1,301 research outputs found

    Suitability of Generalized GAROs on FPGAs as PUFs or TRNGs considering spatial correlations

    Get PDF
    In the last years, guaranteeing the security in Internet of things communications has become an essential task. In this article, the bias of a wide set of oscillators has been studied to determine their suitability as both true random number generators (TRNGs) and physically unclonable functions (PUFs). For this purpose, a generic configurable structure has been proposed and implemented in an field programmable gate array (FPGA). With this implementation, by introducing some external signals it is possible to configure the system in different oscillator topologies. This way, we have managed to analyze 2730 oscillators composed by seven lookup tables (LUTs) without having to resynthesize the code each time. The performed analysis has included conventional ring oscillators, Galois ring oscillators, and newly proposed oscillator topologies. From this analysis, we have concluded that none of these oscillators behave as an ideal TRNG but ring oscillators present the closest to an ideal behavior. Regarding their suitability as PUFs, some of the newly proposed oscillators in this article present a high reproducibility, higher than that of conventional ring oscillator PUF (RO-PUF) and a high uniqueness. Furthermore, we have noticed that both their reproducibility and their uniqueness tend to improve when increasing the length of the oscillators, which opens the possibility of finding new oscillators with even better properties by studying oscillators of bigger lengths. Finally, by studying the spatial correlation of the bias of these oscillators, we have observed that they present a much lower spatial correlation compared to the ring oscillators, which opens the possibility of using these oscillators in PUF architectures that use more comparisons than typical RO-PUFs

    Archival Study of Blockchain Applications in the Construction Industry From Literature Published in 2019 and 2020

    Get PDF
    Purpose: This paper aims to investigate proposed blockchain applications in the construction industry from contemporary literature. Methodology: Archival studies will be used to obtain academic content from secondary sources. An explorative strategy will be adopted with no preconception or biases on the preferred route of execution. Blockchain is a fast-evolving technology with a high rate of yearly progression; therefore, this paper refines the search to recently published material in 2019 and 2020. Data is collected in two stages, firstly, categories of research are extrapolated from secondary literature and recorded into a table, and afterwards, the corresponding proposed application of blockchain is documented and reviewed. Findings: An adequate breadth and variety of categories are substantiated from archival literature, which effectively contributes to the extraction of proposed blockchain applications for construction. The data collection extracts 19 categories from the explorative study, in which 19 proposed solutions (one per category) is presented. All of the advisory content for the proposed solutions were obtained from a deliberated selection of 21 academic study papers. Limitations: The study is limited to one proposed application per category, totalling 19 proposed solutions; however, assessing various approaches per category could not be researched comparatively due to voluminous information. Thus, recommendations incorporate a holistic case study of one subject category which incorporates a multitude of various proposed applications. Originality: This paper contributes to new knowledge through extrapolating proposed blockchain applications from academic literature in 2019 and 2020

    Regulating Data as Property: A New Construct for Moving Forward

    Get PDF
    The global community urgently needs precise, clear rules that define ownership of data and express the attendant rights to license, transfer, use, modify, and destroy digital information assets. In response, this article proposes a new approach for regulating data as an entirely new class of property. Recently, European and Asian public officials and industries have called for data ownership principles to be developed, above and beyond current privacy and data protection laws. In addition, official policy guidances and legal proposals have been published that offer to accelerate realization of a property rights structure for digital information. But how can ownership of digital information be achieved? How can those rights be transferred and enforced? Those calls for data ownership emphasize the impact of ownership on the automotive industry and the vast quantities of operational data which smart automobiles and self-driving vehicles will produce. We looked at how, if at all, the issue was being considered in consumer-facing statements addressing the data being collected by their vehicles. To formulate our proposal, we also considered continued advances in scientific research, quantum mechanics, and quantum computing which confirm that information in any digital or electronic medium is, and always has been, physical, tangible matter. Yet, to date, data regulation has sought to adapt legal constructs for “intangible” intellectual property or to express a series of permissions and constraints tied to specific classifications of data (such as personally identifiable information). We examined legal reforms that were recently approved by the United Nations Commission on International Trade Law to enable transactions involving electronic transferable records, as well as prior reforms adopted in the United States Uniform Commercial Code and Federal law to enable similar transactions involving digital records that were, historically, physical assets (such as promissory notes or chattel paper). Finally, we surveyed prior academic scholarship in the U.S. and Europe to determine if the physical attributes of digital data had been previously considered in the vigorous debates on how to regulate personal information or the extent, if at all, that the solutions developed for transferable records had been considered for larger classes of digital assets. Based on the preceding, we propose that regulation of digital information assets, and clear concepts of ownership, can be built on existing legal constructs that have enabled electronic commercial practices. We propose a property rules construct that clearly defines a right to own digital information arises upon creation (whether by keystroke or machine), and suggest when and how that right attaches to specific data though the exercise of technological controls. This construct will enable faster, better adaptations of new rules for the ever-evolving portfolio of data assets being created around the world. This approach will also create more predictable, scalable, and extensible mechanisms for regulating data and is consistent with, and may improve the exercise and enforcement of, rights regarding personal information. We conclude by highlighting existing technologies and their potential to support this construct and begin an inventory of the steps necessary to further proceed with this process

    Physics and application of photon number resolving detectors based on superconducting parallel nanowires

    Full text link
    The Parallel Nanowire Detector (PND) is a photon number resolving (PNR) detector which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. PNDs were fabricated on 3-4 nm thick NbN films grown on MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. PNDs showed a counting rate of 80 MHz and a pulse duration as low as 660ps full width at half maximum (FWHM). Building the histograms of the photoresponse peak, no multiplication noise buildup is observable. Electrical and optical equivalent models of the device were developed in order to study its working principle, define design guidelines, and develop an algorithm to estimate the photon number statistics of an unknown light. In particular, the modeling provides novel insight of the physical limit to the detection efficiency and to the reset time of these detectors. The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise

    AEOLIX Reference Book

    Get PDF
    This is a documentation on the AEOLIX Reference Book (ARB), a website created during the project to collect, highlight and present emerging trends, technologies and practices that are of interest to the problem domain of the project (http://reference.aeolix.eu). The purpose of this document is to present the content of the website

    Applications of Artificial Intelligence to Cryptography

    Get PDF
    This paper considers some recent advances in the field of Cryptography using Artificial Intelligence (AI). It specifically considers the applications of Machine Learning (ML) and Evolutionary Computing (EC) to analyze and encrypt data. A short overview is given on Artificial Neural Networks (ANNs) and the principles of Deep Learning using Deep ANNs. In this context, the paper considers: (i) the implementation of EC and ANNs for generating unique and unclonable ciphers; (ii) ML strategies for detecting the genuine randomness (or otherwise) of finite binary strings for applications in Cryptanalysis. The aim of the paper is to provide an overview on how AI can be applied for encrypting data and undertaking cryptanalysis of such data and other data types in order to assess the cryptographic strength of an encryption algorithm, e.g. to detect patterns of intercepted data streams that are signatures of encrypted data. This includes some of the authors’ prior contributions to the field which is referenced throughout. Applications are presented which include the authentication of high-value documents such as bank notes with a smartphone. This involves using the antenna of a smartphone to read (in the near field) a flexible radio frequency tag that couples to an integrated circuit with a non-programmable coprocessor. The coprocessor retains ultra-strong encrypted information generated using EC that can be decrypted on-line, thereby validating the authenticity of the document through the Internet of Things with a smartphone. The application of optical authentication methods using a smartphone and optical ciphers is also briefly explored

    Ticket to ride: an investigation into the use of blockchain technology in the rail industry

    Get PDF
    The rail industry in Great Britain is undergoing a renaissance. Rising passenger numbers, a steady freight industry, and numerous planned projects make this an exciting time to be involved. Nonetheless, the network relies upon many legacy systems that impede progress. This stifling of progress is noticeable in the digital domain in particular, where a cluster of impractical formats and systems leave swathes of data with untapped potential. The search for interoperability in the industry is not a new one; many have conducted investigations and projects, to no avail. Blockchains are an exciting new avenue of technology and are beginning to disrupt various industries. Despite this, few investigations exist into the potential use of the technology in the rail industry. From a purely technical perspective, the distributed nature of the technology has the potential to overcome the issues of data centralisation and the lack of trust amongst stakeholders. Nevertheless, as a new technology, it is not yet fully understood by those in the industry. This lack of understanding is a barrier to adoption and is as essential to consider as the technical implications. This thesis proposes a new model to aid the decision-making process of those seeking to use blockchain. We validate this model by utilising it for two rail-specific use cases. The first is to build a marketisable data-sharing platform for rail industry data. Within this project, we investigate both classical and post-quantum cryptographic approaches to the platform. The second is a brand new approach digital ticketing for the GB rail network, to initiate the process of replacing the legacy ticketing systems still in operation. We use blockchain technology as the core data store to achieve this. We demonstrate the viability of both use cases, supporting the appropriate deployment of blockchain technology in the rail industry
    • …
    corecore