4,629 research outputs found

    A generalization of heterochromatic graphs

    Full text link
    In 2006, Suzuki, and Akbari & Alipour independently presented a necessary and sufficient condition for edge-colored graphs to have a heterochromatic spanning tree, where a heterochromatic spanning tree is a spanning tree whose edges have distinct colors. In this paper, we propose ff-chromatic graphs as a generalization of heterochromatic graphs. An edge-colored graph is ff-chromatic if each color cc appears on at most f(c)f(c) edges. We also present a necessary and sufficient condition for edge-colored graphs to have an ff-chromatic spanning forest with exactly mm components. Moreover, using this criterion, we show that a gg-chromatic graph GG of order nn with ∣E(G)∣>(nβˆ’m2)|E(G)|>\binom{n-m}{2} has an ff-chromatic spanning forest with exactly mm (1≀m≀nβˆ’11 \le m \le n-1) components if g(c)β‰€βˆ£E(G)∣nβˆ’mf(c)g(c) \le \frac{|E(G)|}{n-m}f(c) for any color cc.Comment: 14 pages, 4 figure

    Packing Plane Perfect Matchings into a Point Set

    Full text link
    Given a set PP of nn points in the plane, where nn is even, we consider the following question: How many plane perfect matchings can be packed into PP? We prove that at least ⌈log⁑2nβŒ‰βˆ’2\lceil\log_2{n}\rceil-2 plane perfect matchings can be packed into any point set PP. For some special configurations of point sets, we give the exact answer. We also consider some extensions of this problem

    Algorithms for detecting dependencies and rigid subsystems for CAD

    Get PDF
    Geometric constraint systems underly popular Computer Aided Design soft- ware. Automated approaches for detecting dependencies in a design are critical for developing robust solvers and providing informative user feedback, and we provide algorithms for two types of dependencies. First, we give a pebble game algorithm for detecting generic dependencies. Then, we focus on identifying the "special positions" of a design in which generically independent constraints become dependent. We present combinatorial algorithms for identifying subgraphs associated to factors of a particular polynomial, whose vanishing indicates a special position and resulting dependency. Further factoring in the Grassmann- Cayley algebra may allow a geometric interpretation giving conditions (e.g., "these two lines being parallel cause a dependency") determining the special position.Comment: 37 pages, 14 figures (v2 is an expanded version of an AGD'14 abstract based on v1
    • …
    corecore