributions of Gradimir’s friends and collabo-
rators are featured:

The paper by Kashuri and Rassias is concerned with the fractional trapezium-
type inequalities for strongly exponentially generalized preinvex functions; In their
paper Srivastava, Jena and Paikray introduce and study the notion of statistical
probability convergence for sequences of random variables as well as the concept
of statistical convergence for sequences of real numbers, which are defined over a
Banach space via deferred weighted summability mean; In their paper Malešević,
Lutovac, Rašajski and Banjac consider error-functions in double-sided Taylor’s ap-
proximations; In the paper by Guessab, Driouch and Nouisser a new modified
moving asymptotes method is presented; The aim of the paper by Simsek is to
define new families of combinatorial numbers and polynomials associated with Pe-
ters polynomials; The authors Park, Kim and So consider a result for binomial
convolution sums of restricted divisor functions; In his paper Özarslan introduces
the Jain-Appell operators by applying the Gamma transform to the Jakimovski-
Leviatan operators, and investigates their weighted approximation properties and
computes the error of approximation by using certain Lipschitz class functions;
The paper by Vukelić is concerned with Levinson’s inequality involving averages
of 3-convex functions; The paper by Delen, Togan, Yurttas, Ana and Cangul is
concerned with the effect of edge and vertex deletion on omega invariant; A note
on polylogarithms and incomplete gamma function is presented by Aygüneş; The
goal of the paper by Savas is to study some new sequence spaces of order α that
are defined using modulus function and infinite matrix; The paper by Kim, Bayad
and Ahn is concerned with a study of Möbius-Bernoulli numbers; In their pa-
per Behl, Gutiérrez, Argyros and Alshomrani consider efficient optimal families of
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higher-order iterative methods with local convergence; In their paper Branquinho,
Garćıa-Ardila and Marcellán study matrix biorthogonal polynomials sequences that
satisfy a nonsymmetric three term recurrence relation with unbounded matrix co-
efficients; The paper by Jovanović and Voß describes a matheuristic approach for
solving the 2-connected dominating set problem; In their paper Landon, Carley and
Mohapatra consider two operators based on the Kλ means of the Fourier series of
and conjugate series of functions of class Lp, p > 1.

We wish to express once again our warmest thanks to all the mathematicians
who have contributed their papers, and to all the referees for their assistance on
judging the merits of the submissions as well as for their useful comments and
propositions, which led to the composition of this Special Issue dedicated to the
70th birth anniversary of the academician Professor Gradimir V. Milovanović.
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