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ABSTRACT 

This paper considers some recent advances in the field of Cryptography using Artificial Intelligence (AI). It 
specifically considers the applications of Machine Learning (ML) and Evolutionary Computing (EC) to 
analyze and encrypt data. A short overview is given on Artificial Neural Networks (ANNs) and the principles 
of Deep Learning using Deep ANNs.  In this context, the paper considers: (i) the implementation of EC and 
ANNs for generating unique and unclonable ciphers; (ii) ML strategies for detecting the genuine 
randomness (or otherwise) of finite binary strings for applications in Cryptanalysis.  The aim of the paper 
is to provide an overview on how AI can be applied for encrypting data and undertaking cryptanalysis of 
such data and other data types in order to assess the cryptographic strength of an encryption algorithm, 
e.g. to detect patterns of intercepted data streams that are signatures of encrypted data. This includes 
some of the authors’ prior contributions to the field which is referenced throughout.  Applications are 
presented which include the authentication of high-value documents such as bank notes with a 
smartphone.  This involves using the antenna of a smartphone to read (in the near field) a flexible radio 
frequency tag that couples to an integrated circuit with a non-programmable coprocessor.  The 
coprocessor retains ultra-strong encrypted information generated using EC that can be decrypted on-line, 
thereby validating the authenticity of the document through the Internet of Things with a smartphone.  
The application of optical authentication methods using a smartphone and optical ciphers is also briefly 
explored. 

Keywords:  Artificial Intelligence, Artificial Neural Networks, Evolutionary Computing, Machine Learning, 
Cryptography, Cryptanalysis, Radio Frequency Identification, Optical Authentication. 

1 Introduction 
The term Artificial Intelligence (AI) covers a range of methodologies and applications that are designed to 
enable a computer to undertake tasks that are conventionally the domain of human intelligence.  AI is 
‘the ability of a digital computer or a computer-controlled robot to perform tasks commonly associated 
with intelligent beings’ [1].  The principal test of AI is predicated on the Turing Test developed in 1950, by 
Alan Turing.  This is the test of a machine's ability to exhibit intelligent behavior equivalent to, or 
indistinguishable from, that of a human [2]. The current applications of AI range from speech recognition, 
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finance, avionics, navigation, gaming, robotics and medicine, for example.  This paper has been composed 
to give an overview of such applications focusing on cryptography, while referencing more technically 
oriented papers that are relevant to the material.   In particular, the paper focuses on the application of 
Evolutionary Computing and Artificial Neural Networks for generating unique and unclonable non-linear 
ciphers using real-world noise sources.  

1.1 Machine Learning 
An important sub-category of AI is Machine Learning (ML). ML is mostly associated with the problem of 
pattern recognition.  This is where a complex dataset of possibly irregular patterns in a signal or an image, 
for example, is required to be categorized into common features and/or segments which can then be 
classified in some pre-determined way. These classifications are typically associated with statistical 
measures computed from a signal and statistical and/or geometric metrics for an image.   If a cluster of 
such metrics into a specific numerical range is sufficiently different to be correlated with known features 
in the data, then a decision can be made through application of a threshold in order to design a decision-
making criterion.  The problem is often how to find an optimum threshold to do this, such that the 
accuracy of the decision taken is optimal, the optimum threshold value being subject to a confidence 
interval. By making the threshold adapt to the demarcation of certain input metrics in terms of their 
known accuracy, quantity and other prior information, the logic of the decision-making process can be 
made ‘softer’ in terms of its tolerance to the data. This is the basis for implementing so called ‘Fuzzy Logic 
Systems’ which provide the foundations for the development and implementation of Artificial Neural 
Networks (ANNs). An ANN typically increases the accuracy of the decisions associated with the 
classification of a pattern than can be obtained through conventional data categorization (based on a 
logical and/or fuzzy logical quantification). The following section considers the basis for this.   

1.2 Artificial Neural Networks 
A simple ANN is based on inputting a class of metrics that are taken to be a composite representation of 
the data, metrics that are computed by processing the data to form a so called ‘feature vector’. A weight 
𝑤𝑤 (with a specific floating-point value) is then applied to determine the significance of each component 
of this vector (by multiplying each component of the vector with its weight) and the weighted components 
added together to produce a single output value. By changing the values of these weights, the ANN 
provides an output in relation to a decision-making process. This is an example of a data transfer process 
which transforms multiple inputs into a single output. It can be replicated to produce a number of identical 
or different outputs by inputting an identical set of weighted feature vectors or changing the components 
of the vector that are input. This generates a ‘single layer’ of outputs that can be taken to be inputs to 
some ‘hidden layer’ where the weights are computed and changed again. By replicating this process 𝑛𝑛 
times, we can develop a multi-layer network composed of 𝑛𝑛 layers. Figure 1 depicts an example of a 
simple, single hidden-layer ANN. In this example, the hidden layer is composed of 4 nodes. The 
computations involved in the transfer of information from the hidden layer to the output layer are taken 
to include a change in the numerical value to all or some of the weights that are applied.  This is an example 
of a ‘feed-forward network’ where the ‘information’ flows in one direction only, i.e. forward, from the 
input nodes, through the hidden nodes and on to the output nodes. There are no cycles or feed-back loops 
in the network. Thus, if the three input nodes given in Figure 1 have numerical values (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3), say, 
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then the inputs to the 4 nodes of the hidden layer are (from top to bottom in Figure 1) given by the 
elements of the vector: 

(𝑤𝑤11𝑥𝑥1 + 𝑤𝑤12𝑥𝑥2 +  𝑤𝑤13𝑥𝑥3, 𝑤𝑤21𝑥𝑥1 + 𝑤𝑤22𝑥𝑥2 +  𝑤𝑤23𝑥𝑥3,  𝑤𝑤31𝑥𝑥1 +  𝑤𝑤32𝑥𝑥2 +  𝑤𝑤33𝑥𝑥3,  𝑤𝑤41𝑥𝑥1 +  𝑤𝑤42𝑥𝑥2 + 𝑤𝑤43𝑥𝑥3)  

where 𝑤𝑤𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,2,3, 4; 𝑗𝑗 = 1,2,3 are the 12 weights required to modify the 3 inputs from the input layer 
as they are fed into the 4 nodes of the hidden layer (indicated graphically by the arrows given in Figure 1). 

From the description above, and, with reference to Figure 1, it is clear that there are four issues that need 
to be considered in the design of any such network of input-outputs: (i) What should the size of the feature 
vector be, thereby specifying the number nodes associated with the input layer?; (ii) how many outputs 
are required in the output Layer?; (iii) how many hidden layers should be used and how many nodes 
should each layer contain?; (iv) how can we automate the process by which the weights are initialized 
and/or then adjusted?  In regard to point (iv), it is necessary to design an algorithm for automation of the 
adjustment of the weights subject to knowledge of the expected output(s) in the output layer. This 
requires training data to be provided so that the weights can be updated by comparing the outputs they 
provide with ‘target’ data.    

 
Figure 1.  Example of a simple neural network consisting of an input layer with three inputs or nodes (i.e. a 

three-component feature vector) a single 4-node hidden layer and an output layer consisting of two output 
nodes [3]. 

There are a number of different, but closely related methods (algorithms) to train an ANN by adjusting 
the weights until an output to the network for a given input is the same as the training data (within a 
specified tolerance). The original and arguably the most common approach, is to apply the back-
propagation algorithm [4] for application to feed forward networks. This is based on the Gradient 
Descent Method; an iterative optimization algorithm for finding a local minimum of a differentiable 
function.  By computing the gradient of a loss function with respect to all the weights (taken to be a 
discrete vector) and iterating the process, the weights can be adjusted to generate an output that is close 
to the training data.  The algorithm has a synergy to the application of a least squares method for solving 
a system of linear equations (especially over-determined systems) subject to minimizing an error function 
and is an example of dynamic programming.  Application of the chain rule is used to compute the gradient 
of the loss function with respect to each weight and a threshold function applied which determines 
whether or not the value from one node should ‘flow’ further (i.e. continue on to the next node(s) in the 
next layer).    

https://en.wikipedia.org/wiki/Iterative_algorithm
https://en.wikipedia.org/wiki/Mathematical_optimization
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There are a wide range of AI software and systems available for the development of AI applications, e.g. 
[5] and [6], respectively. MathWorks MATLAB, for example, provides specialist Toolboxes including 
capabilities that integrate AI into the complete workflow for developing fully engineered systems [7] and 
machine learning with supervised and unsupervised learning [8].   The development of AI systems using 
Python programming is becoming increasingly common [9]. However, whatever system and/or 
programming language or toolbox is used, the design of a network is fundamental and must be tailored 
to optimize the application of AI using an ANN for a specific solution.  Of specific importance, is both the 
quality and quantity of the training data. This determines the accuracy of the weights that, along with the 
design of the network, can be thought of as the ‘keys’ to the future operation of the network. Thus, there 
is an obvious application in cryptography where the weights are analogous to the key(s) and the network 
design, to the encryption algorithm for generating an output cipher that can then be used to encrypt 
plaintext data. 

1.3 Artificial Neural Networks, Data Processing and Deep Learning 
As discussed in Section 1.2, it is typical to first of all process the data to generate a feature vector 
containing metrics that are taken to be a good representation of the essential characteristics of the data, 
a digital signal, for example. In this way, the number of nodes in the input layer become relatively few 
compared to the original data, i.e. the length of the digital signal.  This is important in regard to utilizing 
the inevitable limited computational power available to ‘drive’ an ANN in order to produce an efficient 
decision-making process (e.g. the computational time required). However, in some cases, it is very difficult 
to define, in a fully quantitative sense, the elements of the feature vector which are good (unique and 
unambiguous) characteristics of the data.  This problem is often overcome by investigating new properties 
of the data based on novel analysis methods. For example, texture in an image can be quantified using 
the principles of fractal geometry and computing metrics such as the Fractal Dimension and multi-fractal 
parameters. This allows more impressionable features in an image (or the image as a whole), for example, 
described by the rather elusive term ‘texture’, to be quantified through Fractal Geometry in Digital 
Imaging [10] and [11].    

The determination of what feature vector should be used, and the elements it contains, determines the 
size of the feature vector which should ideally be much smaller than the original data from which it has 
been constructed using a number of different signal or image processing algorithms to output specific 
metrics.  There is a optimality issue that needs to be considered, which is the processing time required to 
compute the feature vector relative to the time required to train the ANN.  However, in recent years, the 
computational power available through hardware improvements has increased to such a degree, that 
instead of processing signals to yield a composite feature vector, this process is ignored and the raw data 
(i.e. of the original digital signal) is used directly to ‘feed’ the input layer of an ANN. Coupled with many 
layers consisting of a large number of nodes, this approach significantly increases the complexity of the 
ANN but reduces that need to decide what signal processing algorithms are required to generate a smaller 
feature vector a priori.   

This is the principle associated with a more recent approach to AI known as Deep Learning in which prior 
signal processing methods are effectively abandoned and high data throughput ANNs designed to process 
the original data alone. In this context, Figure 2 illustrates the difference between a conventional single 
hidden layer or ‘shallow’ ANN and a deep network consisting of three hidden layers.   
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The principal issue that is driving the deep learning approach is the increase in computing power and 
efficiency. For example, Google’s Inception-V3 is based on using a network consisting of 49 layers with 
more than 20 million interconnections [13]. But this is of little value unless there is a sufficient amount of 
training data to compute the millions of weights now required.  However, with the increase in 
computational power coupled with the exponential growth in the Internet of Things (IoT), it is becoming 
much easier to obtain online access to the training data required.  In this sense, deep ANN’s are possible 
because of the growth in the Big Data Society that is now prevalent as well as the computational 
performance available. The growth in computing power, which is allowing a deep learning paradigm to 
evolve, is primarily industry driven by companies such as Facebook, Google, and, by national security 
services where issues such as face recognition and track and trace, for example, are primary concerns.  
This is possible because super computers from some ten years ago, consisting of thousands of processor 
units and accommodated in buildings with a large floor space can now be condensed into single Graphical 
Processing Units (GPUs) required for high resolution gaming, for example. 

 

 
Figure 2.  Examples of a single layer ‘shallow’ neural network (left) that has a 5 -element feature vector with 

a single layer and a deep neural network consisting of 4 hidden layers, both networks consisting of a 4-node 
output layer [12]. 

Irrespective of the computational power available, ANNs require real world data to operate in real world 
environments. Although this necessity is catered for by the development of access to big data, in some 
cases, certain data may not be available or is missing from existing data fields. In this case, ANN’s can also 
be of value by training them to create the missing data using other related (real world) data that is 
available. Thus, not only is AI benefiting from the big data society but can be active in the development, 
growth and diversity of the big data society (by creating even more data). 

Coupled with the training data, the design of an ANN can vary considerably (i.e. the number of layers, the 
nodes per layer and homogeneity or otherwise of the connections provided etc.) as can the details of the 
algorithms designed to compute the weights.  This includes diffusing the values of the weights over a layer 
and/or a partition through the layers to a specific depth by applying various spatially invariant filters using 
the (discrete) convolution operation.  These Convolutional Neural Networks (CNNs) were first introduced 
in the early 1980’s.  They are a class of deep learning ANNs developed for and applied mainly in the fields 
of digital image processing and computer vision [14].  In this context, they are replacing many digital image 
processing algorithms originally developed for pattern recognition using (among other techniques) 
convolutional filters to segment images into regions of similarity and/or discontinuity (edge detection, for 
example) [15].  This approach has and continues to be used to develop a set of deterministic, geometric 
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and textural metrics that are traditionally used to design a fuzzy logic decision engine or to train ‘shallow 
learning’ ANNs with relatively few inputs and hidden layers.    

The application of deep learning solutions to solve complex pattern recognition problems is key to the 
future development of many technologies and programming environment, functions and systems, all of 
which are in the process of rapid development.  For example, MATLAB have recently developed a new 
toolbox for solving problems using deep learning [16].  The application of deep learning to cryptography 
lies beyond the scope of this paper. However, some of the approaches considered in this paper naturally 
lend themselves to improvements in performance using a deep learning approach. This is especially so in 
regard to replacing conventional cryptanalysis methods which, in regard to some of the developments 
presented in this paper, are becoming increasingly redundant [17]. The following section introduces the 
role ANNs in Cryptography. 

1.4 Artificial Neural Networks and Cryptography  
One of the principal features of AI is its ability to recognize patterns within complex data. Cryptography 
relies on maximizing the diffusion and confusion associated with the conversion of plaintext into 
ciphertext. Ideally, the encrypted data – the ciphertext – should be entirely devoid of any type of pattern.  
It is required that the ciphertext is a complex randomized representation of a plaintext usually associated 
with the application of a one-way function which has no inverse solution.  This provides the potential for 
the application of AI in regard to the generation of ciphers, their classification (i.e. their cryptographic 
strength) and the analysis or cryptanalysis of encrypted data.  

Since cryptography relies on the conversion of plaintext into a ciphertext based on the generation of a 
random number field (the cipher), suppose we input a few initial random numbers to seed a network and 
then train it using a real source of noise, allowing the weights to be adjusted so that the network outputs 
an reasonably accurate simulation of the target random data field. In this case, providing the design of 
the network is known to two communicating entities, Alice and Bob, the initial random numbers and the 
weights represent the key(s) necessary to reproduce the random number field that can be used to encrypt 
and then decrypt the data (subject to both the initial random numbers and weights being known to Alice 
and Bob through application of a key exchange protocol).   

The network design (including the computed weights) is equivalent to the encryption/decryption 
algorithm. In this way, a low number of random elements in the input feature vector can generate a 
random number field that constitutes the cipher. Such an approach is discussed later on in the paper and 
compared to another solution to the problem of developing an algorithm for generating ciphers.  This is 
based on the application of a machine learning technique called Evolutionary Computing which can be 
used to provide a nonlinear equation that, upon iteration, can produce a random number field, the initial 
condition of the iterator being the (conventional) key. 

Just as AI can be used to generate a cipher, the ability for AI to recognize complex patterns lends itself to 
undertaking the task of recognizing patterns in a ciphertext and thereby looking for signatures that 
determine a proximity or ‘point of attack’ where there are weaknesses in the randomized character of the 
encrypted data. Given that a strong encryption engine should not generate such weaknesses, AI provides 
a complementary approach to testing the strength of an encryption method, including those methods 
that are based on the use of AI for generating the encrypted data. Thus, AI has roles to play in association 

http://dx.doi.org/10.14738/tmlai.83.8219


Transact ions on  Machine  Learn ing and  Art i f i c ia l  Inte l l igence Volume  8 ,  Issue 3,  June  2020 
 

Copyr ight © Socie ty  for  Sc ience  and Educat ion Uni ted  Kingdom 27 
 

with both data encryption and cryptanalysis. In the latter case, this can be extended to problems 
associated with information hiding when it is required to detect the signature of a plaintext hidden in 
another plaintext (Steganalysis) and the signature of a ciphertext hidden in a plaintext 
(Steganocryptanalysis). In the following section, we briefly review the role of ANNs in Cyber Security. 

1.5 Artificial Neural Networks and Cyber Security  
Cyber security involves a range of techniques designed to protect the creation, processing, storage and 
transmission of data over an open network, such as the Internet. A specific and well-known example of 
this is the infection of files by a virus designed to covertly infiltrate a single computer or a network of 
computers. Computer viruses have become complex and operate in a stealth mode to avoid detection. 
New viruses are created each and every day. However, most of these supposedly ‘new’ viruses are not 
totally new but are often variations (some of them relative minor variations) on the theme of their 
predecessors.  Many of these viruses just change their form and signatures to avoid detection but their 
operation and the way they infect files and systems is still the same. This provides the potential for training 
ANNs on a range of known viruses under the assumption that their digital signatures can be recognized 
by inspecting future data streams and new files, e.g.  [18] and [19].  

1.6 About this Paper 
Having provided an overview of AI and its applications to Cryptography and Cyber Security in this Section, 
the paper now provides some specific studies based on previous research already conducted by the 
authors’ coupled with some of their current research themes. Studies are presented which include: (i) the 
application of Evolutionary Computing to generate unique and unclonable ciphers; (ii) a machine learning 
strategy for detecting the randomness (or otherwise) of binary streams designed to investigate the 
potential to attack a ciphertext stream.  In the former case, an overview of the authors’ current research 
is given in regard to authenticating documents using a Smartphone as discussed in Section 4. 

2 Cryptography using Evolutionary Computing 
In Patrick Mahon’s secret history of ‘Hut 8’ – the Naval Section at Bletchley Park (Station X) from 1941-
1945 - it is stated that [4]: ‘The continuity of breaking Enigma ciphers was undoubtedly an essential factor 
in our success and it does appear to be true to say that, if a key has been broken regularly for a long time 
in the past, it is likely to continue to be broken in the future, provided that no major change in the method 
of encryption takes place’. This statement is in regard to the famous Enigma encryption machine used by 
German armed forces from the mid-1930s until 1945, the underlined component of this statement 
relating to the design of the enigma machine and not its key settings.   

The design of the enigma machine is an example of what today we would call an encryption algorithm 
whose output is ultra-sensitive to the input key. Today, such encryption algorithms often manifest 
themselves in terms of just a few lines of source code. They are typically and traditionally based on the 
application of modular arithmetic coupled with certain mathematical ‘tricks’ associated with the 
properties of prime numbers, for example. This includes the famous Rivest, Shamir, Adleman (RSA) 
algorithm which is arguably the foundation stone for the development of public-private key cryptography 
whose security relies on the difficulty of factoring large semi-prime numbers into two component prime 
numbers. Such a factorization has been computationally impossible with conventional digital computing 
(even with super computers) using procedural algorithms such as Shor’s algorithm. However, with the 
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development of quantum computers which allow this algorithm to be implemented efficiently, prime 
number-based encryption is set to become increasingly obsolete.   

Irrespective of the encryption algorithm available (in the past, present or future), there is a conventional 
rule called the Kerckhoff-Shannon principle which states that a crypto-system (including the algorithm 
with pre- and post-data processing) should be secure even if everything about the system, except the 
key(s) is public knowledge.  This is stated more succinctly by Claude Shannon as ‘the enemy knows the 
system’. Certainly, it is important that an encryption algorithm can be scrutinized by others in order to 
confirm (publicly or otherwise) its cryptographic strength.  But this is correlated to a certain extent with 
the relative difficulty of producing new algorithms by hand. AI has overcome such difficulties, and, it is 
now possible, as is discussed in this section, to produce different encryption algorithms as easily (in 
principle) as it is to produce different keys. In this context, the encryption algorithm becomes the key, but 
like a conventional key, still needs to be exchanged between sender and receiver. This allows us to break 
with the conventional Kerckhoff-Shannon principle. The approach is to apply real world data, in this case, 
real world noise, which is used to either train an ANN to simulate the noise as briefly discussed in Section 
1.4, or, to output a nonlinear function that approximates the noise and can then be cast as an iterator 
where the initial condition is the (conventional) key.  In regard to the latter case, we present an approach 
based on the application of a machine learning method called Evolutionary Computing. 

2.1 Background to the Case 
Consider an encryption method that is based on the Gilbert Vernam Cipher [21] which is in fact, a perfectly 
secure method of encrypting data for one-to-one communications provided a secure method of key 
exchange is available. The Vernam cipher is a substitution cipher based on generating an array of random 
numbers to form a vector 𝒙𝒙 = (𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑁𝑁) – the ‘cipher’. This vector represents a digital signal that is 
taken to be a stochastic field - a purely noise driven signal. The problem is how to generate an algorithm 
that can be executed on a digital computer to output such a vector that is suitable for encryption using 
the Vernam cipher or otherwise. 

Suppose that some plaintext is written in terms of a set of numbers (using the ASCII, for example), thereby 
constructing a plaintext vector 𝒑𝒑. The plaintext is typically taken to be the text associated with a natural 
language, the plaintext vector consisting of decimal integer numbers conforming to the ASCII for the 
natural language, but, in principle, any code can be used. However, in a more general context, the 
plaintext vector could consist of elements representing any signal or image, for example. In the latter case, 
the elements would typically be decimal integers in the range 0-255 for an 8-bit grey level image, but in 
the former case, the elements may be floating point numbers as can the elements of the cipher. Either 
way, for a substitution cipher, we can generate the ciphertext by simply adding the two vectors together 
to generate the ciphertext  𝒄𝒄 = 𝒙𝒙 + 𝒑𝒑. In the case when the plaintext is natural language based text data, 
coded using 7-bit ASCII and composed of 𝑁𝑁 elements (when the cipher is also composed of 𝑁𝑁 integer 
values), we can construct the ciphertext as given in Equation (1) below (where mod denotes the modulo 
operation): 

                                      𝑐𝑐𝑘𝑘  =  (𝑥𝑥𝑘𝑘  +  𝑝𝑝𝑘𝑘) mod (127), 𝑘𝑘 = 0,1, 2, … ,𝑁𝑁 − 1                                    (1)   

The plaintext is then recovered from the decryption equation 𝑝𝑝𝑘𝑘  =  (𝑐𝑐𝑘𝑘 −  𝑥𝑥𝑘𝑘) mod (127) , which 
requires 𝒙𝒙 to be known of course. However, another way of implementing the method of encryption is to 
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write the integer plaintext and cipher vectors as binary strings (using ASCII, for example).  In binary space, 
the ciphertext is then given by 𝒄𝒄 = 𝒙𝒙 ⊕ 𝒑𝒑 where ⊕ denotes the binary exclusive OR (XOR) operator, the 
decrypt being given by 𝒑𝒑 = 𝒙𝒙 ⊕ 𝒄𝒄.  In this case, the vector notation used to denote the binary space data 
𝒄𝒄,  𝒙𝒙 and 𝒑𝒑 denotes binary strings that are of a finite length L>N where typically, L>>N for a standard 
plaintext massage. 

Whatever the method of encryption that is implemented, a principal issue is how to design an algorithm 
or a class of algorithms that output a cipher with properties that are consistent with strong encryption. 
These properties include ensuring that 𝒙𝒙 is statistically unbiased so that the histogram of the cipher is 
uniformly distributed and equally so, has a power spectral density function that is uniform. Most cipher 
generating algorithms are based on iterations in which the initial value is the key. They produce pseudo 
random number streams for which certain critical conditions are required to be met. These conditions 
include: (i) ensuring that the algorithm generates random numbers that are equally and uniformly 
distributed irrespective of the key that is used; (ii) given that the cycle length of any finite state 
computations is itself finite, is the characteristic cycle length of the iteration longer than the length of the 
plaintexts that are to be used, thereby avoiding patterns in the random number stream that are correlated 
cyclically. 

There are numerous cipher-generating algorithms based on the design of Pseudo Random Number 
Generators (PRNGs) that have been developed. They tend to fall into three classes which generate: (i) 
decimal integer random number streams; (ii) floating point random number streams; (iii) random binary 
streams. The traditional focus has been on the computation of integer streams because of the 
computational efficiency associated with integer arithmetic.  This has typically involved the coupling of 
modular arithmetic with prime numbers which is why prime number-based cryptography has evolved in 
the way that it has.   By way of an example, the Blum Blum Shub (BBS) cipher [22] is a PRNG first proposed 
in 1986 that is based on the iteration (for  𝑘𝑘 = 0, 1, 2, . . . ,𝑁𝑁 − 1) 

                                                               𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘2 mod (𝑀𝑀),𝑀𝑀 = 𝑝𝑝𝑝𝑝                                                             (2)  

where p and q are prime numbers and 𝑥𝑥0 is the key (the initial condition or ‘seed’) which is a co-prime 
to M meaning that p and q are not factors of 𝑥𝑥0 and not 1 or 0. This algorithm operates on, and outputs a 
string of pseudo random values that are decimal integers. 

The design of cipher generating algorithms that output decimal integers evolved in parallel with the 
limited computing power available primarily, the limited processing time associated with floating point 
array processing. With the more recent development of fast floating-point processors and co-processors 
and specialist real-time digital signal processors, floating-point cipher generation has been able to exploit 
the study of chaos to produce a new class of chaotic iterators that are based on non-linear iterations and 
require high precision floating-point arithmetic to be performed.    

An example of such an iterator is the Vurhulst cipher given by 

                                                            𝑥𝑥𝑘𝑘+1 = 4𝑟𝑟𝑥𝑥𝑘𝑘(1− 𝑥𝑥𝑘𝑘), 𝑟𝑟 ∈ (0,1)                                                  (3) 

which has a certain synergy with the BBS PRNG given that both are quadratic iterators.  In this case, the 
initial condition 𝑥𝑥0 is a floating-point number between 0 and 1.  However, this iteration only provides full 
chaos when r=1 which is prohibitive given that 𝑥𝑥𝑘𝑘  converges and then bifurcates multiple times as r 
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approaches 1. For this reason, a modification to Equation (3) can be introduced by considering the 
iteration [23] 

𝑥𝑥𝑘𝑘+1 = 4(1 + 𝑟𝑟) �1 +
1
𝑟𝑟
�
𝑟𝑟

 𝑥𝑥𝑘𝑘(1− 𝑥𝑥𝑘𝑘)𝑟𝑟  𝑟𝑟 ∈ (0,1) 

A range of values of 𝑟𝑟  can then be used in addition to an initial value  𝑥𝑥0 ∈ (0,1) which extends the 
iterator to a two-parameter algorithm. 

In general, we can consider a generic iterative cipher to be of the form 

                                                          𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘),  𝑥𝑥0 ∈ (0,1)                                                                  (4) 

where 𝑓𝑓 is some nonlinear function which may include a parameter or set of parameters whose numerical 
values (or range of values) need to be establish a priori to provide a chaotic cipher 𝒙𝒙.  In principle, one 
could attempt to generate a data base of many such non-linear functions.  These functions might be 
modifications of known chaotic maps developed to investigate specific physical (feedback) models of 
chaos or simply invented. There are, however, a number of issues that need to be appreciated in order to 
implement such an approach. These issues are considered below. 

2.1.1 One-way functions 

In the application of Equation (4) to cryptography, it is assumed by default that 𝑓𝑓 is a one-way function 
which means that  𝑥𝑥0 (the key) cannot be derived from a knowledge  𝑥𝑥𝑘𝑘.  However, for certain functions 
and under certain conditions, this is not the case.  For example, with 𝑟𝑟 = 1, Equation (3) has the analytical 
solution [24] 

                                                                   𝑥𝑥𝑘𝑘 = sin2(2𝑘𝑘sin−1�𝑥𝑥0)  

Thus, for 𝑘𝑘 = 1, it is possible to invert this equation to obtain the key  𝑥𝑥0 meaning that the key can be 
obtained from knowledge of the first iteration (or higher order iterations) which is clearly not acceptable 
in the design of a cipher generating algorithm. This result has a synergy with Equation (2) in so much as 
this equation can be written in the form 

𝑥𝑥𝑘𝑘 = �𝑥𝑥0
2𝑘𝑘mod 𝐶𝐶(𝑀𝑀)�mod 𝑀𝑀 

where 𝐶𝐶 is the Carmichael function [25]. Thus, in order to use an iteration of the type given by Equation 
(4), the nonlinear function must be proved to be a one-way function and not to have an equivalent 
analytical solution that is invertible. 

2.1.2 Equal Probability of States 

What-ever nonlinear function is applied, modified or invented, the distribution of 𝒙𝒙 is rarely uniform and 
the vector must be post-processed to generate such a distribution. This can be done by windowing all 
values of the vector that conform to a uniform distribution. However, this wastes data and processing 
time required to generate it, given that many computed floating-point values may have to be discarded.   
This is an important issue because in assuming the existence of one-way functions, there can exist 
probability distributions, which are not uniform and are not even statistically close to a uniform 
distribution, but are nevertheless, computationally indistinguishable from real-world chaos [26].  Hence, 
checking for equal probability of the states is fundamental. One way of enforcing this requirement is to 
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implement a partitioning strategy to output a random binary string as illustrated in Figure 3, which shows 
the histogram for Equation (3) and is uniformly distributed for 𝑥𝑥𝑘𝑘∈ [0.3,0.7] (approximately).  A binary 
string can therefore be created by outputting a ‘0’ when 𝑥𝑥𝑘𝑘∈ [0.3,0.5] and a ‘1’ when 𝑥𝑥𝑘𝑘∈ (0.5,0.7] or visa-
versa.  In this way, a so-called maximum entropy bit stream cipher is obtained in which the encryption 
process is undertaken using a standard XOR operation. 

 
Figure 3.  Histogram of the output for a Vurhulst process given by Equation (3) and the partitioning strategy 

used to generate a maximum entropy binary cipher [24]. 

Further examples of such ciphers include the functions or maps given in Table 1 which specify the form of 
the function given in Equation (4). These are examples of stream ciphers obtained by inputting a key 
𝑥𝑥0 ∈ (0,1), optimizing their output (through adjusting the value of 𝑟𝑟) to produce a chaotic number-stream 
and post processing this output to generate a stream that is uniformly distributed [27].   

Table 1.  Examples of chaotic maps for the generation of stream ciphers. 

Name of Map Function 
Generalized Tent Map 𝑟𝑟(1− |2𝑥𝑥 − 1|𝛼𝛼  ),  𝛼𝛼 > 0  
Quadratic Feedback Map 𝑟𝑟𝑟𝑟[1− 𝑥𝑥(1+𝑥𝑥2)] 
Generalized Sine Map |sin(π𝑟𝑟𝑥𝑥𝛼𝛼)|,  𝛼𝛼 > 0 
Tangent Feedback Map 𝑟𝑟𝑟𝑟[1−tan(1/2𝑥𝑥)] 
Logarithmic Feedback Map 𝑟𝑟𝑥𝑥[1− 𝑥𝑥log(1+𝑥𝑥)] 

Not all invented or otherwise maps are suitable from a probabilistic point view even though they may 
exhibit chaos. For example, the map  𝑓𝑓(𝑥𝑥) = 𝑟𝑟|1 − tan [sin(𝑥𝑥)]|, 𝑟𝑟 = 1.5  has a highly non-uniform 
distribution over all probability states and can therefore not be conditioned to produce a maximum 
entropy cipher using the partitioning strategy illustrated in Figure 3, for example. 

2.2 The Lyapunov Exponent 
In addition to ensuring equal probability states, it is also necessary to make sure that the nonlinear 
function is characterized by an iteration in which the Lyapunov exponent is positive, thereby guaranteeing 
that the iteration is not convergent but chaotic [24]. For a long sequence of numbers 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝐾𝐾, a useful 
measure of the Lyapunov exponent is given by 

                                                                    λ(𝑥𝑥0) = 1
𝐾𝐾
∑ log| 𝑓𝑓′𝐾𝐾
𝑘𝑘=1 (𝑥𝑥𝑘𝑘) |                                                       (5) 

We require that λ > 1  for all 𝑥𝑥0 ∈ (0,1).  A high, but strictly positive value of the Lyapunov exponent is 
preferable because the iteration function it is taken to characterize will then generate chaotic trajectories 
within a few iterations.  Thus, ideally what we require is a nonlinear function for which λ ≫ 1 for all 
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𝑥𝑥0 ∈ (0,1).    In this context, the nonlinear function must also generate an iteration with a long cycle length.  
In practice, the actual values of the Lyapunov exponent and the cycle length are relative to some known 
iteration that has been categorized as being cryptographically strong a priori with regard of the measures 
discussed. These issues are difficult to determine analytically and require numerical tests to be 
undertaken which includes measuring the processing time which cannot be excessive.  

2.2.1 Structural Stability  

Numerical tests do not guarantee the diffusive properties of a cipher, namely, that the PRNG is structurally 
stable. Ideally, we require an iteration that has (almost) the same cycle length and Lyapunov exponent for 
all initial conditions. Most of the known pseudo-chaotic systems do not possess this property and there is 
no rigorous analytical method, as yet known, for assessing this property. This is an important problem 
because without solving it, it is not possible to guarantee that a crypto system based on a deterministic 
chaotic algorithm or set of algorithms will always produce uncorrelated strings for any and all keys, 
irrespective of their floating-point accuracy.   

2.2.2 Computational Unpredictability 

Another issue is the determination of unpredictability for chaotic systems, i.e. what properties of a chaotic 
system grantee its computational unpredictability. This issue is coupled with the problem of algorithmic 
complexity which cannot be commuted; there is no universal solution for simplifying programs and for 
proving that the length is minimal. We cannot apply this definition directly to compare the complexity of 
cryptographic sequences or algorithms. Nevertheless, the theoretical applications are very important. In 
particular, the Kolmogorov complexity provides a unified approach to the problem of data compressibility 
[28]. Subject to these important and, as yet, unresolved issues, the applications of ‘digital chaos’ can yield 
commercially realizable products but not necessarily products that are scalable in terms of commercial 
capacity. 

Given the issues discussed above in regard to inventing a suitable nonlinear function, it would be 
beneficial if an approach could be developed where such a function could be evolved from real-world 
stochastic data, on the understanding that the function would provide only an approximation to the data. 
To accomplish this, we resort to the use of Evolutionary Computing which is a form of machine learning. 

2.3 An Introduction to Evolutionary Computing 
In Computer Science, evolutionary computation is known as a family of algorithms for global optimization 
that are inspired by biological evolution [29]. In practical terms, they are a family of population-based trial 
and error problem solvers, with a metaheuristic or stochastic optimization character [30], i.e. an initial set 
of candidate solutions is generated and iteratively updated. Each new generation is produced by 
stochastically removing less desired solutions, and introducing small random changes. We can say 
therefore, that evolutionary computational techniques have the capability to produce highly optimized 
solutions across a wide range of problems. The principles of evolutionary strategies where first introduced 
in the 1960’s [31].  Evolutionary programming was later introduced in the 1990’s [32] and while these 
areas developed separately, by the late 1990’s, they were unified as different representatives or ‘dialects’ 
of one technology, namely, Evolutionary Computing (EC) [33]. Around the same time, a fourth stream, 
following the same general concepts had also emerged known as ‘genetic programming’ [34]. Since then, 
nature-inspired algorithms have become an increasingly significant part of evolutionary computation. 
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Many aspects of EC are stochastic, but the starting point of candidate solutions can be either deterministic 
or stochastic. In EC, genetic algorithms deliver methods to model biological systems that are linked to the 
theory of dynamical systems, since they are used to predict the future states of the system. 

Within the field of EC itself, a software system called ‘Eureqa’ was one of the first such systems to be 
developed by the Cornell Creative Machine Laboratory (Cornell University, USA) and then commercialized 
by Nutonian Inc. [35]. The underlying principle is to use genetic programming to generate dynamic 
equations, each of which provides an increasingly better ‘fitness function’ to model a given dataset.  If this 
dataset is complex, such as a noise field, the system iteratively generates a sequence of non-linear 
functions to approximate the input signals [36]. Thus, Eureqa is a modeling engine predicated on machine 
learning, using evolutionary searches to determine an equation that best represents a given data set. 
Eureqa claims to ‘automate the heavy lifting inherent in analytics and data science’ [37]. The system 
automatically discovers analytical models requiring almost no human intervention and randomly creates 
equations via sequences of mathematical building blocks based on a combination of common functions. 
It is therefore suitable for generating non-linear functions by seeding the system with data from real world 
noise sources. The functions can then be iterated as required, to produce a key seeded pseudo random 
number sequence.  

Evolutionary Computing is associated with the field of Computational Intelligence, and like AI, involves 
the process of continuous optimization. AI aims, through iterative processes, to compute a set of optimal 
weights that determine the flow of information (the amplitude of a signal at a given node) through a 
network that simulates a simple output subject to a complex input. In this sense, an ANN simulates a high 
entropy input with the aim of transforming the result into a low entropy output. However, this process 
can be reversed to generate a high entropy output from a low entropy input. In this sense, ANNs can be 
used to generate ciphers by simulating natural noise once it has been trained to do so. 

2.4 Stream Cipher Generation using Evolutionary Computing   
The principal purpose of using EC and ANNs to produce stream ciphers is that the example maps given in 
Table 1 must derived, modified or just invented subject to an application of the conditions required for 
them to be compatible with application in cryptography. EC has the potential to do this automatically 
using real world noise to initiate the evolutionary process.  While an ANN approach to generating ciphers 
is of value in special cases, it does not provide the same flexibility in terms of designing PRNGs using 
iterated (nonlinear) functions. To do this, an evolutionary algorithms approach is required in which a 
population-based, stochastic search engine is required that mimics natural selection.  Due to their ability 
to find excellent solutions for difficult and dynamic problems within acceptable computational time, 
evolutionary algorithms have therefore attracted interest from many areas of science and engineering.  

The application of evolutionary computed algorithms to cryptology was first consider in 2013 [38] using 
Eureqa [37]. This system is used to iteratively develop a nonlinear function to describe complex input 
signals usually associated with experimental data of a chaotic system. If genuine random (delta 
uncorrelated) noise is input into the system, then from a theoretical point of view, no nonlinear function 
will be found on an evolutionary basis that models this noise perfectly. Thus, inputting natural noise is a 
way of ‘cheating’ the system to ‘force’ it to provide an approximation to the noise that may be suitable 
(on an iterative basis) as a PRNG.  This suitability is based on a set of tests including an evaluation of the 
Lyapunov Exponent, checking that the cipher stream is uniformly distributed, as is the Power Spectral 
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Density Function (PSDF) and so on, as outlined in Diagram 1 (where the ticks indicate that a given test has 
been passed).  By comparison, Diagram 2 shows an equivalent schematic for using an ANN to produce a 
stream cipher. Comparing the two approaches, it is clear that the weights and the ANN design are 
equivalent to an evolved function using EC. 

In either case, and, in addition to any function being tested against the checks given in Diagrams 1 and 2, 
the National Institute of Standards (NIST), Computer Security Resource Center, provides a Cryptographic 
Algorithms Validation Program (CAVP) [39] which includes testing new PRNGs [40]. These NIST tests are 
an international standard for validating the cryptographic strength of a cipher and are mandatory in the 
use of a cryptographic algorithm. 

 
Diagram 1.   Schematic of the processes for evolving a stream cipher using EC. 

 
Diagram 2.   Schematic of the processes for generating a stream cipher using an ANN. 

2.4.1 Real World Noise Sources 

There are a number of real-world noise sources that can be used to input into the systems whose 
schematics are given in Diagrams 1 and 2.  For example, Random.org is a free internet resource that 
provides true random number streams [41].  In this case, the random data is derived from atmospheric 
noise generated by radio emissions due to lightening; there are approximately 100 lightning  strikes to 
earth per second.  Another example is the quantum mechanical noise generated using a reverse biased 
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semiconductor junction.  This can be provided in the form of an external USB interface manufactured and 
supplied by Araneus Information Systems in Finland, for example. Their Alea II is a compact true random 
number generator, also known as a hardware random number generator, non-deterministic random bit 
generator, or entropy source [42].  

2.4.2 Evolved Cipher Generation Examples 

Given that this paper is a publication composed for the Transactions of a Society for Science and 
Education, the authors have chosen to present examples based on previous and current teaching activities 
associated with the Information and Communications Security course (COS 792) given as part of the 
Honors program in Computer Science in the Department of Computer Science at the University of Western 
Cape (UWC), South Africa.  One of the course work assignments is as follows: Read the paper 
‘Cryptography using Evolutionary Computing’ by Blackledge et al. 2013 [38].  Using the information and 
online references discussed in this paper, develop another example of the cipher given in Section V of this 
paper using the same approach and online facilities.   

Figure 4 shows a screen shot of Eureqa which generated the map given by the following non-linear 
function: 

𝑓𝑓(𝑥𝑥) = 0.7529− 0.4697 sin(0.7529 + sin(sin(sin(−4.334 × 105 cos(𝑥𝑥))))) 

− 0.569𝑥𝑥 cos(𝑥𝑥) acos(𝑥𝑥) sin (4.059𝑥𝑥2sin (sin (−4.331 × 105 cos(𝑥𝑥)) − 2.212 × 105cos (𝑥𝑥))) 

 
Figure 4.  Screen shot of Eureqa evolving a nonlinear equation to approximate an input vector consisting of 

random data obtained from Random.org. 

obtained by one of the students of the 2018 class [43]. The figure shows the outputs of the system which 
includes the list of equations obtained post 100 iterations, the solution chosen, its goodness of fit, the 
correlation coefficient, the maximum error and the mean squared error.  The plots given in Figure 4 are 
of the normalized solution fit to an input vector consisting of 138 random data elements (top-right) and 
the solutions accuracy (Error) plotted against the complexity (lower-right) as the iterations evolve 
different equations (of greater complexity but with a lower error). The selected equation had a 50% 
Stability and 76.2% Maturity and used 95% of the training data obtained from Random.org [41]. 

By repeating the process and using Eureqa to generate functions that approximate different random 
vectors (obtain using different noise sources or different noise fields from the same source), it is possible 
to generate an unlimited number of key dependent stream ciphers by iterating the function obtained 
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according to Equation (4). Table 2 shows some examples of maps that have been randomly selected from 
the assignment submissions produced by students of the Information and Communications Security 
course (COS 792) at UWC from 2016-2019. Each map is named after the student that evolved the function 
using Eureqa. These are examples of many hundreds of such functions that have been evolved by students 
of the course since 2016.  

Table 2.  Examples of maps evolved using Eureqa by a selection of Honors students at UWC. 

Name of Student, Date Function 

D J van Roodt, 01-10-
2016 

acosh(𝑥𝑥 + 𝑥𝑥3 asinh(𝑥𝑥 − 1)) acosh�𝑥𝑥 − 1

+ 𝑥𝑥3�6 + atan�𝑥𝑥asinh(𝑥𝑥3)��� 𝑥𝑥3 

G Chibba, 28-11-2017 0.5076 + 0.1094 sin(1.574𝑥𝑥) + 0.1568sin (6.107 +
𝑥𝑥log�0.4619 sin�−0.04284𝑥𝑥sin(−0.03866𝑥𝑥)��)  

J Christians, 29-11-2018 44.42 + 21.91sin(3.362 + cos(47.26cos(41.49𝑥𝑥)) − 32.66𝑥𝑥2 +
20.95cos (4.23 + 53.46 cos(sin(3.362 + cos(47.26 cos(41.49𝑥𝑥))−
32.66𝑥𝑥2))2 sin(3.362 + cos(47.26 cos(41.49𝑥𝑥)) − 32.66𝑥𝑥2)) +
cos (41.49𝑥𝑥)   

R Lehata, 30-11-2019 cos(1.691 + 2.216𝑥𝑥)− 0.9704𝑥𝑥cos(1.807 + 2.03𝑥𝑥)−
0.2623cos (1.314𝑥𝑥sin(𝑥𝑥)  cos (cos (1.807 + 2.03𝑥𝑥) −
0.9884 𝑥𝑥cos (1.807 + 2.03𝑥𝑥)) − 5.863 × 105𝑥𝑥)  

 

2.5 Discussion 
While the output maps evolved by Eureqa should be routinely tested against the NIST CAVP (since the 
maps are essentially an approximation of real-world noise), it can be expected that they will conform to 
the basic tests for randomness. Thus, the distribution will, by-default, be uniformly distributed and there 
is no need to apply a partitioning strategy as illustrated in Figure 3, for example, to generate a maximum 
entropy cipher. In principle, any evolutionary computed cipher can be iterated according to Equation (4), 
so that it can be used a number of times for a different key  𝑥𝑥0 ∈ (0,1).   

Another approach is to use an EC ciphers once and once only, in which case, iteration is not required.  This 
approach over comes the issue of ensuring that the cipher is structurally stable so that the iterator has 
(almost) the same cycle and Lyapunov exponents for all initial condition (given that most of the known 
pseudo-chaotic systems do not possess this property).  However, this assumes that a large data-base of 
such ciphers has been created a priori and/or can be created in real time as and when required.  But since 
each cipher requires a real-world noise sequence to generate a map, it is arguable that instead of using 
EC to evolve a map, the original data might be used for encryption instead, which then obviates the need 
for EC in the first place.  On the other hand, since either the map or the data from which it has been 
evolved must be exchanged between Alice and Bob, the exchange of a map will be preferable given that 
maps such as those given in Table 2 require less bits to transmit over an unsecured network using a known 
key exchange algorithm.  In either case, a key exchange algorithm is necessary to exchange the map (once) 
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and then the keys used to generate different initial conditions for each plaintext, or the map alone.  In the 
latter case, the map becomes equivalent to the key for a known algorithm. 

In addition to providing a cipher, the method can also be used to generate encryption keys.  This has been 
considered in [44] which uses EC to generate keys for encrypting cloud-bound data with Advanced 
Encryption Standard (AES-128, 192 and 256), the Data Encryption Standard (DES and 3DES) and a novel 
cryptosystem called ‘Cryptor’. One of the problems faced in cryptography is key management. The key 
management in this case is addressed using an ANN to learn patterns of the encryption key. Once learnt, 
the key is then discarded to thwart an attack on the key. The key is then reconstructed by the ANN for the 
purpose of decryption. 

2.5.1 Issues on Practical Implementation 

An important issue is that EC generated maps can take a significant amount of CPU time to evolve on a 
standard personal computer, for example, and once generated, may require a large number of high 
precision floating point operations to compute.  In general, the longer EC is left to evolve a function, the 
more complex the output map becomes.  However, this issue is essentially a hardware development 
concern, and, like the rise of deep learning using complex and computationally intensive ANNs (as 
discussed in Section 1.3), provides a way forward to generating an unlimited number of unique and 
unclonable ciphers without the maps having to be ‘designed by hand’.   This makes available a solution to 
encrypting data using one-time pads where an evolutionary computed cipher (and the key used to set the 
initial condition as required) is used once and once only, after which it is discarded.  In this context, a 
known algorithm attack becomes a legacy of the past and conventional PRNGs such as those listed in [45] 
may eventually become of historical interest alone. 

The purpose of allowing an EC system such as Eureqa to iterate for what may be many hours on a 
conventional CPU, is to evolve a cipher that provides a best approximation to the input noise.  However, 
for applications in cryptography, this may not be required as the output obtained after just a few iterations 
may provide a ‘solution’ of the type specified by Equation (4) that generates suitable chaos, thereby 
significantly reducing the evolutionary computational time required.  Further, such maps can be 
implemented on a complementary basis in which a data base of maps (constructed a priori) is accessed 
so that different maps can be randomly selected and used to encrypt different blocks of data over a 
randomized window of plaintext – multi-algorithmic cryptography.      

Practical cryptography is based on passing known statistical tests available at [40], for example, which is 
designed to ensure the pseudo-random property of a generator. Pseudo-random sequences are used 
instead of truly random sequences in most cryptographic applications.  This is because, a symmetric crypto 
system can then focus on the application of a key to initiate an iterative formula, a formula that is known 
to both Alice and Bob and preferably in the public domain.  We have considered a method of designing 
algorithms for generating pseudo random (chaotic) sequences using truly random strings to evolve an 
iterator that is taken to be an approximation to these sequences. This approach pays no attention to the 
algorithmic complexity of the iterator which is one of the main problems in the application of chaos to 
cryptography. Neither does it consider the structural stability of the iterator or its algorithmic complexity. 
However, it does provide a practical solution to the problem of developing a large database of PRNGs in 
the application of personalizing encryption algorithms for strictly 1-to-1 communications or ‘1-to-Cloud’ 
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(encrypted) data storage (e.g. [46], [47] and [48]).  In this context, public knowledge of a specific 
encryption algorithm becomes null and void. 

By using EC systems such as Eureqa seeded with noise, it is possible to generate a nonlinear map with 
automated control parameter settings.  However, the one-step unpredictability does not guarantee that 
the output sequence will be unpredictable when an adversary has access to a sufficiently long sequence. 
In other words, the vast number of samples can, on a theoretical basis at least, lead to unpredictability. 
With these provisions, EC has the potential for generating an unlimited number of ciphers which can be 
personalized for users to secure their ‘Data on the Cloud’, for example. Evolutionary computed algorithms 
can be published so that the approach conforms to the Kerckhoff-Shannon Principle as required, but in 
the certain knowledge, that a new set of PRNGs can be developed by any individual interested in doing 
so.  In this context, the method might be viewed as a technical solution to the ‘democratization of the 
cipher bureau’. 

2.5.2 Encryption Methods 

Maps of the type given in Table 2 output a floating-point vector 𝑥𝑥𝑘𝑘  to a precision that can be controlled 
by the user, subject to the word length of the floating-point processor that is available.   If the cipher is 
taken to be a floating-point data field then for a ‘floated plaintext’ 𝑝𝑝𝑘𝑘, the ciphertext will also be a floating-
point field, i.e. 𝑐𝑐𝑘𝑘  =  (𝑥𝑥𝑘𝑘  + 𝑝𝑝𝑘𝑘).  To decrypt the ciphertext, the recipient of the data must have access 
to a processor that can provide the same floating-point accuracy.   If this is not possible, the floating-point 
field can be rounded to output a stream of integers so that for the 7-bit ASCII, the ciphertext is given by 
Equation (1) where each component of this equation is a decimal integer, re-scaled as required so that 
𝑥𝑥𝑘𝑘  ∈ [0,127], for example. Alternatively, this rounded cipher stream can be written as a binary stream 
and the cipher computed using 𝒄𝒄 = 𝒙𝒙 ⊕ 𝒑𝒑.  These encryption models through which a cipher is used to 
actually encrypt the data are standard Vernam-type encryption algorithms adapted for different data 
types.  However, other encryption models can be used to encrypt the data as will now be discussed.   

Instead of adding the plaintext to the cipher or implementing an XOR operation on the binary string 
conversions, we can apply the convolution operation to a decimal integer or floating-point array.  The 
ciphertext is given by 𝒄𝒄 = 𝒙𝒙 ⊗ 𝒑𝒑 where ⊗ denotes the convolution sum and is an example of data diffusion 
using convolutional encoding.  Here, the arrays are taken to be vector arrays but convolutional coding can 
be applied equally well for arrays or arbitrary dimension, most typically for encrypting images using the 
two-dimensional convolution sum. Whatever the dimension of the process, decryption requires that the 
ciphertext is de-convolved to recover the plaintext.   

De-convolution is a well-known problem in digital signal and image processing and is often an ill-
conditioned problem because the process is unstable and requires to be regularized.  However, for 
cryptography, this problem can be solved by pre-conditioning the cipher with its own power spectrum.  In 
this case, the spectrum of the cipher denoted by 𝑋𝑋 and obtained by taking the Fourier transform of 𝒙𝒙 
(which is a complex array with complex conjugate 𝑋𝑋∗) is replaced with the array 𝑋𝑋∗/|𝑋𝑋|2, |𝑋𝑋|2 > 0.  Using 
the convolution theorem, the convolutional coding process 𝒄𝒄 = 𝒙𝒙 ⊗ 𝒑𝒑  in data space becomes  𝐶𝐶 = 𝑋𝑋𝑋𝑋  
in frequency space where 𝐶𝐶 and 𝑃𝑃 are the frequency spectra of 𝒄𝒄 and 𝒑𝒑, repectively. Thus, if we let 

                                                                          𝐶𝐶 = 𝑋𝑋∗𝑃𝑃
|𝑋𝑋|2

                                                                               (6)  
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then the spectrum of the plaintext is given by 𝑃𝑃 = 𝑋𝑋𝑋𝑋. In practice, this approach requires application of 
the Fast Fourier Transform.  Also, in practice, the condition that |𝑋𝑋|2 > 0 can be satisfied by letting |𝑋𝑋|2 =
 1 if |𝑋𝑋|2 =  0 where the ′0′ is taken to be a floating point number whose value is below the floating point 
accuracy available on a given processor.  This method has been successfully applied for encrypted 
information hiding (specifically, image Steganocryptography) – see [49], [50] and [51], for example. One 
of the more useful properties that convolution-based encryption provides, is that it generates a ciphertext 
that is data redundant.  This facilitates a decrypt subject to a ciphertext with relatively significant data 
error compared to an XOR process which requires bit error correction algorithms to be applied if the 
ciphertext incurs errors due to transmission noise, for example. 

Another method of encryption is to apply a phase-only process [52], [53].  In this case, the ciphertext is 
obtain using the equation 𝑐𝑐𝑘𝑘 =  𝑝𝑝𝑘𝑘𝑒𝑒𝑖𝑖𝑥𝑥𝑘𝑘 , the decrypt then being given by 𝑝𝑝𝑘𝑘 =  𝑐𝑐𝑘𝑘𝑒𝑒−𝑖𝑖𝑥𝑥𝑘𝑘.  This is a process 
that can be applied in any dimension and in data or frequency space. In data space, however, the 
ciphertext is complex and therefore increases the data by a factor of 2.  On the other hand, the plaintext 
throughput can be doubled in size by using both real and imaginary components of a complex vector 𝒑𝒑.   
It is of course possible to intercept the ciphertext, compute |𝑐𝑐𝑘𝑘| and then attempt to retrieve the phase 
from this data.  However, the phase retrieval problem is severely ill-posed with no uniformly stable 
solutions. Moreover, the practicality of implementing phase retrieval algorithms is dependent on the 
dimension. It is well known that for the two-dimensional case, phase estimation algorithms have been 
developed to provide approximate solutions.   These solutions tend to rely on the data (whose amplitude 
spectrum is known) being sparse. However, for the one-dimensional case, the phase retrieval problem is 
ambiguousness, the determination of the phase within the extensive solution set being challenging and 
only able to be considered under suitable a priori assumptions or additional information. This is a 
consequence of the Fundamental Theorem of Algebra which states that every single-variable polynomial 
with complex coefficients has at least one complex root. This theorem fails for polynomials of two 
variables.  The inability to factor polynomials of two variables is the reason why the two-dimensional 
phase retrieval is possible and prevents the one-dimensional phase retrieval problem from being solved. 
This is because the ability to factor polynomials generates ambiguities where multiple phases correspond 
to the same data. Thus, any attack associated with attempting to solve the one-dimensional phase 
retrieval problem will no doubt continue to remain a significant challenge for a cryptanalyst.  

2.5.3 Natively Binary Chaos 

The methodology discussed in Section 2.3 produces ciphers that are based on floating point iterators.   In 
some cases, the output of such iterators can be converted into binary streams either through necessity 
(such as with the segmentation scheme illustrated in Figure 3) or through a preference to encrypt in binary 
space (when developing real-time systems, for example).  In the latter case, for example, any algorithm 
that provides a positive only floating-point cipher 𝒙𝒙 ∈ [𝑥𝑥min,𝑥𝑥max],  say, can be post-processed to 
generate a cipher 𝒙𝒙 ∈ [0,1] using the equation 

𝒙𝒙: =
𝒙𝒙 −  𝑥𝑥min

||𝒙𝒙 −  𝑥𝑥min||∞
 

The binary string is then obtained by applying a round transformation which rounds each element of 𝒙𝒙 to 
the nearest integer (in this case, 0 or 1). It is therefore natural to ask whether it is possible to design 
algorithms that output binary strings directly without the need for conversion from decimal integer form, 
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such algorithms generating natively binary chaotic outputs.  However, designing such algorithms is 
relatively difficult compared to their floating-point counterparts which, as discussed in Section 2.3, are, in 
the context of using EC, effectively unlimited.  On the other hand, obtaining real world binary strings is 
relatively easy and can be obtained through [41] and [42], for example.  This leads to the idea of training 
an ANN to output random binary streams for a few input (binary) strings (the keys).   It also necessitates 
the importance of obtaining tests that can accurately evaluate the randomness or otherwise of a binary 
string which is considered in the following section. 

A solution to designing an algorithm that can generate natively random binary strings is to apply the new 
generation of Generative Adversarial Networks (GANs) first considered in 2014 [54].  A GAN is based on 
using two neural networks which compete with each other in a zero-sum game.  For a given training set, 
the technique learns to generate new data but, crucially, with the same statistics as the training set. This 
can of course include a binary string in which the distribution of a 0’s and 1’s is the same. 

3 Binary String Analysis using Machine Learning 
Just as an ANN can be trained to generate random binary strings, so it can be used to evaluated the 
randomness (or otherwise) of the string.  In principle this could be done using a deep learning strategy as 
discussed in Section 1.3.   However, of all the tests on randomness, the information entropy is a metric 
that is especially sensitive to the random nature of data in general. It is fundamental to quantifying the 
meaning of information and hence, the lack of it through, for example, the randomization of a plaintext 
into a ciphertext with an equal probability of the states.   This is why, ciphers that are uniformly distributed 
are referred to as maximum entropy ciphers.  In this section we consider a binary entropy test (a 
modification thereof) that produces a statistically significant difference between a non-random and a 
genuinely random binary string and further, can assess the degree to which they are one or the other. 

A long standing problem in regard to the analysis of a finite binary string or bit stream (of compact 
support) is how to tell whether the string is representative of non-random (intelligible) information 
(involving some form of periodicity, for example) or whether it is the product of an entirely random 
process or whether it is something in between the two. This problem has applications that include 
cryptanalysis, quantitative finance, machine learning, artificial intelligence and other forms of signal 
processing involving the general problem of how to distinguish real noise from information that is 
embedded in, or is entirely lost, in noise. In cryptanalysis, given that digital communications is based on 
transmitting bit streams, it is routine to analyze the streams in an attempt to identify a signature which 
reflects whether the information is encrypted (or otherwise) and if so, the strength of the encrypted 
signature that is present in the binary data. We now consider the basis for solving this problem using an 
entropy-based analysis that gives a statistically significant difference between non-random and genuinely 
random binary strings. The statistical significance is compounded in a marked difference in the distribution 
of the output signals from which some basic statistical metrics can be computed and used to train an ANN, 
thereby developing a machine learning strategy to analyze the randomness of a binary stream as it 
changes in time. 
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3.1 Information Entropy 
In Leo Szilard's 1922 doctoral dissertation and companion landmark paper, he showed how a thought 
experiment concerned with the second law of thermodynamics called the Maxwell Paradox, could be 
solved by introducing the concept of information entropy which provides a ‘balance' to the paradox 
associated with a perceived decrease in the Boltzmann entropy [55]. Szilard's original concept on 
information entropy has become the basis of information theory, showing that there is an increase of  
𝑘𝑘𝐵𝐵log22 units of entropy in any measurement where 𝑘𝑘𝐵𝐵  is the Boltzmann constant. This concept was 
independently re-invented by Claude Shannon in 1949 [56] (to whom credit is usually but erroneously 
given) and Andre Kolmogorov and Yakov Sinai, who developed a modified form later on in 1959 [57], [58].   

In developing a solution to a paradox in thermodynamics, Szilard introduced an idea that is arguably the 
single most important icon of the information revolution and the digital age. This is because information 
entropy provides the key for estimating the (average) minimum number of bits needed to encode a string 
of symbols, based on the frequency of those symbols.  

In a more general context, information is a measure of order, a universal measure applicable to any 
structure or any system. It quantifies the instructions that are needed to produce a certain organization. 
We compute the information inherent in any given arrangement from the number of choices we must 
make to arrive at that particular arrangement among all possible arrangements. Intuitively, the more 
arrangements that are possible, the more information that is required to achieve a particular 
arrangement. There are several ways in which one can quantify information but an especially convenient 
one is in terms of binary choices which is quantified through the binary information entropy.   

Consider a digital signal 𝑠𝑠𝑘𝑘 , 𝑘𝑘 = 1, 2 … . ,𝐾𝐾  composed of  𝐾𝐾  (real) values.  Let the discrete probability 
distribution (constructed from 𝑁𝑁 bins) that a specific value 𝑠𝑠𝑘𝑘 occurs in the signal be 𝑃𝑃𝑛𝑛, 𝑛𝑛 = 1, 2, . . . ,𝑁𝑁.  
The information associated with an outcome (i.e. a specific value of 𝑠𝑠𝑘𝑘 with a bin) is then − log𝑃𝑃𝑛𝑛 which 
is a measure of the information required to specify 𝑠𝑠𝑘𝑘 in terms of it being a member of a bin where 𝑃𝑃𝑛𝑛 is 
the distribution of bins.   In this context, the (Shannon) Information Entropy (usually denoted by 𝑆𝑆), is a 
measure of the mean (the ‘expected value') of the information measure − log𝑃𝑃𝑛𝑛  and is given by the 
dimensionless quantity 

𝑆𝑆 = −�𝑃𝑃𝑛𝑛

𝑁𝑁

𝑛𝑛=1

log𝑃𝑃𝑛𝑛 

The higher the entropy of a signal becomes the greater its ambiguity, and, in this context, information 
entropy is a measure of the unpredictability or randomness of any message contained in the signal.   This 
is typically determined by the noise that distorts the information contained in a signal.  In general, the 
information entropy associated with the transmission of information in a signal tends to increase with 
time.  This is due to the increase in noise with time that distorts any signal as it propagates in time, the 
sources of this noise being multi-faceted but tending to a Gaussian distribution as a consequence of the 
Central Limit Theorem.    

Instead of considering a digital signal composed of decimal integer or floating-point elements, let us now 
consider the signal to be a binary string whose elements can take on only two values, namely 0 or 1, which 
are mutually exclusive.  In this case, the signal will have a binary distribution 𝑃𝑃𝑛𝑛,𝑛𝑛 = 1,2 consisting of just 
two bins and the Binary Information Entropy (BIE) function, denoted by 𝐻𝐻, becomes 
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                               𝐻𝐻 = −∑ 𝑃𝑃𝑛𝑛2
𝑛𝑛=1 log2𝑃𝑃𝑛𝑛 = 𝑝𝑝log2𝑝𝑝 − (1 − 𝑝𝑝)log2(1− 𝑝𝑝)   Bits                                 (7) 

where, if we let 𝑝𝑝  denote the probability of 1 occurring in the binary string, then the probability of 
obtaining a 0 in the same string is 1 − 𝑝𝑝.  Similarly, if  𝑝𝑝 is taken to denote the probability of 0 occurring 
in the string, then the probability of obtaining 1 is 1 − 𝑝𝑝.  In either case 0log20 ≡ 0. 

3.2 Evaluating the Order/Disorder of a Binary String 
Given a binary string of a finite length, our problem is to evaluate whether the string is a binary 
representation of genuine noise or whether it contains intelligible information in terms of it having some 
degree of determinism. The determinism of such a string could include any natural language that has 
evolved through use, application and repetition without conscious planning but binary coded in a planned 
and premeditated way, e.g. the ASCII. The purpose is therefore to establish a method by which a finite 
binary string of arbitrary length can be compared against another in terms of the relative order and/or 
disorder of all of its bits.  Applying a basic binary entropy test is not sufficient. This is primarily because of 
its failure to differentiate between binary strings that include periodicity and are therefore not random. 
For perfectly ordered binary strings whose elements are all equal to 1 or all equal 0 and when 𝑝𝑝 = 0 or 𝑝𝑝 = 
1, 𝐻𝐻(𝑝𝑝) = 0. On the other hand, when 𝑝𝑝 = 0.5, 𝐻𝐻(𝑝𝑝) = 1 reflecting maximum irregularity. However, for 
a string such as 01010101 which has a repeating pattern of 01, 𝑝𝑝 = 0.5, 𝐻𝐻(𝑝𝑝) = 1 so that in this case, 
the value of 𝐻𝐻(𝑝𝑝) appears to represent a random binary string when in reality, the sting is periodic and 
therefore not random at all. Thus, what is required is a binary information entropy-based metric that 
differentiates more fully than is possible with Equation (7) alone.   This issue is further quantified in Table 
2, which gives exemplars in regard the order and disorder of some 8- bit binary strings. 

Table 3. Some exemplars of order and disorder associated with some short binary strings (from [68]). 

Example Binary String Description Reason 
11111111 Perfectly ordered All 1’s 
00000000 Perfectly ordered All 0’s 
01010110 Mostly ordered Mostly 01’s 
01010101 Regular, not disordered Repeating 01’s 
11001100 Regular, not disordered Repeating 1100’s 
01011010 Mostly ordered 0101 then 1010 
01101011 Somewhat disordered No apparent pattern 
10110101 Somewhat disordered No apparent pattern 

 

There have been a number of algorithms designed to compute various entropy-based metrics for the 
determination or measurement on the randomness, regularity, irregularity, order, disorder and entropy 
for binary and other strings [59], [60]. These include measures that aim to characterize randomness and 
disorder through the entropy of finite strings such the Approximate Entropy [61], [62], Sample Entropy 
[63] and Fuzzy Entropy [64]. Such metrics are based on algorithms that can be classified as follows: (i) 
moving window methods that examine sub-strings of the original; (ii) algorithms which generate a metric 
based on the entire string length.  Applications include basic randomness tests [65], [66] and cryptanalysis 
[67]. This includes the development of a BiEntropy measure which is based upon a weighted average of 
the Shannon entropy for all but the last binary derivatives [68]. 

These metrics are the product of many studies that have been and continue to be undertaken to develop 
suitable tests and measures based on the computation of a single metric. While desirable 
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computationally, focusing on the use of a single metric for this purpose is restrictive and may be 
statistically insignificant because of its self-selecting data predication.  For this reason, we consider a 
complementary approach to the problem which is based on the application of the Kullback-Leibler 
Divergence for a stream of data that yields a statistically significant result as opposed to a single metric. 
This provides the foundations for the application of a machine learning approach. 

3.3 Distribution Analysis using the Kullback-Leibler Divergence 
Since randomness is a relative concept, a relative metric is considered which provides a measure of how 
a binary string compares in some way with a string that is known to be the product of a genuinely random 
process. Further, this comparison needs to be undertaken on a statistical basis, measuring how one 
probability distribution associated with the binary string compares to a reference probability distribution 
in terms of its information content.  For the reason, we consider the Kullback-Leibler Divergence or 
Relative (Binary) Entropy function given by 

𝑅𝑅 = −�𝑃𝑃𝑛𝑛

2

𝑛𝑛=1

log2 �
𝑄𝑄𝑛𝑛
𝑃𝑃𝑛𝑛
� 

where 𝑃𝑃𝑛𝑛 is the binary histogram of binary string 𝑓𝑓𝑘𝑘 and  𝑄𝑄𝑛𝑛 is the binary histogram of some reference 
binary string 𝑔𝑔𝑘𝑘, both binary strings being finite and of the same length.  

Suppose the string 𝑓𝑓𝑘𝑘 is mostly ordered or regular and not disordered (e.g. a binary string representation 
of some text from a natural language) and 𝑔𝑔𝑘𝑘  is a random string.  We require the metric 𝑅𝑅  to be 
significantly different in terms of its numerical value to the case when both 𝑓𝑓𝑘𝑘 and 𝑔𝑔𝑘𝑘 are random binary 
strings.  Ideally, what is required is to establish a threshold for the value of 𝑅𝑅 below which 𝑓𝑓𝑘𝑘  can be 
classified as ordered say, and above which, 𝑓𝑓𝑘𝑘 can be classified as random.  This is an example of a binary 
decision-making process that may not be statistically significant and may not necessarily be able to 
‘monitor’ a transition from 𝑓𝑓𝑘𝑘  being random to non-random.  Thus, suppose we consider the relative 
entropy digital signal given by 

                                                  𝑅𝑅𝑚𝑚 = −∑ 𝑃𝑃𝑛𝑛𝑛𝑛2
𝑛𝑛=1 log2 �

𝑄𝑄𝑛𝑛𝑛𝑛
𝑃𝑃𝑛𝑛𝑛𝑛

� ,𝑚𝑚 = 1, 2, … ,𝑀𝑀                                          (8) 

where 𝑃𝑃𝑛𝑛𝑛𝑛 is the 𝑚𝑚th binary histogram of the input binary string with 𝑃𝑃𝑛𝑛1 =  𝑃𝑃𝑛𝑛2 = ⋯ =  𝑃𝑃𝑛𝑛𝑛𝑛 and 𝑄𝑄𝑛𝑛𝑛𝑛 is 
the 𝑚𝑚th binary histogram of an  𝑚𝑚th random binary string obtained using a PRNG or is obtained from a 
real-world random binary string source.  To illustrate the characteristics of this relative entropy signal, we 
consider the following cases (which are referred to as such in regard to presenting the results that follow): 

Case (i):   𝑃𝑃𝑛𝑛𝑛𝑛 is the 𝑚𝑚th binary histogram of a non-random string; 

Case (ii):  𝑃𝑃𝑛𝑛𝑛𝑛 is the 𝑚𝑚th  binary histogram of a random string. 

In the results that follow, the non-random string is obtained by generating the binary representation of 
the text associated with the abstract of this paper, achieved using an ASCII text to binary converter [69] 
(with the delimiter set to none). A sequence of random binary arrays are generated using the MATLAB 
uniform distributed random number generator function rand (which returns floating point numbers in the 
interval [0,1]) and applying a round transformation (to output an array consisting of 0's and 1's), each 
array having the same length and each array being independent of the another.   
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Figure 5 shows example signals of the relative entropy given by Equation (8) for Case (i) and Case (ii) above 
with 𝑀𝑀 = 8000 and 100-bin histograms.  It is then clear that: 

• For Case (i), when 𝑓𝑓𝑘𝑘, is a non-random string, 𝑅𝑅𝑚𝑚 and has a Gaussian-type distribution. 
• For Case (ii), when both strings are random, 𝑅𝑅𝑚𝑚 also has a Gaussian-type distribution. 

In both cases, application of the Jargue-Bera test for normality shows that the null hypothesis must be 
rejected, i.e. the series 𝑅𝑅𝑚𝑚 does not actually conform to a normal distribution even though it appears to 
have the characteristics of one (as given in Figure 5).  Nevertheless, Figure 5 demonstrates the ability for 
Equation (8) to provide a statistically significant measure in regard to evaluating the randomness or 
otherwise of a finite binary string.  The difference in the mean 𝑅𝑅 � of the relative entropy signal for the two 
cases is at least two orders of magnitude and can therefore easily be used to differentiate between a 
random and non-random binary string.  But this is just one of many statistical metrics that may be 
computed from 𝑅𝑅𝑚𝑚  by computing its J-bin histogram 𝐻𝐻𝑗𝑗, 𝑗𝑗 = 1, 2, . . . , 𝐽𝐽  and evaluating the 𝑟𝑟th  central 
moment (the moments about the mean 𝑅𝑅 � ) given by 

µ𝑟𝑟 = �(𝑗𝑗 − 𝑅𝑅�)𝑟𝑟𝐻𝐻𝑗𝑗

𝐽𝐽

𝑗𝑗=1

 

providing the variance (𝑟𝑟 = 2), the skewness (𝑟𝑟 = 3) and Kurtosis (𝑟𝑟 = 4), for example, coupled with 
metrics such as the median and the mode given by ||𝐻𝐻𝑗𝑗||∞.    

Given the demarcation between a random and non-random binary string using Equation (8), the potential 
exists to compute further statistical metrics and other parameters based on an analysis of the signatures 
given in Figure 5.  These may include the higher statistical moments and spectral properties of the digital 
signal 𝑅𝑅𝑚𝑚, for example, designed to develop a feature vector whose purpose is to provide a multi-class 
classification using an ANN starting with a simple four component feature vector consisting of the Mean, 
Standard Deviation, Median and Mode. 

Since all data can be expressed as a binary string, irrespective of the code used to do so (i.e. ASCII or 
otherwise), the approach compounded in utilizing Equation (8) provides a relatively generic method of 
differentiating between random and non-random binary strings.  Unlike other approaches to solving this 
problem, this approach is based on generating a signal computed using Equation (8) and characterizing 
the distribution of the signal rather than computing a single metric for a binary string.  This allows  some 
common statistical metrics to be used to classify changes to the distribution of the signal 𝑅𝑅𝑚𝑚 and how 
these changes can form the basis for a machine learning approach using complementary statistical 
parameters for the signal, coupled with metrics associated with the spectrum of the signal and other 
transformations.   The purpose of this is to provide an analysis of a binary stream that can specify whether 
it is truly random, intelligible (i.e. the product of some communicable information, for example) or 
partially random in some way.   This provides the ability to continuously monitor binary streams to test 
for plaintext (intelligible) or encrypted (non-intelligible and random) data.  
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Figure 5.  Plots of the 𝑅𝑅𝑚𝑚 (left) given by Equation (8) for 𝑀𝑀 = 8000 and the associated 100-bin histograms 

(right) for Case (i) (above) and Case (ii) (below), respectively. 

4 Case Study: Document Authenticity using Unclonable Ciphers 
Technologies to make high value documents authentic and impossible or at least difficult to counterfeit 
have been pioneered for many years. This includes the use of foil holograms, micro-printing, raised print, 
ultra-violet features, overt and covert watermarks as well as the more recent use of polymers instead of 
paper for bank notes, for example. With these developments have come a range of specialist readers for 
checking the authenticity of bank notes at a Point of Sale (PoS) and passports at airports, for example.  In 
this case study, we consider the use of unclonable ciphers based on the application of EC for 
authenticating documents, specifically with a smartphone.  This is because smartphones are now very 
common with some 3.5B users world-wide (45.12% of the current world population; 2.5B in 2016) and 
because it is trivial to download a specialist app including those based on the methods discussed here.  
Consequently, there is no added expense for authentication at a PoS; it is simple to introduce new apps 
for upgrades and obviates the need to buy specialist readers. There are two potential ways of 
authenticating a document with a smartphone: (i) using the radio frequency antenna; (ii) using the 
camera. In this case study we discuss new technologies for both. 

4.1 Radio Frequency Identification 
Suppose that an Integrated Circuit (IC) coupled to an antenna can be designed that is thin and flexible 
enough to be embedded into a document and includes enough read only memory to store an unclonable 
ciphertext that is unique to the IC.  In the near field, the antenna of a smartphone can then be used to 
both activate and read the ciphertext, thereby authenticating the document on-line. The key to this form 
of RFID (Radio Frequency Identification) [70] is to ensure that the encrypted information maintained on 
the IC, is unique and unclonable.  This requires the generation of numerous chaos-based functions that 
can be obtained using EC. 

FLEX NFCTM stamp antennas [71] are a new generation of ultra-thin (up to 10 µm compared to standard 
IC’s of 75µm or 120µm) low cost and flexible integrated circuits made of amorphous silicon deposited on 
a polyamide substrate. This extends electronics beyond the realm of conventional mono-crystalline 
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silicon-based IC’s. Flexible IC’s can be applied to various packaging and security documents, for example, 
and can be embedded in polymer-based bank notes, for example, using a similar approach to embedding 
foil holograms.  They include a near field communication antenna with typical operational frequencies of 
13-14 MHz, a self-resonance frequency of 100 MHz, an impedance of 50-80 Ohms and a reading distance 
of up to 40 mm. 

Authenticity is provided by using physically unclonable maps, a method to create ciphertexts that are 
inextricably linked to the device. The ciphertexts are unique for a given device, are impossible to read, 
suspect or eavesdrop on, and any interference by the device destroys them.  In addition to EC, this solution 
can be based on chaos theory which enables the extensions of the dispersion of physical parameters of 
electronic circuits. The solution's innovation lies in the exploitation of time instability which guarantees 
that the ciphers and keys are random and repeatable only for a specific device [72]. The solution is 
implemented as a hardware based non-programmable coprocessor which forms part of the flexible IC and 
is characterised by a maximum entropy encrypted module with low physical complexity and low power 
consumption coupled to Internet of Things (IoT).  

Figure 6 provides a schematic of the approach for the authentication and identification of a bank note. 
This is based on correlating a unique ciphertext maintained of a flexible IC (embedded in the note) and 
the serial number of the bank note.  The ciphertext is an encryption of the serial number on the bank 
note, for example, but other data relating to the note can be included as required. The cipher used for 
encryption can be an EC generated cipher which is unique to the serial number and unclonable.  The 
ciphertext is read by the antenna of a smartphone (in the near field), transmitted by the phone using the 
IoT to a secure relational data base where the encrypted data is identified. If identified successfully, the 
unique cipher is recovered and used to decrypt the data recovering the serial number of the banknote.  
This result is then transmitted back to the phone quantifying the authenticity or otherwise of the bank 
note while displaying the serial number as required, and, as illustrated in Figure 7. 

In the future development and deployment of this technology, the application of EC based nonlinear 
functions for generating the many hundreds of millions of unique unclonable ciphers required to embed 
a unique ciphertext is clear. For any evolved function given in Equation (4), the initial condition can be set 
to the serial number of the bank note, for example. Each function is ‘encoded’ in the flexible IC during a 
production run.  Decryption and validation (or otherwise) is  accomplished automatically by searching for 
the unique cyphertext held in a relational data base and its correlation with the serial number upon 
reception from a smartphone over the IoT. 

 
Figure 6.   Schematic illustration of the application to a bank note of a flexible IC with a unique ID number 

(encryption cipher/key) maintained on a non-programmable coprocessor with a ROM. 
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Figure 7. Example of the IoT return for a banknote with an embedded flexible IC using a smartphone to read 
and transmit the ciphertext and provide the user with a decision on the authenticity of the banknote, i.e. 

GENUINE (left) or counterfeit and NOT AUTHORISED (right). 

4.2 Optical ID 
In addition to using online authentication technologies associated with unique RFID’s on a smartphone, it 
is also possible to consider active ‘optical solutions’ using the digital camera of a smartphone to obtain 
digital images in ambient light and/or flash light conditions.  The retro-reflector method described here is 
based on the latter case.  Compared to RFID, optical ID provides the opportunity to develop a range of 
optical ciphers and associated identifiers, but this comes at the cost of having to process and transfer 
digital images using the IoT which requires higher data throughputs than those associated with a RFID.    
On the other hand, relatively simple print-only and/or additive optical elements and complexes can be 
included that are simple and cost effective as discussed in this section.   

4.2.1 Printed Binary Texture Coding   

We consider an approach which is based on the introduction of binary texture codes to a document.  
Texture codes are based on applying convolutional coding to an image plaintext based on Equation (6) to 
produce a ciphertext image [51].  The method is relatively robust to distortions of the ciphertext accept 
in regard to three issues, size, rotation and cropping.  In other words, if the ciphertext is printed on a 
document and then scanned, the scanned image must be cropped correctly, re-oriented (as necessary) 
and then re-sampled back to the original size of the plaintext image. However, auto-orientation and auto-
cropping are routine features of most scanning and remote imaging systems as is the re-sampling of a 
digital image.  Moreover, if the plaintext image is binary, the texture code is data redundant and can 
therefore can be binarized.  Correlation of this binary texture code with the original cipher then recovers 
the binary plaintext with background noise but with a high signal-to-noise ratio thereby allowing the 
plaintext to be identified. 

Figure 8 shows an example of binary texture coding for a Euro banknote.  In this case, the serial number 
has been used as the binary plaintext, and the binary texture code printed in ultraviolet ink over the entire 
surface of the banknote at 150 dpi. Under ultraviolet light, an image of the texture code is captured and 
upon, auto-cropping, auto-correcting (for orientation, as required) and re-sampling the image, the result 
is decrypted to recover the serial number.   In this case, an EC cipher can be used and iterated, according 
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to Equation (4), with double precision and a key equal to the serial number, i.e. 𝑥𝑥0 = 0.00000004795.  
The reason for printing the binary texture code using ultraviolet ink is to make the code invisible under 
visible light.  This approach is of course similar to using QR codes, but it provides the basis for incorporating 
greater information content subject to compatibility with the physical size of the window that is used to 
print the texture code and the dpi coupled with the resolution of the image capture device.    

 
Figure 8. Example of binary texture coding applied to authenticate a bank note. Original note (left), binary 

texture code (center) and decrypt to recover the serial number (right). 

4.2.2 Laser Speckle Analysis 

All surfaces have a degree of roughness over different scales and even a highly polished surface has 
surface roughness at the micro- or nano-scale.  The term roughness used here refers to the random 
undulations on the scale over which the roughness is considered to occur.   On the scale of the wavelength 
of light (400 to 700 nanometres or nm) the roughness of a surface is quite pronounced. This creates 
internal surface scattering effects.  Even with highly polished surfaces such as those required for parabolic 
mirrors and other optical components, surface irregularities exist on the scale of a wavelength of light.  
These irregularities are typically measured in terms of the Root Mean Square (RMS) irregularities and 
surface imperfections (Scratch and Dig) that are typically of the order of tens of nanometres.  In the 
Hubble Space telescope, for example, the primary mirror was polished to give a 0.014-wave RMS wave-
front error at 632.8 nm [73].   In addition to maintaining an accurate geometry, the smoothness associated 
with the surface of optical components on the scale of a light wave is vitally important in order to generate 
high optical resolutions.   The RMS irregularity of a surface determines the characteristics of the Point 
Spread Function (PSF), in particular the effective bandwidth of the Optical Transfer Function (OTF) - the 
Fourier transform of the PSF [15].  As the RMS irregularity increases the bandwidth decreases due to 
surface scattering effects distorting primarily the high frequency band of the OTF.   

The scattering effects from a random surface of incoherent light are not phase-sensitive but with coherent 
light, the phase associated with the scattering processes are observable and measurable and produce a 
pattern known as a speckle pattern.  This is because, with coherent light, the wave-fronts interfere 
mutually.  Speckle patterns are generated by the diffuse reflections of monochromatic light (generated 
by a laser) which involve multiple scattering events when the scattered optical field can be assumed to be 
similar to the process of diffusion due to an ensemble of particles undergoing random walks.   The diffuse 
surface reflection of coherent light is generated by any rough surface (i.e. rough on the scale of the 
wavelength) or media with a complex of scattering objects (with a scale length similar to the wavelength) 
which have a different permittivity and/or conductivity to the media in which they are suspended.  This 
includes the speckle patterns generated by the surface of paper and other materials used to produce 
security documents.   
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The key to using Laser Speckle Analysis for document authentication is to appreciate that the speckle 
pattern is a signature of the surface topology (on the scale of the wavelength) associated with a chosen 
surface patch.  Moreover, if the physical parameters associated with the incident coherent radiation can 
be reproduced accurately enough (including wavelength, angle of incidence of the laser beam to the 
surface, the beam profile and the angle, relative to the surface at which the speckle pattern is recorded) 
and the surface patch is not deformed over time, then the speckle pattern provides a unique signature of 
the patch on the document, thereby providing a method of authentication.   Further, this method of 
authentication is passive given that the surface structure of the patch is a natural feature of the material 
from which the document is composed.  All that is required is to decide upon the position and the extent 
of the surface patch whose speckle pattern signature is desired and then record the pattern produced for 
a specific optical configuration.  

Figure 9 shows a simulated speckle pattern and the characteristic distribution of the pattern plotted on a 
logarithmic scale. This simulation is obtained using Equation (6) without power spectrum normalisation, 
i.e. we use 𝐶𝐶 = 𝑋𝑋∗𝑃𝑃, where the Plaintext spectrum 𝑃𝑃 is an OTF given by a two-dimensional rectangular 
function and 𝑋𝑋 is the spectrum of a zero-mean Gaussian distributed random field.  The speckle pattern is 
then given by the absolute square of the inverse Fourier transform of the cipher 𝐶𝐶 which models the 
scattering cross-section (the intensity of scattered light). 

The distribution of the scattering cross-section (the observed laser intensity, 𝐼𝐼 ≥ 0) associated with a 
speckle pattern is well known and given by the (negative) exponential distribution  

𝑃𝑃(𝐼𝐼) = 𝜆𝜆 exp(−𝜆𝜆𝜆𝜆)   

where 𝜆𝜆  is the ‘rate’.  Thus, under a logarithmic transformation,   

ln𝑃𝑃(𝐼𝐼) = ln𝜆𝜆−𝜆𝜆𝜆𝜆, 

a relationship that is well demonstrated in the logarithmic scaled histogram given in Figure 9.  

By binarizing the speckle pattern, it is possible to generate a code similar to a QR code but one that is 
produced naturally by the interaction of coherent light with a surface.  Such a speckle code can be viewed 
as a cipher, a cipher that is a unique signature associated with a known surface patch and optical 
configuration.  A speckle pattern can be considered to be another natural noise source in addition to those 
discussed in Section 2.3.1, for example, and, could be used as an input to the EC systems and approach 
discussed in Section 2.3.  An optical cipher of the type simulated in Figure 9 could be used to encrypt the 
serial number of a bank note to produce a binary texture code  following the approach discussed in Section 
4.2.1, for example. 
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Figure 9.  Simulation of a speckle pattern (top-left) and the corresponding grey-level 100-bin histogram (top-

right) plotted on a logarithmic scale.  A binarization of the speckle pattern designed to produce a matrix of 0’s 
and 1’s of near equal population densities is shown in the lower left-hand image.  The corresponding 2-bin 

histogram of this image is given in the lower right-hand side bar graph. 

While the methods discussed in this section and that of Section 4.2.1 can be implemented in practice, 
they both require ‘laboratory conditions’ to be realised.  They require the use of UV or laser light to 
generate and recover the authentication patterns, patterns that need to be recovered, processed and 
analysed under controlled conditions with specialist equipment and minimal error in terms of an optical 
recording configuration.  Although the analysis of such patterns for authentication could be considered 
using Deep Learning, for example, it is clearly not currently possible to implement such an approach in 
the field using smartphones which are not equipped with UV and laser light sources.  Thus, in the following 
section, another approach is considered that is compatible with the optical facilities provided by a 
smartphone and can be operated in the field. 

4.2.3 Micro-Retro Reflector Texture Coding 

Although binary texture codes can be generated without UV printing, a UV print provides a way of hiding 
the existence of the code under visible ambient lighting conditions.  In this way the cipher remains hidden 
in the optical spectrum. Another way to do this (i.e. introduce a cipher that is invisible under ambient 
lighting conditions) is to use a random distribution of micro retro-reflectors which is set into the surface 
of the document providing a random pattern that is unique to that document.  Under ambient lighting 
conditions, the retro-reflector complex will not be observed visually and will not be detected in a captured 
digital image of a smartphone. However, with a halogen flash that is typically coupled with most modern 
smartphone cameras, the retro-reflectors will reflect the light and their distribution (or rather the 
combined effect of that distribution) on the document captured in the digital image that is retained. 

Retro-reflectors are devices that reflect light back to its source with minimal scattering [74]. There are 
many types of such devices including corner reflectors, prism-based reflectors and phase-conjugate 
mirrors but the most common type makes use of micro retro-reflectors which are each composed of small 
glass beads or micro-spheres.  The beads vary in size from 0.1-1 mm and can be added to paint and 
lacquers which then cause the surface of the material to which the paint/lacquer has been applied to 
glow.  Highway signs and painted stripes on roadways, for example, have been coated with micro-
spherical retro-reflectors for many years.  Various reflective sheets are used to coat signs, some of which 
employ layers of glass beads, while others use sheets embedded with micro-plastic corner prisms or 
micro-prisms. 
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Figure 10 shows an example of a bank note which has been coated with Glowtec fine grade retro-reflective 
powder (a pigment for use in spirit and water-based mediums) [75] over a rectangular window within 
central component of the main graphic. The powder is composed of retro-reflective glass microspheres 
and has been introduced by adding the powder to a clear nail varnish and then applying the varnish to the 
surface of the note with the (nail varnish) brush. The size of the microbeads is 30-40 microns each with a 
refractive index of 1.93 and its application to the surface using a clear lacquer produces a naturally random 
distribution of microbeads which are unique for any particular note.  Under ambient lighting conditions, 
the existence and distribution of the micro-spheres is not visible and the captured image of the bank-note 
on a smartphone is ‘normal’.  However, application of a halogen flash reveals the rectangular region over 
which the powder doped lacquer has been applied.  Thus, by cropping this region of the image, a unique 
optically generated cipher is obtained which is a combination of the physical micro-bead distribution 
subject to the resolution at which the image is captured.  

 
Figure 10. Smartphone images of a banknote with reflective powder applied under ambient lighting 

conditions (left) and with a LED halogen flash (right). The reflective power, consisting of a randomized complex 
of micro retro-reflectors, has been applied by doping a clear nail varnish with the powder and ‘painting’ it onto a 
rectangular patch that covers the central component of the notes principal graphic as shown on the example on 

the right-hand-side. 

Diffusing a grey level version of this image using Equation (6) with a critical feature of the banknote such 
as a binary image of the serial number, a ciphertext can be generated and stored in a data base.   This 
ciphertext is then a uniquely encrypted record of the banknotes serial number coupled with the unique 
optical cipher on the same bank note which remains invisible under ambient lighting conditions.  Figure 
11 shows example images obtained by applying this process, namely, the cropped optical cipher, the 
ciphertext for the serial number and a decrypt obtained by re-imaging the cipher. As discussed in Section 
4.2.1, the method of encryption by convolutional coding means that the image of the cipher is relatively 
tolerant to distortion other than orientation, cropping and compatibility with the original digital image 
size (and the cipher).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. Grey level image of the cropped optical cipher (a), the ciphertext (b) obtained by diffusing the 
cropped optical cipher with a binary image of the serial number (c) and the decrypt (d).  Note that the binary 
image of the serial number is deliberately corrupted with uniformly distributed noise in order to enhance the 

uniformity in image diffusivity of the ciphertext shown (a). 
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The method is also tolerant to changes in the angle at which the image is taken relative to the plane of 
the banknote.  This because the retro-reflectors reflect light back to the source irrespective of the angle 
of incidence subject to distortions obtained at angles greater than the order of 30 degrees or more.  

A typical PoS application of this technique in order to authenticate a bank note is as follows: 

• An image of the bank note is taken on a smartphone with the LED flash. 
• If the image contains a bright field area (as shown in Figure 10, for example) then the note is taken 

to include an optical ID; this feature alone being a form of low-level authentication. 
• The optical ID is auto-cropped and the cropped image submitted on-line where it is located in a 

relational database of such images. Note that the crop can include features that lie inside or 
outside the region in which the optical cipher is placed as long as there is consistency between 
the crop obtained and that is used to construct the database, the basic principle being to 
introduce unique randomness into the captured image. 

• The cropped image is resampled and decrypted (i.e. a grey level image of the serial number) 
returned back to the smartphone coupled with image processing as required to enhance the visual 
quality of the decrypt that is displayed.  This is required because the binary plaintext is deliberately 
corrupted with uniform noise whose purpose of this is to enhance the uniformity of image 
diffusivity in the ciphertext.  

• The decrypt can then be compared with the serial number of the banknote in order to 
authenticate it. 

In this case, the cipher is the image of the retro-reflective powder patch and does not, in principle, require 
further encrypting.  However, in order to strengthen the ciphertext further, it is possible to double encrypt 
based on extending Equation (6) to the form    

                                                          𝐶𝐶 = 𝑌𝑌 
∗

|𝑌𝑌|2
 𝑋𝑋 

∗

|𝑋𝑋|2
 𝑃𝑃   or  𝐶𝐶 = 𝑒𝑒𝑖𝑖𝑖𝑖  𝑋𝑋 

∗

|𝑋𝑋|2
 𝑃𝑃 

where 𝑌𝑌 is the spectrum of an evolved cipher using EC whose key could also be the serial number of a 
bank note. 

In this application, ANNs will be of value in regard to the automatic recognition of the optical cipher and 
digital image post-processing that may be required in order to provide a ciphertext that is suitable for 
decryption.  The purpose of this is to allow the recovery of the optical ID to be undertaken in non-ideal 
conditions associated with the way in which users operate a smartphone subject to critical tolerances.  
This includes optical clarity, depth and resolution coupled with excess distances from the banknote at 
which the image is taken, for example, and other issues associated with inevitable mismanagement in the 
use of an app which is critically dependent on the quality of image capture. 

5 Summary, Conclusions and Future Directions 
The purpose of this paper has been to provide a broad overview of how AI is starting to be applied in the 
development of encryption algorithms and cryptanalysis. We have considered the role that Evolutionary 
Computing can play in providing personal ciphers in the form of unclonable chaotic maps and how, in a 
complementary way, ANNs can be trained to simulate chaos. In both cases, the training data is based on 
access to real-world noise sources, which include service providers such as Random.org. This approach 
yields the potential for a ‘democratization of the Cipher bureau’ where personalized ciphers can be 
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created with relative ease without having to resort to ‘hand-crafted’ ciphers, many of which are now 
vulnerable to attack by the implementation of Shor’s algorithm [76] on a quantum computer. This is 
because encryption algorithms that are predicated on the product of large prime numbers can be broken 
using Shor’s algorithm, but until the development of quantum computing, this algorithm was not time 
computational feasible. In this respect, the approach considered in the paper falls in to the category of 
Post-quantum Cryptography and the generation of software for prototyping quantum resistant 
cryptography [77]. 

5.1 Conclusion 
In a broad context, and, in regard to the use of AI for cryptography, there is an interesting analogy   that 
can be made with the work of Station-X at Bletchley Park during the second world war.  In this case, the 
problem was to break the key settings of the Enigma cipher used by the German Armed forces for 
communications. However, the design of the cipher was known, as was the language being encrypted and 
many of the expected and repetitive words, phrases and statements (passive Cribs). Moreover, the 
intercepted Morse coded traffic was known to be encrypted because it was scrambled. Had the traffic 
been disguised to appear routine through encrypted information hiding (not technically possible at the 
time), the Morse code have been reconfigured (quite possible at the time), the language been translated 
to a non-Indo-European language (possible at the time but requiring multi-lingual service providers), 
repetitive words a phases negated (possible) and the Enigma machine itself changed on a regular basis 
(not technically possible at the time), then history might have been very different (albeit not necessarily 
tolerable).  It is the last component of this analogy that is the basis for using AI to design ciphers that can 
be changed regularly or even changed for each communication to give an algorithmic one-time pad.  
Because this is not yet practicable for all individuals (many of whom may lack the technical IT skills), in the 
interim, there is ample potential for business opportunities based on establishing  on-line service 
providers to distribute personalized ciphers for 1-to-Cloud applications, 1-to-1 encrypted communication 
and 1-to-many applications depending on the available distribution infrastructure of an organisation.   

5.2 Future Directions 
The Binary String Analysis considered in Section 3 provides the basis for the development of a machine 
learning paradigm based on computing a set of statistical metrics associated with the signal given by 
Equation (8).  This metric set, coupled with other metrics on the spectrum of the signal, for example, is 
then used to construct a feature vector which forms the input to an ANN.  Whether such an approach will 
be out-ranked by a deep learning approach remains to be identified, but either way, it is important to 
monitor binary streaming to identify encrypted signatures and structures.  In doing so it may be possible 
to continually monitor internet traffic to estimate the presumed increase in encrypted communications 
as a result of the approach considered in Section 2 growing in popularity. 

The methods introduced in this paper are focused on symmetric encryption in which the key and/or EC 
cipher are assumed to be exchanged before an encrypted communication is initiated. There are many key 
exchange methods that can be used for this purpose which exploit asymmetric encryption  or a no keys 
exchange protocol using a three-way pass [53]. Both methods incur weaknesses especially with the 
evolution of quantum computing that makes legacy systems for key/algorithm exchange based on the 
RSA algorithm effectively redundant. Asymmetric cryptographic systems are based on trapdoor functions, 
i.e. functions that have a one-way property unless a secret parameter (trapdoor) is known, and to date, 
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no counterpart of a trapdoor transformation is, as yet, known in chaos theory. The use of EC and other 
approaches that come under the discipline of AI may be of value in the exploration and possible solutions 
to this problem.  

The applications considered in Section 4 are illustrative of the way in which AI can be used to generate 
encrypted data for authentication using the IoT coupled with a communications unit which is in 
widespread use, i.e. the smartphone. The applications presented are typical of the way in which wireless 
communications, data security and AI are being coupled to secure the transmission of information.   

In addition to the optical cipher technique discussed in Section 4.2, it may be of interest to supplement 
reflective (microspheres) powder with Graphene powder, given that mono-layer Graphene absorbs some 
2.3% of incident photons at any wavelength.  Thus, by applying Graphene powder with a lacquer to a 
surface patch of a banknote, for example, it may be possible to use a Graphene based cipher obtained 
from the absorbance of light rather than, or in addition to, the reflection of the light by retro-reflective 
powder. Alternatively, it may be possible to dope ink using either retro-reflective powder or Graphene 
powder subject to the cost effectiveness of such an approach compared to the use of patch ciphers of the 
type illustrated in Figure 10. 

There are of course numerous other applications of machine learning in cryptography than have been 
considered in this paper [78], [79]. Coupled with complementary developments such as advances in DNA 
computing [80], deep learning and quantum computing, it can be expected that current encryption 
algorithms, protocols and standards associated with information and cyber security will change radically 
in the near future. Moreover, these changes will be under the research, development and control of a 
much broader global spectrum of society. 
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