120,501 research outputs found

    Reliable ABC model choice via random forests

    Full text link
    Approximate Bayesian computation (ABC) methods provide an elaborate approach to Bayesian inference on complex models, including model choice. Both theoretical arguments and simulation experiments indicate, however, that model posterior probabilities may be poorly evaluated by standard ABC techniques. We propose a novel approach based on a machine learning tool named random forests to conduct selection among the highly complex models covered by ABC algorithms. We thus modify the way Bayesian model selection is both understood and operated, in that we rephrase the inferential goal as a classification problem, first predicting the model that best fits the data with random forests and postponing the approximation of the posterior probability of the predicted MAP for a second stage also relying on random forests. Compared with earlier implementations of ABC model choice, the ABC random forest approach offers several potential improvements: (i) it often has a larger discriminative power among the competing models, (ii) it is more robust against the number and choice of statistics summarizing the data, (iii) the computing effort is drastically reduced (with a gain in computation efficiency of at least fifty), and (iv) it includes an approximation of the posterior probability of the selected model. The call to random forests will undoubtedly extend the range of size of datasets and complexity of models that ABC can handle. We illustrate the power of this novel methodology by analyzing controlled experiments as well as genuine population genetics datasets. The proposed methodologies are implemented in the R package abcrf available on the CRAN.Comment: 39 pages, 15 figures, 6 table

    Narrowing the Gap: Random Forests In Theory and In Practice

    Full text link
    Despite widespread interest and practical use, the theoretical properties of random forests are still not well understood. In this paper we contribute to this understanding in two ways. We present a new theoretically tractable variant of random regression forests and prove that our algorithm is consistent. We also provide an empirical evaluation, comparing our algorithm and other theoretically tractable random forest models to the random forest algorithm used in practice. Our experiments provide insight into the relative importance of different simplifications that theoreticians have made to obtain tractable models for analysis.Comment: Under review by the International Conference on Machine Learning (ICML) 201

    Stacking for machine learning redshifts applied to SDSS galaxies

    Full text link
    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4% and 2.5% for the explored metrics and comes at almost no additional computational cost.Comment: 13 pages, 3 tables, 7 figures version accepted by MNRAS, minor text updates. Results and conclusions unchange

    Cross-validation and Peeling Strategies for Survival Bump Hunting using Recursive Peeling Methods

    Full text link
    We introduce a framework to build a survival/risk bump hunting model with a censored time-to-event response. Our Survival Bump Hunting (SBH) method is based on a recursive peeling procedure that uses a specific survival peeling criterion derived from non/semi-parametric statistics such as the hazards-ratio, the log-rank test or the Nelson-Aalen estimator. To optimize the tuning parameter of the model and validate it, we introduce an objective function based on survival or prediction-error statistics, such as the log-rank test and the concordance error rate. We also describe two alternative cross-validation techniques adapted to the joint task of decision-rule making by recursive peeling and survival estimation. Numerical analyses show the importance of replicated cross-validation and the differences between criteria and techniques in both low and high-dimensional settings. Although several non-parametric survival models exist, none addresses the problem of directly identifying local extrema. We show how SBH efficiently estimates extreme survival/risk subgroups unlike other models. This provides an insight into the behavior of commonly used models and suggests alternatives to be adopted in practice. Finally, our SBH framework was applied to a clinical dataset. In it, we identified subsets of patients characterized by clinical and demographic covariates with a distinct extreme survival outcome, for which tailored medical interventions could be made. An R package `PRIMsrc` is available on CRAN and GitHub.Comment: Keywords: Exploratory Survival/Risk Analysis, Survival/Risk Estimation & Prediction, Non-Parametric Method, Cross-Validation, Bump Hunting, Rule-Induction Metho

    Detection of Uniform and Non-Uniform Differential Item Functioning by Item Focussed Trees

    Get PDF
    Detection of differential item functioning by use of the logistic modelling approach has a long tradition. One big advantage of the approach is that it can be used to investigate non-uniform DIF as well as uniform DIF. The classical approach allows to detect DIF by distinguishing between multiple groups. We propose an alternative method that is a combination of recursive partitioning methods (or trees) and logistic regression methodology to detect uniform and non-uniform DIF in a nonparametric way. The output of the method are trees that visualize in a simple way the structure of DIF in an item showing which variables are interacting in which way when generating DIF. In addition we consider a logistic regression method in which DIF can by induced by a vector of covariates, which may include categorical but also continuous covariates. The methods are investigated in simulation studies and illustrated by two applications.Comment: 32 pages, 13 figures, 7 table
    • …
    corecore