
Res. Lett. Inf. Math. Sci. (2003) 4, 113-136
Available online at http://iims.massey.ac.nz /research/letters/

Automated Schema Matching Techniques: An Exploratory Study

Xiao Long Sun
Institute of Information and Mathematical Sciences
Massey University, Auckland, New Zealand
xiaosun@xtra.co.nz

Ellen Rose
Institute of Information and Mathematical Sciences
Massey University, Auckland, New Zealand
e.a.rose@massey.ac.nz

Abstract.
Manual schema matching is a problem for many database applications that use multiple data
sources including data warehousing and e-commerce applications. Current research attempts
to address this problem by developing algorithms to automate aspects of the schema-
matching task. In this paper, an approach using an external dictionary facilitates automated
discovery of the semantic meaning of database schema terms. An experimental study was
conducted to evaluate the performance and accuracy of five schema-matching techniques
with the proposed approach, called SemMA. The proposed approach and results are
compared with two existing semi-automated schema-matching approaches and suggestions
for future research are made.

1 Introduction

The rapid development of computer information systems over the past three decades has resulted in a
number of heterogeneous data sources. Database application domains such as data warehousing (Stohr et
al., 1999), data integration (Bergamaschi et al., 1999), e-commerce and semantic query processing (Heflin,
2001) all rely on schema matching to achieve interoperability (Rahm and Bernstein, 2001a). These new
database applications demand integration of independently developed data sources, making interoperability
increasingly important (Heiler, 1995). Heterogeneity can be classified into two main types: 1) information
heterogeneity and 2) system heterogeneity. This classification of concerns can be further expanded as
shown in table 1 Ouksel and Sheth (1999).

C
m
d

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Massey Research Online

Heterogeneity Problems Interoperability Concerns

Semantic heterogeneity Semantic interoperability
Structural heterogeneity Structural interoperability

Information
Heterogeneity

 Syntactic, format heterogeneity Syntactic interoperability
Information system heterogeneity:

1) Digital media management system
(unstructured, semi-structured data)

2) Database management systems
(structured data)

System
Heterogeneity Platform heterogeneity:

1) Operating systems
Hardware/system

System Interoperability
Table 1. Heterogeneity Problems and Corresponding Interoperability Concerns.

urrently, schema matching to solve these heterogeneity problems is typically performed manually. This
anual process is tedious, time consuming, error-prone and expensive. A less labour-intensive approach is

esirable. Such an approach would provide automated support to identify relationships and generate

https://core.ac.uk/display/148639116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

114 R.L.I.M.S. Vol. 4, May 2003

mappings between a source schema and a target schema. A classification of existing approaches is
summarized in figure 1.

Most work on automated schema matching has been done during the past decade. Much of this work was
primarily focused in the context of a particular application domain and applied to a particular schema
format. For example, SemInt (relational schema) (Li and Clifton, 1994), LSD (XML schema) (Doan et al.,
2001) and SKAT (XML schema) (Mitra et al., 1999) were used in the data integration domain. ARTEMIS
(relational schema) (Castano et al., 2001) and DIKE (ER model) (Palopoli et al., 1999) were used for
schema integration. Cupid (XML) (Madhavan et al., 2001) and TranScm (SGML object-oriented class
schema) (Milo and Zohar, 1998) were used for data translation tasks as found in the e-commerce domain.
Success in schema matching depends on understanding the semantics of the schema elements, such as
attributes, relations, entity set, etc., and the ability to reason with these semantics (Rahm and Bernstein,
2001b).

Individual

matchers

Combined

matchers

Schema Matching
Approaches

Figure 1: Classification of Existing Schema Matching Approaches.

Automatic
composition

Composite

Manual
composition

Schema-

based

Content-
based

Linguistic
(Names,
Descriptions)

StructuralElement

level

Constraint-based
(Value patterns

& ranges)

Linguistic
(Information
retrieval –
word freq.,
key terms)

Element

level

Hybrid

Constraint-
based (Graph

matching)
Constraint-
based (type,
keys)

While significant progress has been achieved in system, syntactic, and structural interoperability,
comprehensive semantic interoperability still remains as an open problem (Goh 1997)(Hull, 1997). To
achieve cost effective, efficient semantic interoperability, semi-automated schema matching mechanisms
are needed.

This research analysed current semi-automated schema matching approaches used in relational data
warehouse environments. The core research question is: What are the critical criteria of schema matching
that lead to improved semantic matching between two relational data schemas? The study examined the
relationship between the independent variables that is the matching criterion of relational schemas and the
measurable dependent variables of completeness, precision and overall matching quality. To answer these
questions, the relative performance and precision of a set of five schema-matching algorithms using two
relational source schemas and one target data warehouse schema were examined. A schema matcher was
designed and implemented in C++ and is referred to here as SemMa (Semantic Matcher).

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 115

The contributions of this study are: 1) using an external dictionary to construct an internal thesaurus to
detect the semantics of database terms, 2) using an experimental evaluation of schema matching criteria,
and 3) using object-oriented techniques to simplify the schema matching process. The following objectives
were set:

• Measure the effects of schema matching criteria such as name, type and structure matching on the
performance of SemMa.

• Evaluate the impact on matching performance of using an external dictionary WordNet (WordNet,
2002).

• Compare the SemMa approach to existing approaches to identify areas that need improvement

Section 2 of the paper discusses the design and implementation of the Semantic Matcher, SemMa. Section
3 discusses the experiments conducted to validate the performance of SemMa. Section 4 presents and
analyses the results of executing SemMa on a sample test data set. Section 5 concludes the paper with a
summary of the contributions of the study and suggestions for further improvements to the semantic
matching operation.

2 The Proposed Semantic Match Approach

2.1 Design of the Semantic Matcher

In this project, an approach to semantic-matching called (SemMa) was designed and implemented. SemMa
constructs an internal database thesaurus and uses an external dictionary as in (Lawrence and Barker, 2001)
to discover the semantic meaning of database schema terms. Access to the semantics (i.e. meaning) of
database terms allows the computer system to automatically create a mapping between fields of the target
database schema and fields of the source database schema that are semantically equivalent, thereby
providing automated support for the matching task. As in other schema matching approaches such as
SemInt (Lee and Clifton, 1994), ARTEMIS (Castano, et al. 2001) and Cupid (Madhavan, et al. 2001), we
compute the similarity of field names from two schema definitions. The similarity is based on comparisons
of field name, structure, and data type and is scored on a [0…1] interval. If the similarity of a field pair is
greater than a pre-defined threshold value, the two fields are taken to be a match. The three types of
similarity aspects or match criteria used by SemMa are described below:

2.1.1 Name Match

Name match is based primarily on schema field names assuming that field names represent the most useful
source of information for matching. The proper matching of two fields is determined by comparing the
field name strings and by comparing their meaning. The name match algorithm to resolve conflicts used the
following processes:

1) Tokenisation was used to parse a field name into a number of tokens based on punctuation,
abbreviation, case, etc. For example, “ClientTypeID” would be parsed into “client”, “type” and “id”.
The infix (such as “of”, “-“), and suffixes (such as “ing”, “s”) were discarded. For example,
“DayOfWeek” would be parsed into “day” and “week”. These tokens are atomic elements for
finding the similarity of two fields.

2) Construction of the Thesaurus was based on the assumption that the database schema relationships
and terms provide the starting semantic information of the database. Abbreviations can be expanded
by using other related, existing schema terms. For example, association table name “A_B” in the
book order schema refers to table names “author” and “book”. The database thesaurus expands
abbreviations by storing all existing terms in a more easily searched data structure.

3) Finding Synonyms involves using a powerful, external dictionary, WordNet (WordNet, 2002), as a
basis for computing the similarity value of two field names. This differs from the approach taken in

116 R.L.I.M.S. Vol. 4, May 2003

Cupid (Madhavan, etal. 2001) and SemInt (Li and Clifton, 1994), which do not use external
dictionaries.

4) Computing the Name Similarity Value is done as follows:

 Name similarity = nameWeight *(sum of synonyms tokens) / (total tokens / 2)

“Name similarity” ranges between 0 and 1 and indicates the strength of name similarity between two
fields. A value of 0 implies two fields are not similar at all, while a value of 1 indicates the two fields
are identical based on name. “nameWeight” is a pre-defined constant value, which determines the
contribution of field name to the similarity of two fields. Different values of nameWeight (in the
range of 0.5 to 1.0) can be used in different matching algorithms. “sum of synonyms tokens” is the
number of tokens of a field name in a source schema that are identical or are synonyms to the tokens
of a field name in the target schema. “total tokens” is the number of total tokens of both field names
in the source schema and the target schema. For example, “sum of synonyms tokens” of
“CustomerFirstName” and “ClientName” is 2 (“name” and “client”/”customer”), and “total tokens”
is 5 (customer, first, name, client, name). The different types of match algorithms are outlined in the
following sections.

2.1.2 Type Match

Data type is an important part of schema information. Data type similarity contributes to total similarity.
The set of type similarity values used by Cupid (Madhavan, etal. 2001) were also used here. For example,
the type similarity between “number” and “ string” is 0.4, while the similarity of “number” and “float” is
0.8.

Type similarity = typeWeight * similarity of two field types

The “typeWeight” is a pre-defined constant, which determines the contribution of field type to the similarity
of two fields. Different “typeWeight” values (in the range of 0 to 0.3) were used to evaluate the affect of
field type on schema matching performance. For example, if we use “typeWeight” = 0.2 and “similarity of
two field types”, for the fields “Sales.UnitPrice(float)” of the target schema and “OrderDetails.UnitPrice
(number)” of the source schema, then the “Type similarity” = 0.2 * 0.8 = 0.16.

2.1.3 Structure Match

Structure similarity is a measure of the similarity of the contexts in which the fields occur in two schemas.
Unlike Cupid, SemMa uses table name and field name to compute the structure similarity. Structure
similarity consists of table token similarity and the sum of the field similarities in the schema substructure.
Structure similarity is computed as shown below:

1. If two table names are synonyms determined by WordNet, and the primary key fields are
synonyms, we consider these two tables to be similar and return the full structureWeight.

2. However, if at least two field pairs in the two tables are individually synonyms, we say these two
tables are similar and return the full structureWeight (based on Cupid approach).

3. Or, we compute the field similarities to represent the structure similarity as below:

Structure similarity = structureWeight * (sum of field similarities) /
(total number of field pairs in current two tables)

where “structureWeight” is a pre-defined constant value, which determines the contribution of
structure to the total similarity of two fields. Different “structureWeight” values (in the range of 0
to 0.3) were used to evaluate the contribution of structure to schema matching performance. The
term “sum of field similarities” is the sum of field pair similarities in two compared tables. The
field pair similarity is determined by field type and field name using name match and data type

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 117

match described previously. The “total number of field pairs in current two tables” is the total
number of field pairs in the two compared tables.

In summary, SemMa is a hybrid matcher that combines the name match, data type match and structure
match. The sum of similarities computed by these three matches is used to determine the similarity of fields
in the source schema and the target schema. The next section will detail the implementation of the SemMa
matcher that is encapsulated in three classes.

2.2 Implementation Architecture

The three architectural layers and their major components are shown in the architecture diagram depicted in
figure 2. The top layer includes two types of input files: 1) an XML file representation of relational
schemas generated using the Microsoft BizTalk editor software (BizTalk, 2002) and 2) a dictionary input
file that was retrieved from the WordNet online dictionary (WordNet 2002). The later file contains all
words used in the program for schema matching. The output file contains mappings between source
schemas and the target schema.

Figure 2. Architecture and Main Components of the Schema Matcher, SemMa.

118 R.L.I.M.S. Vol. 4, May 2003

A mapping is written to the output file when the similarity of field pairs in the source exceeds the defined
threshold. The bottom layer is an output file, containing matched field pairs and their similarity values.
The middle layer is the SemMa system. SemMa has four components: a source database, a target database,
an external dictionary to capture data semantics and a set of schema matching algorithms. Three classes of
objects (class Database, class Dictionary and class Token) are used to encapsulate these four components
in one programming package. The main advantages of using object-orientation here are: 1) encapsulation of
data and functions within a class and 2) maintainability through localisation of changes in small modules of
code. The three classes are discussed in the following sub sections.

2.2.1 Dictionary Class and Finding Synonyms

The class Dictionary creates and maintains a dictionary of words. It takes a text formatted dictionary file as
input. The file used was the WordNet external dictionary (WordNet, 2002). WordNet is an online lexical
reference system whose design was inspired by current psycholinguistic theories of human lexical memory.
English nouns, verbs, adjectives and adverbs are organized into synonym sets, each representing one
underlying lexical concept. The Dictionary class consists of a structure called words, which has a term as
root and an array of possible synonyms. Arrays were chosen to simplify the process. The alternative is
using a linked list of node pointers. The class Dictionary defines various methods for adding words, adding
synonyms, tidying strings and tidying synonyms into a standard format. The structure of the class
Dictionary is shown below:

struct words{
 char root[51];
 int num_of_syns;
 char synonyms[num][51];
};

class Dictionary{
 private:
 word words[num];
 int num_of_words;
 public:
 Dictionary() ; //constructor
 void AddRootWord(char* rootword);
 void AddSynonyms(char* synonyms);
 void PrintAll();
 void TidySameWords();
 void TidyString(char* word, char ch);
 void TidyWord(char* word);
 bool FindRootBySyn(char* syn, char* root);
 bool FindSynByRoot(char* root, char* syn);
};

Figure 3. Structure of the Dictionary Class.

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 119

The Dictionary class uses two member functions to find the synonym of a given term.
1) FindRootBySyn (char* syn, char* root) finds synonyms by locating the root word of a given

term. For example, the root “customer” has synonyms “client” and “consumer”. If given the
term “client” in the source and “consumer” in the target, the Dictionary class object, mydict,
will call this function to determine if “client” and “consumer”, are synonyms.

Figure 4. Finding the Root Using a Synonym .

 Dictionary mydict;
char* root1, root2;
if mydict .FindRootBySyn (“client”, root1) = true and
if mydict .FindRootBySyn (“consumer”, root2) = true

then root1 = root2 // they are synonyms;
else // they are not synonyms.

2) FindSynByRoot(char* root, char* syn) will find synonyms of the given root words. For

example, the root “sale” has a synonym “agreement”, and the root “order” has a synonym
“agreement”. The function below checks to see “sale” and “order” are synonyms.

Figure 5. Finding a Synonym Using the Root.

Dictionary mydict;
 char* syn1, syn2,
 for each syn1 in mydict .FindSynByRoot (“sale”, syn1) = true and
 for each syn2 in mydict .FindSynByRoot (“order”, syn2) = true
 if syn1 = syn2
 then “sale” and “order” are synonyms
 end of for
 end of for

 if syn1 != syn2, “sale” and “order” are not synonyms.

2.2.2 Token Class and Term Tokenisation
The Token class tokenises a given table name or field and stores the results. A token is a data member in
both the structure field and structure table. Token parses a given term (field name or table name) into tokens
based on abbreviation, case, punctuation, etc. The structure of the Token class is shown below:

class Token {
 private:
 int tokenNum;
 char tkn[MAX][51];
 public:
 token(); //constructor
 token (const token &tk) ; //copy constructor
 void AddTokens(char * str); // add str to token array
 bool Find(char* str); //find weather str in the token array
 char* GetToken(int index) ; //get token in position index
 int GetNumOfToken(); //return total num of tokens
 void PrintAll(); //print all tokens
 bool IsEmpty(); //return true if empty
};

Figure 6. Structure of the Token Class.

120 R.L.I.M.S. Vol. 4, May 2003

2.2.3 Database Class and Schema Matching Algorithms

The class Database stores all data schema information and consists of data member structures table, field,
pairsoffields and thesaurus.

Figure 7. Key Member Structures of the Database Class.

struct field{
 char fieldName[51];
 char type[21];
 token field_tokens; // one field consist of number of tokens
};
struct table{
 char tableName[51];
 field fields[MAX];
 int num_of_fields;
 token table_tokens; //a table name consist of number of tokens
};
struct pairoffields{
 char dbNameA[51];
 char tableA[51];
 char fieldA[51];
 char dbNameB[51];
 char tableB[51];
 char fieldB[51];
 float sim;

};

Data structures field and table store field and table information for a schema. Structure table stores table
name, number of fields, and the tokens of the table. Structure field has three data members: fieldname, type
and field tokens. Pre-processing of the field tokens and table tokens, and storing the field name tokens in
the structure field makes the field matching process more efficient. The data structure pairoffields stores the
similarity information for one field in the target database and all of its corresponding fields in the source
database. The field names along with their respective table name, database name, and similarity value of
the pair are represented here.

The Database class also contains an array of the thesaurus terms. The thesaurus is used to help discover the
semantically equivalent words and phrases in a schema according to the context. For example, in the book
order database, to determine the meaning of the abbreviations “A” and “B” in the association table named
“A_B”, all semantic words in the database thesaurus that contain the words “author” and “book” will be
checked since “A_B” is an association table between the tables author and book.

The class Database is organized as a hierarchy of database concept terms. A database instance contains
tables and a thesaurus that corresponds to terms in its schema. The benefits of using a directed hierarchal
graph structure include:

• The thesaurus contains all terms for expanding abbreviations and detecting their semantic
meaning.

• Hierarchical organization shows how terms are related to each other and can be easily navigated to
retrieve information about the schema instance

• The encapsulation of the schema-matching algorithm enables schema stability and user flexibility.
Flexibility means a user can find a specified field mapping by changing the parameter of a
member function. For example, a user can find out which field in the Book Order source database
is matched to the field “Sales.PostalCode” by calling the member function: compareTwoFields
(“Sales. PostalCode”, field2).

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 121

The Database class encapsulates a schema-matching algorithm as a list of member functions as shown
below. The database schema information is stored in the following data structure as an instance of the
Database class.

Th
tab

class Database{
 private:
 char dbaName[51];
 table tables[MAX];
 int num_of_tables;
 int size_thesaurus;
 char thesaurus[200][51];
 token db_tokens;
 pairoffields field_pairs[1000];
 int num_of_pairs;
 public:
 Database();
 void AddDbaname(char * dName) { strcpy(dbaName, dName);}
 void AddTableName(char* tableName);//ok
 void AddFieldName(char* fieldName);//ok
 void AddFieldType(char* fieldType);//ok
 void AddTabletokens(char* tableName);
 void AddFieldtokens(char* fieldName);
 void AddToThesaurus(char* word);
 bool ReadTable(int tableIndex, table &oneTable);
 bool ReadField(int tableIndex, int fieldIndex, field oneField);
 void PrintAll();
 void PrintThesaurus();
 void PrintDBTokens();
 //--
 void DisplayMostSimilarPair(FILE *outfile);
 float CompareFieldsByName(char* name1, char* name2);
 float CompareFieldsBySys(field f1,field f2);
 float CompareFieldsByType(char* type1, char* type2);
 float CompareFieldsByToken(field f1, field f2);
 float CompareTwoFields(field f1, field f2);
 float CompareTwoTables(table &t1, table &t2);
 //--
 int CompareFields(database & db, FILE *outfile);

};
Figure 8. Structure of the Database Class.

e schema-matching algorithm shown on the next page uses a structure similarity value stored in
les_sim , which is based on the following assumptions:

• Two tables are similar if two tables are linked by a foreign key to their own entry table, and the
table names are synonyms. For example, take the “Sales” table in the target schema and the
“Book_Order” table in the source schema as the entry tables. The “Client” table is linked to the
“Sales” table by a foreign key, and the “CUSTOMER” table in the source schema is linked to the
“Book_Order” table by a foreign key. Client and Customer are also synonyms, so these tables are
similar.

• Two tables are similar if there are at least two fields in each table that are similar (based on Cupid)
as follows:

type_sim(“id”, “idref”) = 0.9;
type_sim(“number”, “int”) = 0.9;
type_sim(“float”, “int”) = 0.8;
type_sim(“string”, “int”) = 0.4;
type_sim(“date”, datetime”) = 0.9;

122 R.L.I.M.S. Vol. 4, May 2003

The token similarity and synonym similarity are computed by calling the Dictionary class member
functions boolean dictionary :: FindSynByRoot(char* root, char* syn) and boolean dictionary ::
FindRootBySyn (char* syn, char* root).

The schema-matching algorithm is a straightforward term matching algorithm as shown below.

void Database::CompareFields(database & db, FILE *outfile){
 for each table of this database {
 for each field f1 in this table {
 inicialize fields_sim =0.0; tables_sim = 0.0;
 for each table in source database {
 tables_sim = compare structure similarity of current two tables
 for each field f2 in source table {
 fields_sim = tables_sim +
 compare type similarity (f1, f2) +
 compare name similarity (f1, f2) +
 compare token similarity (f1, f2) +
 compare synonym similarity (f1, f2);
 store these two field information and the fields_sim;
 }
 }
 for all fields pair {
 if fields_sim > threshold then write to output file
 }
 }
 }
}

Figure 9. Schema Matching Algorithm.

In summary, SemMa uses an external dictionary WordNet to generate an internal database thesaurus to
determine the semantic meaning of database terms. SemMa automatically computes the similarity of two
fields in the source database and target database by computing name similarity, type similarity and
structure similarity. The name similarity is defined by equality of names and synonyms of names. The
structure similarity is determined by field similarity and table similarity. SemMa is supported by three main
classes, which encapsulate the data and operations that operate on the data. The types of similarity can be
combined into different algorithms. The effect of this on matching is discussed in the following
experimental study.

3 Experimental Validation Study
An empirical evaluation of the schema-matching algorithm (discussed in the last section) was conducted.
Five schema-matching algorithms were evaluated by measuring the test results using the same two source
schemas and same target schema in all five cases. The proper values for weighting the contribution of name
similarity, data type similarity, and structure similarity were evaluated to determine which ones led to better
matching performance.

3.1 Test Data

Two relational source schemas (see appendix, based on Bernstein and Rahm, 2000) and one relational
target schema were used to test five schema-matching algorithms. A list of all true matches between the
source and target schemas is given in the appendix. The true matches were identified manually, and serve
as a target for 100% correctness for the automated match for the purposes of the evaluation. The source
schema in Figure 1 contains 9 tables and 40 fields. It represents a Book Order schema. The source schema
in Figure 2 contains 13 tables and 47 fields. It represents a general Product Orders schema. The data

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 123

warehouse target schema has one fact table Sales, four dimension tables (Products, Time, Clients and
Geography), and contains 30 fields. There are 27 true matches with respect to the Book Order schema and
the target schema and 35 true matches between the Product Orders schema and the target schema. A field in
the target schema may match more than one field in the source schema. For example, the field
Sales.OrderID from the target schema matches both Book_Order.OrderID and B_Ordering.OrderID in one
of the source schemas. These relational schemas were parsed into XML files using the Microsoft BizTalk
editor (BizTalk, 2002).

3.2 Threshold Values

As previously discussed, schema matching algorithms return a similarity value between 0 and 1. Therefore
a threshold must be selected such that the similarity of two fields above the threshold is considered a match.
The choice for a matching threshold should detect most real matches. If a lower threshold is chosen, then
the number of false positives will increase, while a higher threshold will find fewer true matches. Previous
work with Cupid found that 0.8 was a suitable value for the threshold. This value is used in this study as
well.

3.3 Accuracy Measures

To determine the matching accuracy, we used < matching completeness %>, <matching precision %> and
<overall quality of the match %> from (Do and Rahm, 2002) based on bounded areas A, B, C and D below.

Figur

<Match
all the a
known

<Match
algorith
percenta
is know

A = True Positives B = False Negatives C = False Positives
D = True Negatives
e 10. A+B=Possible True Matches based on Manual Matching, A+C= Matches Discovered by the
Matching Algorithm (D excludes areas A+B+C).

ing completeness %> = A / (A+B), is the proportion of true matches detected by SemMa among
ctual true matches determined manually. It measures the percentage of true positives found. This is
in the field of information retrieval as “recall”.

ing precision %> = A / (A+C), is the proportion of true matches among all the matches the
ms found. It measures the reliability of SemMa in terms of its consistency. Essentially, it is the
ge of true positives out of all positives detected so it drops if lots of false positives are found. This
n in the field of information retrieval as “precision”.

124 R.L.I.M.S. Vol. 4, May 2003

<Overall quality of the match %> = <matching completeness %> * (2 – (1 / <matching precision %>)),
measures the overall quality of the schema matching approach as a function of both precision and recall.
This prevents bias in construction of the algorithm to favour recall at the expense of precision and vice-
versa. Overall quality can be negative if the number of false positive matches exceeds the number of true
positive matches (i.e. matching precision < 50%). Such a result would indicate that the post match effort to
correct the results will be higher than the gain from the automatic match operation, indicating the match
operation was not effective.

As in COMA (Do and Rahm, 2002), if the overall quality of the match exceeds 50%, the automated
matcher has had a positive effect on the task. Ideally, all three measures will be 1.0 meaning all true
matches are found all the time. In all other cases, precision and recall are larger than the overall quality
measure and it becomes difficult to get an overall quality measure higher than 0.5 (Do and Rahm, 2002).

3.4 Matching Algorithms

Five matching algorithms made up of different combinations of name, tokenised name strings, data type,
and structure similarity comparisons are discussed with examples in this section. The similarity threshold
used was 0.8 in all cases. If the similarity of two fields in the source and target schemas exceeds 0.8, these
two fields are considered to match (or map to one another). The fifth algorithm also uses the external
dictionary.

Algorithm 1 (field name comparison only): For example, the field name “OrderID” in the source schema
and field name “OrderID” in the target schema will map, but “ClientID” and “CustomerID” will not map.
Therefore the weight of name is 1.0, and the weights for type and structure are 0.0.

Algorithm 2 (field names and data type comparison): The similarity value of a field pair is the sum of field
name similarity and data type similarity. If the field names of two fields are identical, the full nameWeight
is assigned to this field pair. The data type similarity depends on the data types of the field pair. The
structure similarity is not considered in this case. As in Cupid, the similarity weights of name, data type and
structure used were:

const float nameWeight = 0.8 ;
const float typeWeight = 0.2;
const float StructWeight = 0.0;

Algorithm 3 (field names, the tokens of field names and field type comparison): The similarity weights of
name, data type and structure used were:

const float nameWeight = 0.8 ;
const float typeWeight = 0.2;
const float StructWeight = 0.0;

In this case, the similarity of name is considered as the sum of token similarity in the field pair. For
example the name similarity of “ClientName” and “ClientFirstName” would be:

name similarity = nameWeight * k / ((m+n) / 2) = 0.8 * 2 / ((2+3) / 2) = 0.65
where: k = the number of tokens that are identical in the field pair
 m = the number of the field tokens in the source schema
 n = the number of the field tokens in the target schema

The total weight for “ClientName” and “ClientFirstName” is: similarity = 0.65 + 0.2 = 0.85

Algorithm 4 (field names, tokens of field names, field type and structure similarity): This algorithm is the
same as algorithm 3 except for structure similarity. The similarity of a field pair is the sum of name
similarity, data type similarity and structure similarity. We use the follow parameters in this case:

const float nameWeight = 0.6 ;
const float typeWeight =0.2;
const float StructWeight= 0.2;

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 125

Algorithm 5 (field names, tokens of field names, field type, structure similarity and an external dictionary
WordNet): The same weights used with algorithm 4 are used here. The similarity of field names is
determined by finding the token synonyms of field names.

The name similarity = nameWeight * (sum of token synonyms) / (num of tokens / 2)

3.5 Limitations

This exploratory study only used two sample relational schemas to test the performance of SemMa. More
extensive studies involving the use of larger scale schemas and schemas with varying actual similarity is
also desirable. The use of larger schemas affects the search space for match candidates (Do and Rahm,
2002). The SemMa program currently does not read other schema formats, such as text files, other than
BizTalk (BizTalk, 2002) formatted XML schema. This study did not attempt to define a new external
dictionary and did not involve the improvement or redesign of any existing schema matching tools. The use
of other external inputs such as ontologies (Wache et al., 1999) would also be desirable but has not been
explored here. Other orderings and combinations of similarity aspects were not examined within the scope
of this study. This study only looked at similarity in terms of schema properties and did not look at data
content similarity. The speed of performing matches with SemMa was not a concern in this study.

4 Analysis of Results

For each of the five algorithms shown on the x-axis in figures 11 and 12, the value of each of the three

Algorithm

54321

M
ea

n

1.0

.8

.6

.4

.2

0.0

matching

completeness

matching precision

overall quality

Algorithm

54321

M
ea

n

1.0

.8

.6

.4

.2

0.0

matching

completeness

matching precision

overall quality

Figure 11. Match Results by Algorithm Using
the Book Order Source Schema.

metrics (completeness (aka recall), precision and overall quality) is given on the y-axis. Figure 11 shows
the results for the Book Order Schema match and figure 12 shows the results for the Product Orders
schema match.

126 R.L.I.M.S. Vol. 4, May 2003

M
ea

n

1.0

.8

.6

.4

.2

0.0

 Algorithm

54321

matching

completeness

matching precision

overall quality

Algorithm

54321

M
ea

n

1.0

.8

.6

.4

.2

0.0

matching

completeness

matching precision

overall quality

Figure 12. Match Results by Algorithm Using
the Product Orders Source Schema.

Overall quality can also be expressed as (True Positives – False Positives)/(Real Matches) so in other
words, the overall quality value is reduced based on the number of matches found to be true which were not
actually real matches (i.e. false positives). In terms of the manual match, the Book Order schema was less
similar to the target than the Product orders schema.

Precision was consistently high for both cases, except for algorithm 5 in the case of using the Product
Orders schema as input. In this instance, the precision was near 0.5 resulting in low overall quality of the
match despite a high recall level. Recall that algorithms 5 used an external dictionary, WordNet, to find
synonyms. Algorithm 5 had the highest recall (i.e. ability to detect true matches) among the five algorithms
with a matching completeness of 96% for the Book Order schema and 93% for the Product Orders schema.

Poor precision for algorithm 5 appears to be due to mismatching of synonyms of the field tokens (5 out of 9
for the Book Order schema, and 21 out of 33 for the Product Orders schema), which resulted in a large
number of false positives. For example, SemMa treated “Region” and “Territory” as synonyms but they
actually have different semantics according to the manual match. The different semantics between “Year”
in the target schema and “Year” in the Book Order schema were also not detected. A mismatch on
ClientTypeID of the target with CustomerID in the source also occurred because most of the tokens of
these two fields are highly similar although the fieldnames have different semantics in the manual match. In
order to reduce false positives, an ontology may be needed to supplement or replace the WordNet
dictionary.

No difference in the three metrics was found with respect to algorithms 1 (name), 2 (name and data type)
and 3 (name, data type and tokens). However, overall quality of the match was low as shown by low
matching completeness (13.3%) for the Book Order schema, which used many different field names that
had the same semantics as those found in the target schema but was unable to detect many of the true
matches. Because the Product Orders schema and target have high duplication of field names, these three
algorithms achieved a high matching completeness (83%), a high matching precision (100%) and high
overall quality of match (83%) indicating that SemMa is not a good matcher if the names of many fields
differ as name match was the common factor between these three algorithms.

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 127

Algorithm 4 added structure similarity to the criteria of algorithm 3. It matched more fields for both source
schemas, but resulted in only a small increase in matching completeness (from of 13.3% to 23.3% for the
Book Order schema, and from 83% to 86% for the Product Orders schema). Structure similarity did detect
matches such as: TIME.Date in the target mapping to BOOK_ORDER.OrderDate in the Book Order
schema. The table “Sales” in the target schema and the table “BOOK_ORDER” are also similar since their
two fields “OrderID” and “OrderDate” are identical and “TIME.Date(id)” is linked with “Sales.OrderDate”
by a foreign key. Matching precision remained high due to the identical field names in the source and target
schemas.

Figures 13 and 14 examine the results of varying the type weight and structure weight used by the
algorithms that include type (algorithms 2 to 5) and structure (algorithms 4 and 5).

Figure 13. Overall Match Quality by Type Weight for the Book Order Schema.

Type weight

.28.25.20.15.10.05.00

M
ea

n

1.0

.5

0.0

-.5

-1.0

matching

completeness

matching precision

overall quality

Type weight

.28.25.20.15.10.05.00

M
ea

n

1.0

.5

0.0

-.5

-1.0

matching

completeness

matching precision

overall quality

Overall quality of the match became negative when either type weight or structure weight exceeded 0.25
and required a type weight of at least .05 to remain positive. The sum of type weight and structure weight
should not exceed 0.5 in order to maintain a positive overall quality level. Many fields can have the same
data type in tables that have high structure similarity, but the fields may have different semantics. The field
pair similarity mostly depends on the semantics of the field names. Overall quality of the match becomes
negative (matching precision < 50%) when too many of the detected matches are false positives due to a
high weight on data type or data structure. This means the manual effort to resolve false positives exceeds
the benefit of automatic match.

The ideal value for each of the 3 measures (matching completeness, matching precision and overall quality
) would be a value of 1.0. This would mean all true matches were discovered and no false positives were
found. Generally, this is not the case but if overall quality >= 50%, for example, matching completeness >=
75% and matching precision >= 75%, the matcher has a positive effect.

128 R.L.I.M.S. Vol. 4, May 2003

Structure weight

.28.25.20.15.10.05.00

matching

completeness

matching precision

overall quality

Structure weight

.28.25.20.15.10.05.00

M
ea

n

1.0

.5

0.0

-.5

-1.0

matching

completeness

matching precision

overall quality

M
ea

n

1.0

.5

0.0

-.5

-1.0

Figure 14. Overall Match Quality by Structure Weight for the Book Order Schema.

In summary, the following conclusions about SemMa can be drawn from the results.

• The addition of structure similarity in algorithm 4 and of the dictionary in algorithm 5 resulted in
higher recall values but this gain was offset by a drop in precision and thereby a drop in overall
quality of the match. The use of structure and the dictionary helped in finding more of the true
matches but had the side effect of increasing the number of false positives. Increase in false
positives means a decrease in precision since the number of true matches discovered is small
relative to the number of matches detected as positive.

• Like previous studies, this study found the contribution of data type should be between 0.15 and
0.2 in a hybrid matcher.

• More effort to reduce false positives is needed.

4.1 Comparing SemMa with SemInt and Cupid

In this section, we briefly compare SemMa with two other schema matching approaches, SemInt (Li and
Clifton, 1994) and Cupid (Madhavan, et al., 2001). SemMa was also compared with Cupid via
experimental evaluation.

To compare these three schema matching approaches, the input, output, implementation and matching
performance measurement aspects were summarized in table 2 (based on Do et al., 2002).

• Input: What kind of input data has been used? The simpler the test sample and the more
auxiliary information given, the more likely the system can achieve greater effectiveness but
less automation is achieved.

• Output: What information has been included in the output? How much post-processing is needed?
• Implementation: What language is used to implement the approach? Is a GUI available?
• Matching Performance Measurement: What measures have been used to evaluate the

matching performance?

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 129

 SemInt CUPID SemMa

Input schema types

relational, files XML, relational relational, XML

Output format

 links with similarity
values

link with similarity
values

Metadata
representation

unspecified (attribute-
based)

extended ER relational data model

Match granularity element-level:
attributes (attribute
clusters)

element and structure-
level

element level and
 structure level

Match cardinality 1:1 1:1 and n:1 1:1
Name-
based

- name equality,
synonyms,
hyponyms,
homonyms,
abbreviations

name, token equality,
synonyms,
hyponyms,
abbreviations

Constraint-
based

several criteria: data
type, length, key
info,…

data type and domain
compatibility,
referential constraints

data type, and
referential
constraints

Schema-
level
match

Structure
matching

- matching sub trees,
weighted by leaves

table and field similarity

Text-
oriented

- Instance-
level
matchers Constraint-

oriented
character / numerical
data pattern, value
distribution, averages

Reuse /auxiliary
information used

- thesauri, glossaries database thesaurus
and external dictionary
WordNet

Combination of
matchers

hybrid hybrid hybrid

Manual work /user
input

selection of match
criteria (optional);
selection of matching
attributes from attribute
clusters

user can adjust
threshold weights

user can vary type and
structure
weights

Application area data integration data translation, but
intended to be generic

schema integration

Match
Perfor
mance

Matching Quality
measurement

 by looking
correspondences
elements

completeness, precision
and overall quality

Implementation C (non OO) VB (object-based) C++ (object-oriented)

Remarks neural networks tree matching external dictionary

Table 2. Summary of Key Aspects of SemInt, Cupid and SemMa.

SemMa was based on a study of Cupid. Both are purely schema based, and both combine element level and
structural level matching. SemMa and Cupid use the same input format, generated by Microsoft BizTalk.

130 R.L.I.M.S. Vol. 4, May 2003

Identical source and target schemas, converted to XML files were used with both Cupid and SemMa to
evaluate their relative performance. The results are shown in figures 15 and 16 below.

matching approach

SemMaCupid

M
ea

n

1.0

.8

.6

.4

.2

-.0

-.2

-.4

-.6

matching

completeness

matching precision

overall quality

of the match

Figure 15. Recall, Precision & Overall Quality with Cupid and SemMa (Book Order Schema).

matching approach

SemMaCupid

M
ea

n

1.0

.8

.6

.4

.2

0.0

-.2

-.4

matching

completeness

matching precision

overall quality

of the match

Figure 16. Recall, Precision & Overall Quality with Cupid and SemMa (Product Orders Schema).

In both cases, SemMa achieved higher overall quality of match relative to Cupid. Algorithm 5 of SemMa
was used to produce the graphs shown in figures 15 and 16.

• The matching precision and matching completeness of Cupid for both source schemas were less
than 50%. Therefore the overall quality of the match for Cupid was negative, while the overall
quality of the match for SemMa was 66% for the Book Order schema and 4% for the Product
Orders schema. Cupid had a greater false positive effect for these two sample schemas than SemMa
did but SemMa also needs to reduce detection of false positives.

• The use of an external dictionary increased the recall values for SemMa allowing it to exceed the
performance of Cupid in this experiment. Cupid could not match “product” and “book” in the case
of the first source schema, because the internal thesaurus of Cupid does not list these two terms as
synonyms. An ontology may provide additional semantics to address this problem.

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 131

5 Conclusions

In this project, an automated solution for the well-known problem of semantic schema matching has been
examined. Identifying semantically similar terms in independently designed schemas is a critical step
towards achieving interoperability and integration in many applications, such as data warehousing, schema
integration for distributed systems, e-commerce message translation, and semantic query processing.

A number of solutions to automate the schema matching operation have been proposed in the literature.
Unlike these existing solutions, SemMa used three object-oriented classes to encapsulate an external
dictionary WordNet, a target database schema, source database schemas and a schema-matching algorithm.
SemMa, used Microsoft BizTalk (BizTalk, 2002) to parse the relational schema sources into XML. Next,
SemMa transformed the XML files into Database class object instances. Schema matching algorithms
were encapsulated as Database class member functions that performed field match tasks. The matching
algorithms were based on finding semantic similarity in terms of database field name, field data type and
table structure similarity. Synonym sets were used to represent the semantics of database field terms. The
semantic meanings of the field terms were determined using an independently defined, external dictionary.
Different weightings were also examined for the contribution of name, data type and structure to
determining a match.

In the experimental validation step of this study, the matching ability of five combinations of similarity
factors was used to identify strengths and limitations, and to provide suggestions for future work. The five
algorithms were composed from the similarity aspects (name, data type, etc.) and tested via a series of
experimental runs to evaluate performance with respect to overall match quality, recall and precision. The
experimental runs showed that using an external dictionary such as WordNet had a positive effect on recall,
but that this effect was offset by an increase in false positives for schemas for which the dictionary was not
adequate in terms of making finer distinctions and that the weight given to name similarity may require
adjustment. The experimental runs also showed that using suitable similarity weights for name, data type
and structure was important to schema matching performance.

Proposed future work includes improving the schema matching algorithms, considering the use of
externally defined ontologies (Wache et al., 1999) as semantic input in addition to the use of a more
comprehensive external dictionary, designing a graphical user interface to complement the SemMa
architecture and testing larger scale schemas. Further experimental evaluation of automated match
algorithms is an essential way of making progress on this hard problem of semantic schema matching.

In the case of schema matching for data warehousing applications, the deterministic structural
characteristics of a data warehouse star schema may prove useful in detecting semantic similarity. For
example, each instance of the central fact table of a star schema acts as an entry point into the matching
instance in each dimension table. These composite primary key to foreign key links could be used to detect
similar relationships in the source schema(s) to provide additional match information.

More powerful algorithms and additional semantic discovery knowledge sources such as ontologies are
needed to determine the distinctions between less obvious terms, such as “Territory” vs. “Region”, and
“ClientTypeID” vs. “CustomerID” to reduce false positives. Domain ontologies may be useful in avoiding
such mismatches since they provide greater information on term relationships, which could be exploited
here.

Improving semantic matching is an extremely interesting area for future research. Additional experiments
will provide greater sophistication in identifying appropriate similarity weights for name, data type
structure and additional kinds of similarity factors. Scalability analysis and further testing on large-sized
real-word schemas will contribute to further improvements. The work reported here is an exploratory step
in this direction.

132 R.L.I.M.S. Vol. 4, May 2003

References

Bergamaschi, S., Castano, S. and Vicini, M. (1999). Semantic integration of semi- structured and structured
data sources. ACM SIGMOD Record 28(1), 54-59.

Bernstein, P. A. and Rahm, E. (2000). Data warehouse scenarios for model management. In: ER 2000
Conference Proceedings. http://research.microsoft.com/~philbe/ER2000wSpringer.pdf. (retrieved in June
2002)

BizTalk Editor. Microsoft. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/bts_2002/htm/lat_xmltools_editor_intro_cyvg.asp. (Jan – Dec 2002)

Castano, S., DeAntonellis, V. and DeCapitani, S. (2001). Global viewing of heterogeneous data sources.
IEEE Transactions on Data and Knowledge Engineering 13(2), 277-297.

Do, Hong-Hai, Melnik, S. and Rahm, E. (2002). Comparison of schema matching evaluations. Proceedings
of GI-Work “Web and Database”, Erfurt, Oct. 2002.
http://www.cs.umd.edu/projects/plus/SHOE/pubs/heflin-thesis.pdf. (retrieved March 2001).

Do, Hong-Hai and Rahm, E. (2002). COMA-A system for flexible combination of schema matching
approaches. Proceedings of the 28th VLDB Conference, Hong Kong, China.

Doan, A. H., Domingos, P. and Halevy, A. (2001). Reconciling schemas of disparate data sources: a
machine-learning approach. ACM SIGMOD, May 2001, 509-520.

Goh, C. H. (1997). Representing and reasoning about semantic conflicts in heterogeneous information
Sources. Ph.D. Thesis, MIT Sloan School of Management. http://context2.mit.edu/coin/publications/goh-
thesis/goh-thesis.pdf (retrieved in March 2002).

Heflin, J. D. (2001). Towards the semantic Web: knowledge representation in a dynamic, distributed
environment. Ph.D. Thesis, University of Maryland, 2001.
http://www.cs.umd.edu/projects/plus/SHOE/pubs/heflin-thesis.pdf. (retrieved in March 2001).

Heiler, S. (1995). Semantic interoperability. ACM Computing Surveys 27(2), 271-277.

Hull, R. (1997). Managing semantic heterogeneity in databases: a theoretical perspective. Proceedings of
the sixteenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems May 1997.

Lawrence, R. and Barker, K. (2001). Integrating relational database schemas using a standardized
dictionary. SAC'2001 - 16th ACM Symposium on Applied Computing March 2001, Las Vegas, USA, 225-
230.

Li, W. and Clifton, C. (1994). Semantic integration in heterogeneous databases using neural networks.
Proceedings 20th VLDB Conference 1994, 1-12.

Madhavan, J., Bernstein, P. A. and Rahm, E. (2001). Generic schema matching with Cupid. Proceedings of
the 27th VLDB Conference 2001, 49-58.

Milo, T. and Zohar, S. (1998). Using schema matching to simplify heterogeneous data translation.
Proceedings of the 24th VLDB Conference 1998, 122-133.

Mitra, P., Wiederhold, G. and Jannink, J. (1999). Semi-automatic integration of knowledge sources.
Proceedings of Fusion 1999, Sunnyvale, USA.

http://www.semanticweb.org/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/bts_2002/htm/lat_xmltools_editor_intro_cyvg.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/bts_2002/htm/lat_xmltools_editor_intro_cyvg.asp
http://www.cs.umd.edu/projects/plus/SHOE/pubs/heflin-thesis.pdf
http://context2.mit.edu/coin/publications/goh-thesis/goh-thesis.pdf
http://context2.mit.edu/coin/publications/goh-thesis/goh-thesis.pdf
http://www.cs.umd.edu/projects/plus/SHOE/pubs/heflin-thesis.pdf

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 133

Ouksel, A. M. and Sheth, A. (1999). Semantic interoperability in global information systems. ACM
SIGMOD Record 28(1), 5-12.

Palopoli, L., Sacca, D., Terracina, G. and Ursino, D. (1999). A unified graph-based framework for deriving
nominal inter-schema properties, type conflicts and object cluster similarities. Proceedings of the 4th IFCIS
Conference On Cooperative Information Systems, IEEE Computer, 244-253.

Rahm, E. and Bernstein, P. A. (2001a). On matching schema automatically. Microsoft Research
Publications. http://www.research.microsoft.com/pubs. (retrieved on 5 Jun 2002).

Rahm, E. and Bernstein, P. A. (2001b). A survey of approaches to automatic schema matching. The VLDB
Journal 10, 334-350.

Stohr, T., Muller, R. and Rahm, E. (1999). An integrative and uniform model for metadata management in
data warehousing environments Proceedings of the International Workshop on Design and Management of
Data Warehouses, Germany, June 1999.

Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster,G., Neumann, M. and Hubner, S. (2001).
Ontology based integration of information - A survey of existing approaches. Proceedings of IJCAI-01
Workshop: Ontologies and Information Sharing, Seattle, WA 2001, 108-117.

WordNet: Online Lexical Dictionary. Cognitive Science Lab at Princeton.
http://www.cogsci.princeton.edu/~wn/. (Jan-Dec 2002)

Appendix

Product s
ProductID
ProductName
BrandID
BrandDescription

Geography
PostalCode
TerritoryID
TerritoryDescription
RegionID
RegionDescription

Clients
ClientID
ClientName
ClientTypeID
ClientTypeDescription
PostalCode
State

Sales
OrderID
OrderDetailID
ClientID(FK)
PostalCode(FK)
OrderDate(FK)
Quantity
UnitPrice

n

1

n

1

n

1

n

1

1

n

1

n

Time
Date
DayOfWeek
Month
Year
Quarter
DayOfYear
Holiday
Weekend
YearMonth
WeekOfYear

n 1n 1

Warehouse Star Schema

http://www.research.microsoft.com/pubs
http://www.cogsci.princeton.edu/~wn/

134 R.L.I.M.S. Vol. 4, May 2003

CATEGORY

CAT_ID
CAT_Name
SubCat_Of

B_C

BookID(FK)
CAT_ID(FK) 1n 1n

AUTHOR

A_ID
AName

A_B

BookID(FK)
A_ID(FK)
Position 1n 1n

BOOK

BookID
ISBN
TIitle
Year
RegularPrice
NumOfPages
BookDescription

n

1

n

1

n1 n1

B_ORDERING
BookID(FK)
OrderID(FK)
Price
Tax

1

n

1

n

BOOK_ORDER
OrderID
CustomerID(FK)
OrderDate
ShipMethod
ShipCost

1n 1n

PAYMENT

CustomerID(FK)
PType
CredCardNp
CredCardCompany
Expiration

CUSTOMER
CustomerID
FirstName
LastName
Sex
Street
City
State
ZipCode
DateEntered

1n 1n

n

1

n

1

Relational Book Order Schema

Region
RegionID
RegionDescription

Brands
BrandID
BrandDescription

TerritoryRegion
TerritoryID(FK)
Region(FK)

1

n

1

n

PaymentMethods
PaymentMethodID
PaymetnMehod

Products
Product ID
BrandID(FK)
ProductNamen1 n1

Territories
TerritoryID
TerritoryDescription

n

1

n

1

ShippingMethods
ShippingMethodsID
ShippingMethods

Payment
PaymentID
OrdreID(FK)
PaymentMethodID(FK)
PaymentAmount
PaymentDate

1

n

1

n

Customers
CustomerID
CompanyName
ContactLastName
BillAddress
Phone

OrderDetails
OrderDetailID
OrderID(FK)
ProductID(FK)
Quantity
UnitPrice
Discount

1

n

1

n

EmployeeTerritory
EmployeeID(FK)
TerritoryID(FK)

1

n

1

n

Orders
OrderID
ShippingMethodID(FK)
EmployeeID(FK)
CustomerID(FK)
OrderData
Quantity
Price
ShipAddress
PurchaseOrdNum

n

1

n

1

1

n

1

n

n

1

n

1

n1 n1

Eemployees
EmployeeID
FName
LName
Ti tle
Phone

n1 n1

n

1

n

1

Relaitonal Product Orders Schema

Sun and Rose, Automated Schema Matching Techniques: An Exploratory Study 135

Table 3. Correspondence Table: Manual matches between attributes in the target (star) schema and the
source schema, Book Order. In some cases, “id” and “idref” are shown rather than (data type) to indicate
the attribute is a table key.

Table
Name

Star Schema (target) Book Order Schema (source)

BOOK.BookID(id)
B_C.BookID(idref)
A_B. BookID(idref)

Products.ProductID(id)

B_ORDERING. BookID(idref)

Product

Products.ProductName(string) BOOK.Title(string)
BOOK_ORDER.OrderID (idref) Sales.OrderID (id)
B_ORDERING.OrderID(idref)
BOOK_ORDER.CustomerID(idref)
PAYMENT.CustomerID(idref)

Sales.ClientID(idref)

Customer. CustomerID(idref)
Sales.PostalCode(idref) CUSTOMER.ZipCode(string)
Sales.OrderDate(idref) BOOK_ORDER.OrderDate(dateTime)

Sales.UnitPrice(float) B_ORDERING.Price(number)

Sales.OrderDetailsID(string) B_ORDERING.BookID(idref)

BOOK.BookID(id)

B_C.BookID(idref)

A_B. BookID(idref)

Sales

Products.ProductID(id)

B_ORDERING. BookID(idref)

BOOK_ORDER.CustomerID(idref)
PAYMENT.CustomerID(idref)

Clients.ClientID(id)

Customer. CustomerID(idref)
CUSTOMER.FirstName(string) Clients.ClientName(string)

CUSTOMER.LastName(string)
Clients.PostCode(string) CUSTOMER.ZipCode(string)

Clients

Customers.State(string) CUSTOMER.State(string)
Geography Geography.PostalCode(id) Customers.ZipCode(string)
Time Time.Date(id) BOOK_ORDER.OrderDate(dateTime)

Table 4. Correspondence Table: Manually matched attributes in the target star schema and the relational
source schema, Product Orders.
Table
Name

Star Schema (target) Product Orders Schema (source)

Products.ProductID(id) Products.ProductID(id)
OrderDetails.ProductID(idref)

Products.ProductName(string) Products.ProductName(sting)
Products.BrandID(idref) Products.BrandID(string)
Brands.BrandID

Product

Products.BrandDescription(string) Brands.BrandDescription(string)

136 R.L.I.M.S. Vol. 4, May 2003

Orders.OrderID (id)
OrderDetails.OrderID(idref)

Sales.OrderID (id)

Payment.OrderID(idref)
Orders.CustomerID(idref) Sales.ClientID(idref)
Customers. CustomerID(id)

Sales.PostalCode(idref) Customers.PostalCode(string)
Sales.OrderDate(idref) Orders.OrderDate (dateTime.tz)
Sales.Quantity(int) OrderDetails.Quantity(int)
Sales.UnitPrice(float) OrderDetails.UnitPrice(number)
Sales.Discount(float) OrderDetails.Discount(number)
Sales.OrderDetailsID (string) OrderDetails. OrderDetailID(id)

OrderDetails.ProductID(idref)

Sales

Sales.ProductID(idref)
Products.ProductID(id)
Customers.CustomerID(id) Clients.ClientID(id)
Orders.CustomerID(idref)
Customers.CompanyName(string)
Customers.ContactFirstName(string)

Clients.ClientName(string)

Customers.ContactLastName(string)
Clients.PostCode(string) Customers.PostCode(string)

Clients

Clients.State(string) Customers.StateOrProvince(string)
Geography.PostalCode(id) Customers.PostalCode(string)

Territories. TerritoryID(id)
TerritoryRegion. TerritoryID(idref)

Geography.TerritoryID (string)

EmployeeeTerritory. TerritoryID(idref)
Geography.TerritoryDescription
(string)

Territories. TerritoryDescription(string)

Region.RegionID(id) Geography .RegionID(string)
TerritoryRegion. RegionID(idref)

Geography

Geography.RegionDescription
(string)

Region.RegionDescription(string)

Time Time.Date(id) Orders.OrderDate(dateTime)

Note: The table shows tableName.attributeName(datatype). In some cases, “id” and “idref” are shown
rather than data type to indicate the attribute is a table key.

	Xiao Long Sun
	Ellen Rose
	Abstract.
	1Introduction
	
	
	
	Figure 1: Classification of Existing Schema Matching Approaches.

	2The Proposed Semantic Match Approach
	2.1Design of the Semantic Matcher
	2.1.1Name Match

	3Experimental Validation Study
	4Analysis of Results
	
	
	
	Figure 13. Overall Match Quality by Type Weight for the Book Order Schema.
	Figure 14. Overall Match Quality by Structure Weight for the Book Order Schema.
	Table 2. Summary of Key Aspects of SemInt, Cupid and SemMa.
	Figure 15. Recall, Precision & Overall Quality with Cupid and SemMa (Book Order Schema).
	Figure 16. Recall, Precision & Overall Quality with Cupid and SemMa (Product Orders Schema).

	5Conclusions
	References
	Appendix

