550,906 research outputs found

    Geochemistry of reduced inorganic sulfur, reactive iron, and organic carbon in fluvial and marine surface sediment in the Laizhou Bay region, China

    Get PDF
    Understanding the geochemical cycling of sulfur in sediments is important because it can have implications for both modern environments (e.g., deterioration of water quality) and interpretation of the ancient past (e.g., sediment C/S ratios can be used as indicators of palaeodepositional environment). This study investigates the geochemical characteristics of sulfur, iron, and organic carbon in fluvial and coastal surface sediments of the Laizhou Bay region, China. A total of 63 sediment samples were taken across the whole Laizhou Bay marine region and the 14 major tidal rivers draining into it. Acid volatile sulfur, chromium (II)-reducible sulfur and elemental sulfur, total organic carbon, and total nitrogen were present in higher concentrations in the fluvial sediment than in the marine sediment of Laizhou Bay. The composition of reduced inorganic sulfur in surface sediments was dominated by acid volatile sulfur and chromium (II)-reducible sulfur. In fluvial sediments, sulfate reduction and formation of reduced inorganic sulfur were controlled by TOC and reactive iron synchronously. High C/S ratios in the marine sediments indicate that the diagenetic processes in Laizhou Bay have been affected by rapid deposition of sediment from the Yellow River in recent decades

    Photolytic Hazes in the Atmosphere of 51 Eri b

    Get PDF
    We use a 1D model to address photochemistry and possible haze formation in the irradiated warm Jupiter, 51 Eridani b. The intended focus was to be carbon, but sulfur photochemistry turns out to be important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2_2S into elemental sulfur, here treated as S8_8. In the cooler models, S8_8 is predicted to condense in optically thick clouds of solid sulfur particles, whilst in the warmer models S8_8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we have discussed is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.Comment: 24 pages including 11 figures and a tabl

    Sulfur analysis of Bolu-Mengen lignite before and after microbiological treatment using reductive pyrolysis and gas chromatography/mass spectrometry

    Get PDF
    Atmospheric pressure-temperature programmed reduction coupled with on-line mass spectrometry (AP-TPR/MS) is used for the first time on microbiologically treated coal samples as a technique to monitor the degree of desulfurization of the various sulfur functionalities. The experimental procedure enables the identification of both organic and inorganic sulfur species present in the coal matrix. A better insight in the degradation of the coal matrix and the accompanying processes during the AP-TPR experiment is obtained by a quantitative differentiation of the sulfur. The determination of the sulfur balance for the reductive pyrolysis gives an overview of the side reactions and their relative contribution in the total process. The volatile sulfur species are unambiguously identified using AP-TPR off-line coupled with gas chromatography/mass spectrometry (GC/MS). In this way, fundamental mechanisms and reactions that occur during the reductive pyrolysis could be quantified, explaining the differences in AP-TPR recoveries. Therefore, this study gives a clearer view on the possibilities and limitations of AP-TPR as a technique to monitor sulfur functionalities in coal

    The effect of sulfur and zirconium Co-doping on the oxidation of NiCrAl

    Get PDF
    The adhesion behavior of Al2O3 scales formed on NiCrAl+Zr alloys was examined as a function of both sulfur and zirconium doping levels. In general, very high levels of zirconium were required to counteract the detrimental effects of sulfur. A sulfur-zirconium adherence map was constructed, as determined from the oxidation and spalling behavior in 1100 C cyclic tests. For low sulfur alloys, the amount of zirconium required for adherence at any given sulfur level can be described by Zr greater than 600 S sup 0.2 (in ppma). These results underscore the importance of sulfur to adhesion mechanisms and suggests that sulfur gettering is a first order effect of reactive element additions to MCrAl alloys

    Uses of lunar sulfur

    Get PDF
    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical, and biochemical properties. Although known abundances on the Moon are limited (approximately 0.1 percent in mare soils), sulfur is relatively extractable by heating. Coproduction of sulfur during oxygen extraction from ilmenite-rich mare soils could yield sulfur in masses up to 10 percent of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource

    Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1),(2020): 3, doi:10.1186/s40793-019-0348-0.Background: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. Results: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. Conclusions: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.This work was carried out at the Microbial Diversity summer course at the Marine Biological Laboratory in Woods Hole, MA. The course was supported by grants from National Aeronautics and Space Administration, the US Department of Energy, the Simons Foundation, the Beckman Foundation, and the Agouron Institute. Additional funding for SER was provided by the Marine Biological Laboratory

    Large sulfur isotope fractionations in Martian sediments at Gale crater

    No full text
    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods

    Elemental Abundances of Blue Compact Dwarfs from mid-IR Spectroscopy with Spitzer

    Get PDF
    We present a study of elemental abundances in a sample of thirteen Blue Compact Dwarf (BCD) galaxies, using the \sim10--37μ\mum high resolution spectra obtained with Spitzer/IRS. We derive the abundances of neon and sulfur for our sample using the infrared fine-structure lines probing regions which may be obscured by dust in the optical and compare our results with similar infrared studies of starburst galaxies from ISO. We find a good correlation between the neon and sulfur abundances, though sulfur is under-abundant relative to neon with respect to the solar value. A comparison of the elemental abundances (neon, sulfur) measured from the infrared data with those derived from the optical (neon, sulfur, oxygen) studies reveals a good overall agreement for sulfur, while the infrared derived neon abundances are slightly higher than the optical values. This indicates that either the metallicities of dust enshrouded regions in BCDs are similar to the optically accessible regions, or that if they are different they do not contribute substantially to the total infrared emission of the host galaxy.Comment: 11 pages, 6 figures, accepted by Ap
    corecore