850 research outputs found

    Distributed Multicell Beamforming Design Approaching Pareto Boundary with Max-Min Fairness

    Full text link
    This paper addresses coordinated downlink beamforming optimization in multicell time-division duplex (TDD) systems where a small number of parameters are exchanged between cells but with no data sharing. With the goal to reach the point on the Pareto boundary with max-min rate fairness, we first develop a two-step centralized optimization algorithm to design the joint beamforming vectors. This algorithm can achieve a further sum-rate improvement over the max-min optimal performance, and is shown to guarantee max-min Pareto optimality for scenarios with two base stations (BSs) each serving a single user. To realize a distributed solution with limited intercell communication, we then propose an iterative algorithm by exploiting an approximate uplink-downlink duality, in which only a small number of positive scalars are shared between cells in each iteration. Simulation results show that the proposed distributed solution achieves a fairness rate performance close to the centralized algorithm while it has a better sum-rate performance, and demonstrates a better tradeoff between sum-rate and fairness than the Nash Bargaining solution especially at high signal-to-noise ratio.Comment: 8 figures. To Appear in IEEE Trans. Wireless Communications, 201

    Robust Linear Precoder Design for Multi-cell Downlink Transmission

    Full text link
    Coordinated information processing by the base stations of multi-cell wireless networks enhances the overall quality of communication in the network. Such coordinations for optimizing any desired network-wide quality of service (QoS) necessitate the base stations to acquire and share some channel state information (CSI). With perfect knowledge of channel states, the base stations can adjust their transmissions for achieving a network-wise QoS optimality. In practice, however, the CSI can be obtained only imperfectly. As a result, due to the uncertainties involved, the network is not guaranteed to benefit from a globally optimal QoS. Nevertheless, if the channel estimation perturbations are confined within bounded regions, the QoS measure will also lie within a bounded region. Therefore, by exploiting the notion of robustness in the worst-case sense some worst-case QoS guarantees for the network can be asserted. We adopt a popular model for noisy channel estimates that assumes that estimation noise terms lie within known hyper-spheres. We aim to design linear transceivers that optimize a worst-case QoS measure in downlink transmissions. In particular, we focus on maximizing the worst-case weighted sum-rate of the network and the minimum worst-case rate of the network. For obtaining such transceiver designs, we offer several centralized (fully cooperative) and distributed (limited cooperation) algorithms which entail different levels of complexity and information exchange among the base stations.Comment: 38 Pages, 7 Figures, To appear in the IEEE Transactions on Signal Processin

    Adaptive Multicell 3D Beamforming in Multi-Antenna Cellular Networks

    Full text link
    We consider a cellular network with multi-antenna base stations (BSs) and single-antenna users, multicell cooperation, imperfect channel state information, and directional antennas each with a vertically adjustable beam. We investigate the impact of the elevation angle of the BS antenna pattern, denoted as tilt, on the performance of the considered network when employing either a conventional single-cell transmission or a fully cooperative multicell transmission. Using the results of this investigation, we propose a novel hybrid multicell cooperation technique in which the intercell interference is controlled via either cooperative beamforming in the horizontal plane or coordinated beamfroming in the vertical plane of the wireless channel, denoted as adaptive multicell 3D beamforming. The main idea is to divide the coverage area into two disjoint vertical regions and adapt the multicell cooperation strategy at the BSs when serving each region. A fair scheduler is used to share the time-slots between the vertical regions. It is shown that the proposed technique can achieve performance comparable to that of a fully cooperative transmission but with a significantly lower complexity and signaling requirements. To make the performance analysis computationally efficient, analytical expressions for the user ergodic rates under different beamforming strategies are also derived.Comment: Accepted for publication in IEEE Transaction on Vehicular Technolog

    Coordinated Multi-cell Beamforming for Massive MIMO: A Random Matrix Approach

    Get PDF
    We consider the problem of coordinated multi- cell downlink beamforming in massive multiple input multiple output (MIMO) systems consisting of N cells, Nt antennas per base station (BS) and K user terminals (UTs) per cell. Specifically, we formulate a multi-cell beamforming algorithm for massive MIMO systems which requires limited amount of information exchange between the BSs. The design objective is to minimize the aggregate transmit power across all the BSs subject to satisfying the user signal to interference noise ratio (SINR) constraints. The algorithm requires the BSs to exchange parameters which can be computed solely based on the channel statistics rather than the instantaneous CSI. We make use of tools from random matrix theory to formulate the decentralized algorithm. We also characterize a lower bound on the set of target SINR values for which the decentralized multi-cell beamforming algorithm is feasible. We further show that the performance of our algorithm asymptotically matches the performance of the centralized algorithm with full CSI sharing. While the original result focuses on minimizing the aggregate transmit power across all the BSs, we formulate a heuristic extension of this algorithm to incorporate a practical constraint in multi-cell systems, namely the individual BS transmit power constraints. Finally, we investigate the impact of imperfect CSI and pilot contamination effect on the performance of the decentralized algorithm, and propose a heuristic extension of the algorithm to accommodate these issues. Simulation results illustrate that our algorithm closely satisfies the target SINR constraints and achieves minimum power in the regime of massive MIMO systems. In addition, it also provides substantial power savings as compared to zero-forcing beamforming when the number of antennas per BS is of the same orders of magnitude as the number of UTs per cell
    • …
    corecore