6,317 research outputs found

    Spontaneous Analogy by Piggybacking on a Perceptual System

    Full text link
    Most computational models of analogy assume they are given a delineated source domain and often a specified target domain. These systems do not address how analogs can be isolated from large domains and spontaneously retrieved from long-term memory, a process we call spontaneous analogy. We present a system that represents relational structures as feature bags. Using this representation, our system leverages perceptual algorithms to automatically create an ontology of relational structures and to efficiently retrieve analogs for new relational structures from long-term memory. We provide a demonstration of our approach that takes a set of unsegmented stories, constructs an ontology of analogical schemas (corresponding to plot devices), and uses this ontology to efficiently find analogs within new stories, yielding significant time-savings over linear analog retrieval at a small accuracy cost.Comment: Proceedings of the 35th Meeting of the Cognitive Science Society, 201

    Automated schema matching techniques: an exploratory study

    Get PDF
    Manual schema matching is a problem for many database applications that use multiple data sources including data warehousing and e-commerce applications. Current research attempts to address this problem by developing algorithms to automate aspects of the schema-matching task. In this paper, an approach using an external dictionary facilitates automated discovery of the semantic meaning of database schema terms. An experimental study was conducted to evaluate the performance and accuracy of five schema-matching techniques with the proposed approach, called SemMA. The proposed approach and results are compared with two existing semi-automated schema-matching approaches and suggestions for future research are made

    Relational Foundations For Functorial Data Migration

    Full text link
    We study the data transformation capabilities associated with schemas that are presented by directed multi-graphs and path equations. Unlike most approaches which treat graph-based schemas as abbreviations for relational schemas, we treat graph-based schemas as categories. A schema SS is a finitely-presented category, and the collection of all SS-instances forms a category, SS-inst. A functor FF between schemas SS and TT, which can be generated from a visual mapping between graphs, induces three adjoint data migration functors, ΣF:S\Sigma_F:S-inst→T\to T-inst, ΠF:S\Pi_F: S-inst →T\to T-inst, and ΔF:T\Delta_F:T-inst →S\to S-inst. We present an algebraic query language FQL based on these functors, prove that FQL is closed under composition, prove that FQL can be implemented with the select-project-product-union relational algebra (SPCU) extended with a key-generation operation, and prove that SPCU can be implemented with FQL

    SODA: Generating SQL for Business Users

    Full text link
    The purpose of data warehouses is to enable business analysts to make better decisions. Over the years the technology has matured and data warehouses have become extremely successful. As a consequence, more and more data has been added to the data warehouses and their schemas have become increasingly complex. These systems still work great in order to generate pre-canned reports. However, with their current complexity, they tend to be a poor match for non tech-savvy business analysts who need answers to ad-hoc queries that were not anticipated. This paper describes the design, implementation, and experience of the SODA system (Search over DAta Warehouse). SODA bridges the gap between the business needs of analysts and the technical complexity of current data warehouses. SODA enables a Google-like search experience for data warehouses by taking keyword queries of business users and automatically generating executable SQL. The key idea is to use a graph pattern matching algorithm that uses the metadata model of the data warehouse. Our results with real data from a global player in the financial services industry show that SODA produces queries with high precision and recall, and makes it much easier for business users to interactively explore highly-complex data warehouses.Comment: VLDB201

    Functorial Data Migration

    Get PDF
    In this paper we present a simple database definition language: that of categories and functors. A database schema is a small category and an instance is a set-valued functor on it. We show that morphisms of schemas induce three "data migration functors", which translate instances from one schema to the other in canonical ways. These functors parameterize projections, unions, and joins over all tables simultaneously and can be used in place of conjunctive and disjunctive queries. We also show how to connect a database and a functional programming language by introducing a functorial connection between the schema and the category of types for that language. We begin the paper with a multitude of examples to motivate the definitions, and near the end we provide a dictionary whereby one can translate database concepts into category-theoretic concepts and vice-versa.Comment: 30 page

    Probabilistic Relational Model Benchmark Generation

    Get PDF
    The validation of any database mining methodology goes through an evaluation process where benchmarks availability is essential. In this paper, we aim to randomly generate relational database benchmarks that allow to check probabilistic dependencies among the attributes. We are particularly interested in Probabilistic Relational Models (PRMs), which extend Bayesian Networks (BNs) to a relational data mining context and enable effective and robust reasoning over relational data. Even though a panoply of works have focused, separately , on the generation of random Bayesian networks and relational databases, no work has been identified for PRMs on that track. This paper provides an algorithmic approach for generating random PRMs from scratch to fill this gap. The proposed method allows to generate PRMs as well as synthetic relational data from a randomly generated relational schema and a random set of probabilistic dependencies. This can be of interest not only for machine learning researchers to evaluate their proposals in a common framework, but also for databases designers to evaluate the effectiveness of the components of a database management system
    • …
    corecore