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USES OF LUNAR SULFUR

D. Vaniman, D. Pettit*, and G. Heiken

EES-1 ( *M-9)
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Los Aiamos NM 87545
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Sulfur and sulfur compounds have a wide range of applications for their flu_ electn'cal, chemica£
and biochemical _s. Although known abundances on the Moon are limited (--0.1_, in mare
soils), sulfur is relatively extractable by heating. Copmduch'on of sulfur during oxygen avtraction from

ilmentte-rich marc soils could yield sulfur in masses up to 10_ of the mass of ox3_en prrMuced. Sulfur
desenms serious consideration as a lunar resource.

INTRODUCTION

Volatile constituents such as molecular oxygen, nitrogen, water,

and hydrocarbons are rare on the Moon. The absence of such

molecules is one of the problems that confl'onts prolonged lunar

exploration or permanent lunar bases. The lightweight com-

pounds of the elements from hydrogen to oxygen are vital for

life, and many of these elements play important roles as fuels,

solvents, and industrial chemicals in processes that have become

the necessities of industrialized life on Earth. The scarcity of these

elements on the Moon thus raises two barriers against easy

expansion into space: one against the simple need to stay alive

and the other against easy transplantation of Earthbound industrial

processes.

With imagination this assessment need not be so bleak. Living

in space will require adaptation, but it also opens opportunities

to reassess the ways in which we live and use available resources.

Sulfur on the Moon may well prove a satisfactory replacement for

lighter volatile elements and their compounds in some applica-

tions. It may even open new possibilities and uses that surpass

a mere duplication of what is already done on Earth.

Our present knowledge of lunar .samples suggests that the best

place to collect sulfur on the Moon is from mare soils and rocks.

Although sulfur is not so abundant that it is available without

effort, it does rank eleventh in weight abundance among the

elements in average lunar mare rocks. Gibson and Moore (1974)

found that the high-Ti mare basalts, in particular, have high sulfur

contents, in the range of 0.16% to 0.27% by weight. These authors

also make the important point that lunar basalts actually have

more sulfur than terrestrial basalts, which seldom have more than

0.15%.

Although terrestrial basalLs are relatively low in dispersed sulfur

content, this sulfur is extracted and concentrated by circulation

of heated water. This process results in the remarkable sulfur-rich

environments at midocean spreading ridges, where base-metal

sulfides are deposited in great abundance and "unearthly" sulfur-

metabolizing organisms proliferate. Clearly, we cannot expect

heated water to have concentrated sulfur on the Mcx)n. The

relatively high sulfur content of lunar mare basalt 12036, however,

led Gibson etal. (1977) to speculate on the lX)ssibility of Fe-FeS

liquid segregation and accumulation in some mare magmas.

Discovery of sulfur-rich ()re bodies on the Moon would be a major

find that could accelerate exploitation immensely, but until their

existence is actually proven, it would be unwise to plan on their

usc.

Another possible means for natural concentration of lunar sulfur

may be vapor transport and deposition; the abundance of sulfur

in volatile coatings on lunar pyroclastic glass droplets strongly

suggests that sulfur was involved as a propellant gas in fire-

fountain types of eruptions (Butler and Meyer, 1976). However,

the analyses of volatile coatings on glass droplets suggest that

significant amounts of sulfur are lost rather than trapped on

droplet surfaces as a result of pyroclastic eruption. For example,

the sulfur contents of the famous pyroclastic "orange glas,s"

deposit of Shorty crater at Apollo 17 contains only 0.06-0.08%

sulfur (Gibson and Moore, 1974), whereas comparable chilled

Apollo 17 lavas retain more than O.16% sulfur. Unless geologic

traps for volatile sulfur are found on the Moon (perhaps in vesicle

pipes or lava tubes?), there is reason to believe that lunar volcanic

gases have acted more effectively in the dispersal of sulfur than

in its concentration. The formation of soil on top of sulfur-rich

lava flows also results in decreased sulfur content, through the

combined processes of sulfur volatilization by small meteoritic

impacts and of dilution by addition of sulfur-poor highland

materials (Gibson and Moore, 1973, 1974). For practicai pur-

poses, the ranking of sulfur contents presently known in lunar

samples is about as _own in Table 1.

TABLE.1. .Sulfur in lunar samples.

Rock or Soil T}pc Sulfur (k)ntent (_%)

High-Ti mare basalLs (A-17 )

lx)w-Ti mare basalts (A-t2)

High-Ti mare _,ils (A-17)

Ix)w-Ti mare _)ils (A-l 5)
Highland r(_:ks (A-16)

Highland .soils (A-16)

0.16-0.27 (avg 0.21 )

0.06-0.15 (avg 0.11 )
0.06-0.13 (avg 0.10)

0.05-0,06 (avg 0.05 )
0.01-0.14 (avg 0.07)

0.03-0.09 (a_,g 0.06 )

Data from Gibson and M¢_we (1973, 1974), G_son et al. (1977),
Kerridge et al. (1975), and L_'PET (1972). Note that the ranges and
averages cited are for specific At'x)llo sites (12, 15, 16, and 17); the data
include pos,siblc anal)Ileal differences between laboratories.

Although the richest known sources of sulfur are the high-Ti

mare basalts, extraction of this sulfur would require energy-

intensive crushing of hard rock. Most of the sulfur in the basalts

occurs as sulfide in the mineral troilite (FeS). The easiest source

of sulfur is high-Ti mare soils, which need not be crushed prior

to processing. In addition to the sulfur in troilite, some surface-

correlated sulfur can bc found in soil samples. In pyroclastic soils,

surface-correlated metal sulfides probably occur (Buth, r aml
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Meyer, 1976; Cirlin and Housley, 1979), but sulfur may al_) occur

as metal sulfates that are readily volatilized to produce _)2 (I).

McKay, personal communication, 1988). The heating experiments

of Gibson and Moore (1973) on Apollo 15 and 16 samples

indicate that 12-30% of the total soil sulfur can be extracted at

750°C, 50-70% of the total sulfur is extracted at 950°C, and 85-

95% of the total sulfur is extracted at 1100°C (vacuum condi-

tions, <2 × 10 -_ torr). Gibson and Motwe (1974) suggest that the

12-30% (7( the suffur extracted at 750°C is surface correlated.

Most (ff the higher temperature sulfur is probably derived from

troilite. "Ilae sulfur is given off as _)2 and H2S, which Gibson

(1973) attributes mainly to reaction between troilite and other

phases at high temperatures.
Sulfur is not the only volatile element to be won. Heating of

typical lunar .softs will be useful in the cogeneration of small

amounts of hydrogen (about 0.001-0.020%), helium (0.001-

0.006%), carbon (0.001-0.028%), and nitrogen (0.001-0.016%)

that are the solar-wind constituents of lunar fines ( Williams and

Jadwick, 1980). Heating of high-Ti pyroclastic deposits to 1200°C

will also provide some cogeneration of Zn (0.01-0.03%), Na, tC

CI (0.002-0.010%), F (0-0.02%), and other _apor-transported ele-

ments (Cirlin and Housle); 1979; Butler and Meyer, 1976; Meyer

et al., 1975).

Thus, although sulfur is not richly concentrated on the Moon,

it is present in sufficient abundance and associated with other

potentially useful elements that make the mining of lunar sulfur

worth serious consideration. However, this consideration will not

go vet 3' far if there is not a wcil-established set of end u_s for

the sulfur and its codeposited elements. Sulfur has a broad range

of chemical and physical properties that may make it extremely

useful. Perhaps most importantly, sulfur and sulfur compounds

have the capacity to substitute for water in many aqueous-based

mechanical and chemical processes on Earth. Sulfur research is

.so broad and diverse that we cannot full}, cover its terrestrial

applications in this short paper. Moreover, we can only begin to

speculate on the possible uses of sulfur in space. Our purpose

is rather to suggest several starting points for more imaginative

studies on the uses of lunar sulfur. These starting points arc

diseu_sed below under three broad categories: (1)the use of

sulfur fluid and physical properties, ( 2 )thc use of sulfur electrical

properties, and (3)the use of sulfur chemical and biochemical

properties.

THE USE OF SULFUR FLUID

AND PHYSICAL PROPERTIES

Pure sulfur is fluid over a broad range of temperatures.

Depending on crystal form, sulfur melts at 112.8°C (orthorhom-
bic) or 119°C (monoclinic; Weast, 1982). Although the liq_Jid

does not boil until 444.6°C, it begins to lose its low-temperature

fluidity and become very viscous at about 160°C. Figure 1 shows

the variability of viscosity with temperature. At average lunar day-

time temperatures (_107°C) minimal heat input would maintain

sulfur as a low-vi._osity liquid. At the maximum lunar equatorial

daytime temperature (123_C) no additional heat would be neces-

sary to keep sulfur molten.

Sulfur Concrete

A direct application of liquid sulfur on the Moon would be in

the production of sulfur concrete (Crow and Bates, 1970). Sulfur

concrete has found many applications on Earth and is being used

in areas where corrosion resistance is important or in extreme
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Fig. 1. Viscosity of liquid sulfur (gas free) as a function of temperature

(data from Weast, 1982).

desert environments (Sulphur Institute, 1979). A particular

advantage of sulfur concrete on the Moon is that it needs no water

in its production and is best poured hot at temperatures of 125 °

to 140 ° C, which are only slightly higher than the average lunar

daytime temperature. Contrasted with water-based concrete,

sulfur concrete attains most of its final strength within hours

rather than weeks and has more than twice the compressive and

tensile strength. Weight ratios of sulfur to aggregate are

approximately 1:3, so that the amount of sulfur concrete pro-

duced could be about four times the amount of sulfur mined on

the Moon. Thermal stability is a concern; Crow and Bates (1970)

suggest that suffur concrete be used ordy it] buried structures on

the Moon where full-sun thermal exposure will not be a problem.

Sulfur Sealants

Lunar habitats must be capable of maintaining a pressurized

atmosphere. Some redundancy in sealants to contain the atmo-

sphere is desirable, and a method of spray-impregnating walls of

regolith or the internal surfaces of lava tubes might be useful.

Thioelastomers (thiokols) can be mixed with small amounts of

molten sulfur to make extremely tough materials (Lec/ercq, 1972).

The production requirements of hard or rubbery coatings are

presently too complex for simple extension to the Moon, but

imaginative use of organic waste with lunar sulfur might produce

a useful sealant,

Sulfur Dioxide for Fluid Uses

As noted in the introduction, Gibson (1973) found that most

sulfur released from lunar ,samples by heating in vacuum is not

released msS but as SO2 or HzS. Contrasted with pure sulfur, SO 2
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has a more useful range (ff fluid properties and has physical-

chemical properties that can fit special fluid-application require-

ments. Sulfur dioxide is liquid bctween -75.52°C and -10.08°C,

with correstxmding viscosities between 0.0068 and 0.0043 poise.

This liquid is a polar solvent, although its dipolar attractive field

is weaker than that of water. Where water is an excellent solvent

for strong dipoles, liquid SO2 is a better ,solvent for nonpolar or

easily polarized molecules. Sulfur dioxide is a good ,solvent for

halogens and for olefinic and aromatic hydrocarborts, but it is a

poor solvent for aiiphatic hydrocarbons (Burow, 1970). The

halogens are quite .soluble in liquid SO2; metal chlorides are highly

soluble and this property may be particularly important on the

Me×re. There is strong evidence that many of the metals with high

Ix)iling ixfincs (e.g., Zn and Ga) that are found on the surfaces

of lunar pyroclastic particles were transported and deposited _.s

more volatile metal chlorides (Meyer et al., 1975). If this is the

case, then these dqyosits might be easily stripped and collected

fi'om pyroclastic dcT_)sits using an SO 2 washing process.

There are many potential u_s of SO2 as a fluid. Some attractive

possibilities are in refrigerant .systems, in turbines (Rankinc cTcle),

in heat transfer systems (liquid phase), in heat pipes (gas phase),

in slurry lines for regolith or waste transport, and in hydratdic

s)_tcms. A_ailability of SO 2 will open a broad range of pos,sibilities

for controlling energy and materials on the Moon. An important

caveat in the u._" of SO2, however, is its extreme toxicit T. The

fluids in use would have to be isolated from habitats.

THE USE OF SULIbUR

ELECTRICAL PROPERTIES

Sulfur, especially in Na-S combinations, has potential u,_ in both

.solar energy collection systems and in storage batteries.

Solar Energy Conversion

There is considerable active research into CuzS-based thin-film

solar cells and several sulfur-bearing photoelectrochemical (PEC)

cells (Ctg_pra and Da_ 1983). The thin-film solar cells empli)y

a heterojunction between two metal sulfides, one of which is CH2S

(p-junction) and the other a sulfide of Cd or ZnCd (n-junction).

Such cells are still being perfected; efficiencies were around 7%

in the mid 1970s but had risen to about 10% by 1981. One

advantage of these cells is that they are, as the name implies, thin

films of relatively light mass. The cells are layered structures, with

layers as thin as a few tens or hundreds of angstroms deposited

in sequence. Total thickness of the cell would typically be 5-

50 #m. The efficiency of present Cu2S/CdS cells crests at light

intensities between 20 and 120 mW/cm 2, a range that includes

the one-sun intensity of 50 mW/cm 2. Although the efficiency of

this system is currently less than half that of some advanced

photovoltaics ,systems now under investigation (InP or GaAs;

Hood, 1986), there is a possible advantage in that the sulfur

would not have to be imported.

In practice, the need for some material imports (mostly Cd)

may be a I_)tential problem in production of thin-film solar cells

on the Moon. Most of the cell mass is Zn and Cd, and Cd is critical

to efficient thin-film cells. Although there is good reason to

believe that both S and Zn occur in extractable quantities in lunar

pyroclastic deposits (0.07% S and 0.02% Zn; Gibson and Mo_we,

1974; Butler and Meyer, 1976), Cd is not comparably enriched.

In addition, once the cells are produced, it is not known how

well the}, might survive in the .space environment. Still, this is an

energy conversion .system that is worth serious consideration. One

[x)tentially ad_-antagcous aspect of the thin film cells is the

t_idcnce that _-acuum e_-aporation is probably the best method

for cell production (Clu)pra and 1)as. 1983). High-vacuum

s3,_tcms should be relatively ea,_, to opt'rate in space.

An alternative approach to the u_ _ of sulfur in solar energy

collection is through a photoelcctrocbemical (PEC) effect. Sulfur

is important in the electrolyte solution _s a "hole ,_avenger" at

the photoanode. A well studied PEC cell configuration uses a Cd_"

photoanode with a CdS interface against an electrolyte (Cholwa

and lkas, 1983). One practical electrolyte contains various

proportions of Na2S, S, and NaOH (Russak et al., 1980). The cell

efficiencics observed range from 3% to 8%. As with the thin film

cells, a potential drawback may be the need to iml_)rt Cd and,

in this case, _" for hmar prtxluction. Economic study may well

show that it would he more ad_-antagcous to form light photocells

on Farth and export them intact to the M(_)n, or to rely on

lX)ssible crude but rugged ceils such as those that might be made

out of minimally processed lunar ilmenite (Moet eta/., ! 987 ).

Electrical Energy Storage

The greatest pa}x_ff in the use of indigenous lunar sulfur for

electrical applications may be in the in situ prtxluction of rela-

tively mas,sivc storage batteries. Sulfur-b_sed storage batteries have

widespread applications on Earth. In addition to the ubiquitous

Pb-PbO2-HeSO. _ battery (which, tmfortunately for lunar use,

requires precious water), there is active research in the

d(welopment of molten electrol}le Na-S storage cells for electric

vehicles. These ceils operate at alx)ut 3(X)-350 ° C, with a two-stage

di_harge that derives electrons from Na-to-Na ÷ oxidation by

(1) 5S + 2Na _ Na2Ss and (2)3Na2Ss + 4Na _ 5Na2S_. The dis-

charge voltage of the cell varies with the reaction stage, from ',d'a>ut

2.08 V for reaction ( 1 ) to 1.76 V fi)r reaction (2) (Bagotzky aml

Skundin, 1980, pp. 320-337). The predicted cell performance h)r

the near future is 150-2(X)W-hr/kg. A sehematic cro,_s section of

a Na-S storage battery is shown in Fig. 2.

MOLTEN S

AND POLYSULPHIDES

IMINATE

ELECTROLYTE

)LTEN Na

after Bagotzky and

Skundin, 1980 W CONTAINER

Fig. 2. A molten clcctrol_tc Na-S batter), (after Bagot2k)_ amI Skumlin.

1980).
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The electrolyte for the cell is a sodium polyaluminate (with

n = 3 - 11 in the formula Na20.nAl203 ) that is porous to Na ÷. This

electrolyte is formed as a ceramic and is difficult to manufacture

(Bagotzky and Skundin, 1980); this component and the porous

graphite positive electrode would probably have to be supplied

from Earth. The requirement for Na as well as S may be viewed

critically in terms of availability on the Moon, but there is some

evidence for Na associated with the surface-deposited volatiles of

lunar pyroclastic deposits (Cirlin and Housley, 1979). The

sodium mineralogy and abundances in these deposits are poorly

known, but the possible use in batteries justifies further study.

Should the indigenous lunar sodium be found insufficient, a useful

alternative may be to import NaOH, which could be processed

after arrival to provide Na, 02, and H20 (all of great value on

the Moon).

THE USE OF SULFUR CHEMICAL

AND BIOCHEMICAL PROPERTIES

The chemical uses of sulfur are so varied that we can only touch

on a few in this paper. The examples chosen are those that appear

to the authors to have important potential applications on the
Moon.

Sulfuric Acid

Sulfuric acid usage is a common measure of industrial capacity

on Earth; this acid has so many uses that it is practically a generic

guide to productivity. A large number of potential uses on the

Moon might be considered, but these must be weighed against

the need to consume water in the production of sulfuric acid.

As one example of possible uses, the acid could be employed in

thermochemical ,splitting of water to produce H2 - 02 for propel-

lant or for fuel cells (see below). Avery different example of

sulfuric-acid use would be the destruction of organic waste as part

of a Closed Ecological Life Support System ("CELSS"; MacElroy

et al., 1985). Highly concentrated sulfuric acid can remove

hydrogen and oxygen from some organic compounds to produce

water; simple plant sugars might be processed in this manner.

The production of sulfuric acid on the Moon might occur as

a variant of the terrestrial contact process, in which SO 3 is made

by catalytic oxidation of SO2 (over platinum or vanadium

pentoxide) and bubbled through relatively dilute sulfuric acid to

produce concentrated acid. This process would require oxygen

input to oxidize the relatively reduced sulfur that occurs in lunar

regolith. Sulfuric acid can also be produced by electrolysis of _)2

in water (see section on thermochemical water splitting, below).

In a closed system the depletion of water and oxygen could be

minimized, but some loss will probably be incurred and the

benefits must be weighed against this loss.

Sulfuric acid production and control is almost a necessary

adjunct industry if oxygen is to be produced from lunar ilmenite.

Sulfur is a serious contaminant in the reduction of lunar ilmcnite;

HeS and sulfur-based acids would pose serious problems through

corrosion and induced electrolysis of water. The most direct way

to avoid such problems would be to extract (and use) the sulfur

before the ilmenite concentrates are proce.s,sed for oxygen.

Thermochemical Water-Splitting

Water can be split into H 2 and Oz for collection and cooling

to provide liquid rocket propellant. On a smaller scale, water

might be split for use in hydrogen fuel ceils. Fuel cells may be

particularly useful if the water is reclaimed at the exhaust. There

are several options for producing H2 from water on the Moon;

extraction from waste methane and electrolysis of water are both

possible. Thermochemical splitting of water, however, would be

advantageous where reactor power is available to provide a high-

temperature heat source. Do_ya et al. (1979) describe both an

SO z hybrid cycle and a SO2-H2S cycle for thermochemical splitting

of water. The SO2 hybrid cycle uses electrolysis of SO x + 2H20

to produce HzSO 4 + H2, followed by thermal dissociation of the

sulfuric acid at 800 ° °850°C to produce H20 + SO 2 + 1/202. The

SO2-H2S cycle requires only heat energy (830°C) but has four

steps and requires input of both H2S and SO z as well as water.

For lunar applications the SO 2 hybrid cycle is probably most

attractive because of its relative simplicity (two steps instead of

four) and the relative conservation of sulfur as SO 2 (output ideally

equals input but is limited by 70-80% conversion efficiency). The

most significant drawback of this method is the requirement for

use of electrical as well as thermal energy.

Sulfur as a Fluxing Agent

Sulfur is used terrestrially as a fluxing agent in reducing the

melting points of #asses. This use may also be practical on the

Moon, where glass production may be sought for structural uses

(Blacic, 1985). Experiments with a variety of regolith-sulfur

mixtures are needed to determine the utility of such a process.

The Brimstone Rocket

Production of rocket propellants from lunar resources would

be a major boon for expanded space exploration (National

Commission on Space, 1986). There has been considerable study

of systems to produce oxygen from lunar regolith, particularly

from concentrates of lunar ilmenite (Cutler and Krag_ 1985;

Gibson and Knudsen, 1985). Lunar sources of fuels to be

oxidized, however, are extremely scarce. Hydrogen is so rare that

extensive use for propellant may require expensive imports,

perhaps as methane or ammonia from Earth (Pr/ed/ander, 1985).

Other fuels such as silane (Sill4; Rosenberg 1985) might be

produced in part from lunar feedstocks but would still require

hydrogen imports. In contrast, sulfur might provide a truly

indigenous lunar fuel.

Some sulfur release will be an inevitable byproduct of lunar

oxygen production. Lunar oxygen production is targeted on mare

regoliths with high llmenite content; these are also the regoliths

with highest sulfur content (0.06% to 0.13%; see Table 1). In an

oxygen production plant such as Cutler and Krag (1985)

envision, the sulfur byproduct would be about 1% of the 02 mass

produced, a.ssuming 0.1% collectable Sin the ilmenite-enriched

feedstock. If the tailings from ilmenite enrichment are also

processed for sulfur, then the total sulfur production would be

"about 10% of the O2 mass. These protx)rtions permit serious

consideration of a sulfur-oxygen propulsion system (a "brimstone"

rocket ).

The brimstone rocket could be fueled with liquid sulfur and

liquid oxygen, the sulfur being kept between 150 ° and I(_0°C
where its viscosity' is lowest and it is easiest to pump. Atomized

droplets of liquid sulfur would be introduced with gaseous

oxygen into the combustion chamber. Here the exothermic

reaction to SOz would liberate about 4600 kJ/kg SO 2. lsotropic

expansion would result in an ideal exhaust velocity near 3000 m/

sec, giving a specific impulse (I_p) of --300 sec.
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The performance of the brimstone rocket would be sufficient

for pogosticking from one point to another on the lunar surface

or for putting payloads into lunar orbit. To place a payload into

a lO0-km lunar orbit requires that the initial rocket mass at launch
be about 44% propellant at lift off

The exhaust gases from the brimstone rocket would be

compatible with the lunar environment. Sulfur dioxide is a

condensable gas, which would ultimately he chemisorbcd as

coatings on the regolith rather than accumulating ms a gas to

increase the lunar atmosphere. In contrast, rockets ba.sed on

combustion of metals and excess oxygen will liberate large

quantities of oxygen into the lunar environment. "Hlis oxygen

might build up to a significant atmosphere and provide oxidizing

conditions that could alter the pristine state of the lunar regolith.

Sulfur for Plants, Animals, and People

Sulfur is a necessary trace element in the diets of many

organisms, including people. Powdered sulfur also has uses in

plant fertilization (Leclercq, 1972). These uses could probably be

met simply by the use of unprocessed lunar soil in CELSS ,systems.

For radiation protection, however, it is worth considering the

inclusion of small-scale pharmaceutical production of sulphydryl

compounds in space for advanced CELSS systems.

Because nitrogen and other inert gases will be scarce on the

Moon, it is likely that the atmospheres in lunar habitats will be

oxygen-rich. One consequence of this may be a long-term increase

in susceptibility to sickness and biological damage from ionizing

radiation (yon Sonntat_ 1987). Sulphydryl compounds are the

most extensively studied and effective means of chemical pro-

phylaxis against radiation damage (yon Sonntag 1987; /AEA,

1969). The action of these compounds is still incompletely

understotKI, but there is considerable evidence that one of their

effects is not entirely unlike the role of sulfur in photocells, where

the ability of sulfur to assume a large variety of electron shell

configurations will not abide an association with electron boles

or active charged radicals (see section on PEC photocells, above).

Energy transfer from ionizing radiation into biological materials

produces target radicals, which will produce cellular damage if

left "unquenched." Potentially damaging hydrogen ionization

induced in a hiologic_ target can release a proton, leaving a target

radical with chemical activity that may eventually result in

permanent damage. The sulphydryl compounds can split rapidly

to donate a replacement hydrogen before permanent damage

occurs (yon Y_;nntag 1987).

The amount of sulfur in sulphydryl comtx)unds is actually quite

small. Glutathione, a well-studied example, has only one sulfur in

a molecule of 37 atoms (the rest being H, O, N, andC). These

compounds are not heavy users of sulfur resources, and for the

near future are probably best produced on Earth even if a use

is found tot them in space. On the other hand, a flurry of early

research into new sulphydryl comtx)unds has nov,' stagnated (t_m

_)nntag_ 1987) but might Ix, renewed ff considered in terms of

the space environment. The advances made in synthesizing

pharmaceuticals under microgravity conditions may be applicable

to advances in chemical protection from ionizing radiation.

Ultimately, the use of lunar sulfur may play a role in expanded

human occupation of near-Earth space.

A sulfur-based life cycle may prove useful on the Motto. Such

a cycle may be m(xleled on the sulfur life cycles fimnd in

midocean spreading ridges where sulfur-metabolizing bacteria

suptx)rt a host of higher organisms including giant tube worms,

vent crabs, clams, and snails. These midoceanic life centers are

unusual in that the food chain is entirely based on sulfur

compounds released from volcanic fumaroles. Sunlight, the energy

source that was once thought to be the sole basis of life, is absent

from this deep oc-ean microcosm

There are several advantages of the use of a lunar sulfur life

cycle compared to photosynthesis. Such a cycle could operate

without artificial light, which would be a requirement for

photosynthesis-based life .systems at any nonpolar lunar base over

the 14-day lunar night. Artificial light may be a permanent

requirement for photosynthesis if life systerrts have to be deeply

buffed for radiation shielding. The energy efficienc'y of making

electricity into light is poor, resulting in the release of significant

quantities of low-temperature heat. The photosynthetic efficiency

of using light energy is also poor, resulting in the release of more

low-temperature heat. Rejection of low-temperature heat on a

lunar base is troublesome bec'au_ it ultimately hinges on radiation

into space. Radiation is inefficient at low temperatures, requiring

large radiation areas or the use of heat pumps to increase the

temperature of the waste heat. The heat pumps in turn will

generate 8 to 10 times the original heat load, which must also be

radiated away.

The sulfur life cycle is based on hydrogen sulfide as the energy

source, which can be produced from lunar sulfur or recycled from

the biota using chemical processes that reject waste heat at high

temperatures. The oxidation of the sulfur ix-curs in aqueous

.solution where the chemical energy in hydrogen sulfide is

efficiently used by the bacteria. Subterranean lava tubes or man-

made tunnels could be sealed and flooded with aqueous solutions

necessarT to support a modified low-pressure sulfur life cycle

without need for lighting. Heat transfer between the liquid

solution and the tunnel walls may be sufficient to dissipate the

small amounts of low-temperature waste heat. A lunar colony's

need fl)r a variety of food will certainly dictate the production

of familiar photosynthetically based food chains, hut the staples

required to support a lunar base could well be supplemented by

a sulfur-based .system. Bioengineering would be required to adapt

the existing high-prc_sure sulfur-metabolizing organisms to a low-

pressure lunar s,'ystem, and to produce palatable foods (unless the

lunar inhabitants develop a taste for tube worms and vent crabs).

Separate tkxKl _tems based on photosTnthesis and sulfur would

provide a redun "dancy that could increase the security or, in crisis,

ensure the surxSval of a large lunar colony.

PRACTICAL PRODUCTION OF SULFUR

A wide _"iety of schemes could IX" proposed for extracting

sulfur from lunar rocks and _)ils, but not all may be cost effective

or practical on the Mtxm. Protzedures requiring multiple complex

pr<_,-e_sing steps are probably tot) cumixw_)me to be practicM--

especially if they cannot be automated and run a.s autonomons

.,s_tems. Heating lunar feedstocks to over 1 IO0°C is probably one

of the simplcst of possible extraction pr(_'edures. Moreover, this

meth(xl ha._ already been tested and proven. Gibstm (1973) used

thermogravimctric-quadrupole mass-spectrometric anal)_is to de-

termine that Afx)llo 14 and 15 soil .samples relea.se their sulfur as

_)2 and H,S on heating to 1000 °- 1300°C. His experiments were

run at vacuum conditions close to those that would Ix" expected

on the Mot)n. The.se gases arc- thus the sulfur products to bc

anticipated on simple heating of lunar feedstocks.

_)me direct uses of SO2 liquid arc dim'us,sed atxwe. Man)'

applications of sulfur, however, would require its production _s
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pure S. This would be particularly true for the brimstone rocket.

Fortunately, the sulfur-bearing gases that art" liberated from lunar

feedstocks can be combined in the Claus reaction to produce

pure sulfur and water.

SO2 + 2H2S _ 2H20 + (3/x)_

where x varies between 2 and 8. This reaction has been studied

intensively and used in the treatment of SO 2 waste gases on Earth

(Pfefffer, 1975). The Claus reaction is of particular interest not

only bccau_ it uses exactly those sulfur gases expected from

lunar feedstock, but also because it prt,xtuces valuable water.

Since the Mtxm is such a different em4ronment, it is imtxmant

to consider how terrestrial processes might be perturbed on this

new industrial frontier. For example, radiolysis of SO 2 can produce

small amounts of S and SO._ (RothschiM, 1964). Will this effect

be a problem in SO2 liquid management, or might it be used to

advantage in txxosting the prc_luction of S from SO2? Model

industrial processes must be considered in terms of the environ-

merit where they will be used, and in many cases may require

small pilot-plant tests on the Moon before full-seale production

is .sought.

Finally, sulfur production should not be viewed as an alternative

to the extraction and use of other gases (such as O2, He, and

He) on the Moon. Schemes for extracting one of these gases will

often provide some of the others as well. Each gas has its own

set of uses, and thus a special value for exploitation in space.

Extraction sehemes that combine cogeneration with multiple uses

will obtain the maximum Ix'nefit and minimum wastage of them

rare lunar resources.

CONCLUSIONS

It is fortuitous to find small but useful amounts of extractable

sulfur on the Moon. in an environment devoid of gas-forming

elements, sulfur has the potential to provide as significant an

impact on lunar development ms coal and petroleum had for the

industrialization of ,society, on Earth.

Even at its low abundance in lunar regolith, the _0.1% of sulfur

available across many thousands of square kilometers of high-Ti

mare regolith may be useful. Thermal processing of mildly crush-

ed regolith from high-Ti basaltic lava areas at 1 iOO°C could yield

about 1000 kg of sulfur from a patch of regolith lOOm5< lOOn)

and 10 cm deep. Figure 3 shows the lXXs,sible sears that would be

left by much more extensive mining in two types of regolith at

the Atxfllo 17 site. Each scar has an area of about 10 km 2, but

patch A would produce _i,O00,O00 kg of sulfur from high-Ti

basaltic lava regolith, whereas patch B would produce

_700,000 kg of sulfur with cogeneration of the metals and sodium

that occur on the surfaces of pyroclastic #asses. Either patch

would produce sufficient sulfur to lift a payload of several hundred

metric tons off the Moon using the brimstone rocket.

In practice these patches would not be nearly so regular or

well contained; patch A in particular would have to be gerryman-

dered to avoid large craters in the basaltic lava regolith (the

p}a'oclastic mantle is much smoother, and crater avoidance would

be less of a problem in patch B). It is ix)ssible that these mined

areas would not leave visible sears. The most efficient extraction

Fig. 3. A simplified version of an albedo map of the Apollo 17 landing

site (modified from Muehlberger et al., 1973). Massifs and hills of the

nonbasaltic highlands surround an emba_'ment flooded by high-titanium,

high-sulfur basalt.s (light pattern); the ca,ltem part of the embayment

includes a terrain of very low albedo (dark pattern), which is attributed

by Muehlberger et al. to an extensive pyroclastic mantle..%quart._ A and B

show the dimensions of lO-km2 × IO-cm-deep patches mined out of the

regolith; A would yield _!0 ?'MT of sulfur and B would yield _7 × 102 MT

system could be a mobile processing plant that would return

more than 99% of the processed regolith and leave no trench.

Such a system would be merely one more gardening event at the

lunar surface. The depth of excavation would be strongly process

dependent (considering plant mobility vs. plant simplicity);

shallow excavation simplifies the mining equipment at the cost

(ff making the plant more mobile.

If dedicated solely to sulfur and associated volatile-element

production, the thermal energy required for this plant would be

about 0.1 MW-yr per metric ton of sulfur (assuming 100% duty

cycle). Significant energy _vings might be realized ff sulfur

production were piggybacked with oxygen production, or if low-

energy solvent extraction of sulfur were developed to replace

thermal extraction. Clearly, process development with a clear

definition of end use is necessary if lunar sulfur is to be taken

seriously as a potential resource.
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EPILOGUE

Fire and Brimstone

A mechanical dragon, breathing fire and smoke,

But it lives off of sulfur instead of off coke.

It rolls down the rails of St. Lucifer's line

On a journey to a place that is far from divine.

But the fire and brimstone that makes up our hell

May some day prove useful to mankind as well,

For brimstone-based rockets reaching out into space

Could open the heavens for the human race.

DP 4/88
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