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Abstract

Automated approaches for detecting dependencies in structures created with
Computer Aided Design software are critical for developing robust solvers and
providing informative user feedback. We model a set of geometric constraints
with a bi-colored multigraph and give a graph-based pebble game algorithm that
allows us to determine combinatorially if there are generic dependencies. We
further use the pebble game to yield a decomposition of the graph into factor
graphs which may be used to give a user detailed feedback about dependent
substructures in a specific realization of a system of CAD constraints with non-
generic properties.

Keywords: sparsity matroid, pebble game algorithm, cad constraints

1. Introduction

In this paper, we present graph-based algorithms for analyzing and decom-
posing the underlying combinatorial structure of a system of geometric con-
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straints, such as those appearing in popular constraint-based Computer Aided
Design (CAD) software. While a generic (essentially random) realization of a
given system of constraints may be rigid, a specific realization may be in a special
position which admits internal motions and contains (redundant) dependencies.
In such a situation, our decomposition allows us determine which subsystems of
constraints remain independent and which are causing the dependencies.

1.1. Motivation

CAD software allows engineers to create designs using intuitive geometric
constraints. When a user adds a constraint that is dependent, the resulting
system is over-constrained. To provide useful feedback, efficient approaches are
required to detect the minimal sub-system containing the dependency.

Figure 1 shows an example of a system of geometric constraints on 3 bodies
constructed in SolidWorks. Bodies A and B are constrained to lie on the hori-
zontal line; bodies A and C are constrained to lie on the vertical line; there are
two distance constraints between points on bodies B and C. Together these 3
geometric constraints impose 6 independent conditions on the degrees of free-
dom of the system of 3 bodies, making the body-and-cad framework generically
rigid.

A problem may arise if a specific realization of a system of geometric con-
straints has special features that imply a dependency that is not present gener-
ically. Commercial CAD software, such as SolidWorks, is unreliable when pre-
sented with such a flexible special position. Figures 1(b) and 1(c) show a special
realization of the system. Here, a dependency arises because the two point-point
distance constraints between B and C are along parallel lines. SolidWorks’ 2D
and 3D environments produce different analyses. Although the 2D Sketch en-
vironment does identify the system as “Under Defined,” the faded position in
1(b) was only found by suppressing the dependent constraint, investigating the
motion, then unsuppressing it.

Our ultimate goal is to be able to reliably identify such special dependencies
that arise in more complicated constraint systems in terms of the geometry of
the constraints as above, e.g., to be able to inform the user that the non-generic
behavior is due to the fact that two bars are parallel.

1.2. Related work

Rigidity theory is applicable to a wide variety of systems of geometric con-
straints. For example, in bar-and-joint rigidity theory, constraints are specified
by fixing the distance (“bar”) between pairs of points (“joints”) and can be rep-
resented by quadratic equations. In body-and-bar rigidity theory, fixed-length
bars are attached to rigid bodies at flexible joints. The rigidity models of 2D
bar-and-joint and d-dimensional body-and-bar are well-known for having com-
binatorial characterizations of generically rigid frameworks.

Though it is possible to use algebraic methods to study systems of geometric
constraints (see [1, 2, 3]), working algebraically with polynomials is limited
because it is computationally intensive. Hence, much work in rigidity theory
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(a) SolidWorks’ 2D Sketch
environment identifies the
rigid generic embedding as
“Fully Defined.’

C

BA

C

B

(b) SolidWorks’ 2D Sketch
environment identifies the
flexible special position as
“Under Defined,” but does
not allow the user to explore
the resulting motion.

(c) SolidWorks’ 3D Assem-
bly environment gives a
different identification of
“Over Defined” for the
same flexible special posi-
tion embedded in 3D.

Figure 1: Changing a constraint in a generically rigid system to be dependent (by making
the dashed distance constraint parallel to the other distance constraint) results in a flexible
special position.

instead focuses on infinitesmal rigidity, which is defined in terms of the rank of
a matrix obtained by linearizing the constraint equations. As a matrix drops
rank on a closed set, almost every framework with the same combinatorics is
infinitesimally rigid (and therefore rigid).

Infinitesimal rigidity theory may be studied numerically or combinatorially.
One may detect generic dependencies numerically, by picking random realiza-
tions. This is the approach taken by the “witness method” of [4]. The draw-
back of numerical methods is that fast, stable, algorithms, such as SVD, do not
identify the support of a minimal dependency while those based on Gaussian
elimination are not stable. (This can be overcome by using finite fields and the
Schwartz Lemma, as discussed in [5].)

For certain structural models more robust combinatorial characterizations of
generic rigidity are known, and we focus on the combinatorial approach in this
paper. Particularly relevant here are results for geometric constraints arising
in CAD: 2D point-line frameworks [6] and body-and-cad frameworks in 2D and
3D (omitting point-point coincidences) [7]. Combinatorial counting conditions
arise as necessary conditions for rigidity theory, usually in terms of a family of
“sparse matroidal graphs” that are fundamental in generic rigidity theory (see
[8, Appendix], which reports work of White and Whiteley). Associated pebble
game algorithms can be used to check rigidity and detect components, relying
on the matroidal property of [9, 10]. For body-and-bar [11] and 2D bar-and-
joint [12] frameworks, the counting conditions are generically sufficient as well.
Owen and Jackson show how to adapt Edmonds’ matroid union algorithm to the
framework of pebble games for 2D point-line frameworks in [6]. A combinatorial
characterization of 3D bar-and-joint rigidity remains an open problem; while the
network flow approach of [13] gives a polynomial time algorithm for the related
concept of module-rigidity, the class of module-rigid graphs does not include
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rigid nucleation-free graphs [14].
Our approach combines the traditional combinatorial counting techniques

with the connections to algebra introduced by White and Whiteley. White and
Whiteley define the pure condition of a body-and-bar framework, a polynomial
obtained from taking the determinant of the rigidity matrix in [15]. They showed
how to interpret the irreducible factors combinatorially and how to describe
some special positions using synthetic geometry via the Grassmann-Cayley al-
gebra. In this paper we extend their philosophy to systems with additional types
of constraints where the connections between the algebraic and combinatorial
substructures associated to the constraint system are more intricate.

1.3. Contributions

We present algorithms for detecting dependencies in CAD systems modeled
as body-and-cad frameworks. The first is a pebble game algorithm that can
check for generic dependencies via the combinatorial property from [7]; when a
constraint is determined to be dependent, we additionally detect its fundamental
circuit (minimal set of constraints involved in the dependency). To adapt the
pebble game to our setting, the algorithm needs to partition the edges in a
graph and maintain (a, a)-sparsity on one part and (b, b)-sparsity on the other;
this may require dynamically adjusting the partitions.

As we saw in Figure 1, a framework that is rigid with no generic dependen-
cies, or generically minimally rigid, may be in a flexible special position caused
by the special geometry of its realization. Since a special position is indicated
by the vanishing of a polynomial called a framework’s pure condition, we de-
velop algorithms for finding graph minors, which we refer to as factor graphs,
corresponding to its factors. In the body-and-bar setting of [15], irreducible
factor graphs correspond to irreducible minimally rigid subframeworks; their
corresponding factors can be expressed as the pure condition of those subframe-
works. However, in our setting, we may have irreducible factors that do not have
a natural interpretation as the pure condition of any subframework. Yet, the
ability to associate combinatorial structures to the factors of the pure condition
could give a user additional tools to analyze a system of constraints.

1.4. Organization

We begin with an introduction to body-and-cad rigidity theory in Section
2. In Section 3, we analyze a framework and geometric conditions that lead
to special positions, motivating the algorithms for finding generic dependencies
(Section 4) and factor graphs for assisting with analysis of special positions
(Section 5). We end with conclusions and open questions in Section 6.

2. Background

In this section, we review the fundamentals of body-and-cad rigidity theory;
for full technical details, refer to [16] and [7].
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2.1. The combinatorial model

A body-and-cad framework consists of n full-dimensional bodies with pair-
wise coincidence, angular, or d istance constraints between them; these cad con-
straints are specified between geometric elements which are affine linear spaces
(e.g., a point, line or plane in 3D) rigidly affixed to the bodies.

The allowed motions of a body-and-cad framework are continuous motions
of the bodies that preserve the given constraints. A body-and-cad framework is
rigid when all of the allowed motions are trivial, i.e., they consist of applying the
same rigid-body motion to each of the bodies; otherwise it is flexible. Note that
our model of these systems of constraints is given solely in terms of collections
of affine spaces affixed to the rigid bodies and we do not consider the geometry
of the body in our analysis; only special properties of the constraints affect our
analysis. (For example, any special symmetries the bodies themselves may have
does not enter the analysis; however, special symmetries of the constraints do.)

There are 9 different constraint types in 2D and 21 in 3D. Examples of
constraints in 2D are: point-point distance (a bar), point-line coincidence,
point-line distance, line-line coincidence, and line-line angular. Each
geometric constraint represents one or more equations restricting the relative
motion of the bodies involved. A constraint can then be further decomposed
into primitive constraints, which correspond to single equations. Let d be the
dimension of the ambient space. Primitive constraints come in two types, which
require distinct algebraic treatment: a blind constraint can potentially restrict
any of the

(
d+1
2

)
relative degrees of freedom, while an angular constraint restricts

only the
(
d
2

)
relative rotational degrees of freedom. Haller et al. [16] show how

to coordinatize infinitesimal Euclidean motions by a
(
d+1
2

)
-dimensional vector

in such a way that an angular constraint involves only
(
d
2

)
of the variables.

Example 2.1. To give some intuition about body-and-cad rigidity, consider
the planar body-and-cad framework in Figure 2. It is composed of two rigid
bodies A (the square) and B (the triangle); placing three cad constraints, a
point-line coincidence, line-line perpendicular and point-line distance,
results in a generically minimally rigid (Definition 2.5) framework.

Now consider the framework in Figure 3; it is composed of the same two
rigid bodies as in Figure 2, but only includes two cad constraints, a line-line
distance and point-line distance. Because Constraint I (line-line distance)
is equivalent to Constraints 1 and 2 (point-line coincidence and line-line
perpendicular), this system of constraints is equivalent to the figure in Figure
2 and is generically minimally rigid.

As we just saw (refer to Figure 3), a single cad constraint may impose re-
strictions on multiple degrees of freedom in a framework. Each independent
restriction on the degrees of freedom of the framework corresponds to a primi-
tive condition, whose combinatorics we collect together in an associated primi-
tive cad graph. Figure 4 shows the original combinatorics (represented by a cad
graph) and the associated primitive cad graph for the frameworks discussed in
Example 2.1.
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A B

(a) The framework is com-
posed of two rigid bodies A
(square) and B (triangle).

�A1

pB1

(b) Constraint 1 specifies
a point-line coincidence
that requires point pB1

on
the triangle to lie on line �A1

on the square.

�A1

pB1

(c) After the specification of
Constraint 1, the framework
allows internal motion with
2 degrees of freedom.

�A1

pB1

�B2

�A2
�A2

(d) Constraint 2 specifies
a line-line perpendicular
constraint that requires line
�B2 on the triangle to be
perpendicular to line �A2

on
the square.

�A1

p1

�B2

�A2
�A2

(e) After the specification
of Constraints 1 and 2, the
framework allows internal
motion with 1 degree of free-
dom.

�A1

pB1

�B2

�A2
�A2

�A3

pB3

(f) Constraint 3 specifies a
point-line distance con-
straint that requires point
pB3 on the triangle to be a
fixed distance from line �A3

on the square. The result-
ing framework is minimally
rigid.

Figure 2: A generically minimally rigid 2D body-and-cad framework.

�A1
�B1

(a) Constraint I specifies
a line-line distance con-
straint that requires line �B1

on the triangle to be a fixed
distance from line �A1 on
the square.

�A1
�B1

(b) After the specification
of Constraint I, the frame-
work allows internal motion
with 1 degree of freedom.

�A1
�B1

�A3

pB3

(c) Constraint II specifies a
point-line distance con-
straint that requires point
pB3

on the triangle to be a
fixed distance from line �A3

on the square. The result-
ing framework is minimally
rigid.

Figure 3: A 2D body-and-cad framework with different geometric constraints but the same
rigidity matrix.
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A B
point-line coin

line-line perp

point-line dist

A B

(a) The cad graph (top) for the framework in
Figure 2 has three edges between the vertices
for bodies A and B. The line-line perpen-
dicular constraint is associated to a primi-
tive angular constraint, so the primitive cad
graph (bottom) has one red edge.

A B
line-line dist

point-line dist

A B

(b) The cad graph (top) for the framework
in Figure 3 has two edges between the ver-
tices for bodies A and B. Because the line-
line distance constraint is associated to two
primitive cad constraints (one blind, one an-
gular), the primitive cad graph (bottom) has
three edges.

Figure 4: Combinatorics of body-and-cad frameworks in Figures 2 and 3: both cad graphs
(top) are associated to the same primitive cad graph (bottom).

Definition 2.2. A primitive cad graph is a bi-colored graph G = (V,E = R�B)
on vertex set [n] = {1, . . . , n} with a vertex for each rigid body, a red edge (in R)
for each angular constraint, and a black edge (in B) for each blind constraint.

In the rest of this paper, we will work with primitive cad graphs.

2.2. The rigidity matrix and infinitesimal rigidity.

As is standard in the field, we will linearize the geometric constraint equa-
tions and consider infinitesimal rigidity. Here, the core object of study is a
rigidity matrix (derived in [16]), whose kernel consists of the infinitesimal mo-
tions of the framework.

To describe body-and-cad rigidity matrices combinatorially, we use the fol-
lowing concept7.

Definition 2.3. For integers a, b, let k = a+ b. We define an [a, b]-frame G(p)
to be a bi-colored graph G = (V,E = R � B) with n = |V | and |E| = kn − k,
along with a function p : E → Rk. The function p labels each edge with a
k-vector, which is zero in the last b entries if the edge is in R. The generic
[a, b]-frame G(x) has formal indeterminates replacing the nonzero coordinates
of p.

We define the rigidity matrix in terms of [a, b]-frames. We first fix some
ordering on the edges of G.

Definition 2.4. The rigidity matrix M(G(p)) of an [a, b]-frame G(p) is a ma-
trix that has k columns for each vertex i and one row for each edge of G. In the

7The [a, b]-frame defined here is equivalent to the (a+ b, a)-frame defined in [7].
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row corresponding to an edge e with endpoints i and j (where i < j), we have
p(e) in the columns corresponding to i, −p(e) in the columns corresponding to
j, and zeroes in all other entries. Order the rows of the rigidity matrix in the
order of the edges of G.

Definition 2.5. We say that an [a, b]-frame G(p) is generically minimally rigid
if the associated generic [a, b]-frame G(x) has a rigidity matrix M(G(x)) with
rank kn− k.

The generic rigidity matrix for the example in Figure 3 is shown below.

⎛
⎝

A1 A2 A3 B1 B2 B3

line-line distance (blind part) x1 x2 x3 −x1 −x2 −x3

line-line distance (angular part) y1 0 0 −y1 0 0
point-line distance (non-generic) z1 z2 z3 −z1 −z2 −z3

⎞
⎠

It has 3 columns for each body, corresponding to the one rotational and
two translational degrees of freedom for instantaneous rigid body motion in the
plane. We order the columns so that they are in groups of 3, with translational
components last: column A1 corresponds to the rotational component, and
columns A2 and A3 to the translational components, with body B’s columns
ordered analogously. There is a row for each primitive constraint; notice that the
row for the primitive angular constraint associated to the line-line distance
constraint (highlighted in red) has zeroes in the columns corresponding to the
translational degrees of freedom.

While the rank of a generically minimally rigid framework is kn − k for
almost all realizations, there are realizations for which the rank drops. These
correspond to non-generic realizations, or special positions, of the generically
minimally rigid graph.

Example 2.6. In Figure 5 we construct a special position of the framework
specified by the graph from Figure 3. By changing the placement of the line on
body A in Constraint II, the resulting framework remains flexible. Its rigidity
matrix is shown below8 and contains a dependency (the third row is the sum of
the first two), causing its rank to drop.

⎛
⎝

A1 A2 A3 B1 B2 B3

point-line coincidence 1 0 −1 −1 0 1
line-line perpendicular −1 0 0 1 0 0
point-line distance (non-generic) 0 0 −1 0 0 1

⎞
⎠

3. Motivating case study

In this section we analyze in detail the 2D body-and-cad framework consist-
ing of 3 bodies, 2 bars, and 2 line-line coincidence constraints depicted in Figure

8The coordinates of the framework are determined by the specification from [16].
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�A1
�B1

�A3

pB3

(a) As in Figure 3, we
specify a point-line dis-
tance constraint that re-
quires point pB3 on the tri-
angle to be a fixed dis-
tance from line �A3

on
the square. The resulting
(generic) framework is min-
imally rigid.

�A1
�B1

�A3

pB3

(b) An alternative choice of
the line on body A involved
in Constraint II.

�A1 �B2
�A3

pB3

(c) The resulting flexible
framework has a depen-
dency and admits an inter-
nal motion with 1 degree of
freedom.

Figure 5: A flexible special position of a generically minimally rigid 2D body-and-cad
framework.

1. This case study will help motivate the two algorithms that we will subse-
quently present that detect generic dependencies (Algorithm 1 in Section 4) and
find factor graphs for dependencies arising in special positions (Algorithm 4 in
Section 5).

The associated primitive cad graph, in which an edge corresponds to a linear
constraint, is given in Figure 6(a). In this graph, each line-line coincidence is
represented by two edges: a red edge that corresponds to a line-line parallel
constraint (which restricts only angular motion) and a black edge that corre-
sponds to a point-line coincidence constraint (which restricts one translational
degree of freedom). Each bar eliminates 1 degree of freedom and is represented
by a black edge.

Since the framework is in 2D, we will work with the generic rigidity matrix
associated to the [1, 2]-frame using edge labels a, b, c, d, e, f :

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 A2 A3 B1 B2 B3 C1 C2 C3

a1 a2 a3 0 0 0 −a1 −a2 −a3
b1 0 0 0 0 0 −b1 0 0
c1 0 0 −c1 0 0 0 0 0
d1 d2 d3 −d1 −d2 −d3 0 0 0
0 0 0 e1 e2 e3 −e1 −e2 −e3
0 0 0 f1 f2 f3 −f1 −f2 −f3

⎞
⎟⎟⎟⎟⎟⎟⎠

One can check that the rank of this matrix is exactly 6 generically; since k = 3 for
2D frameworks, this implies that the framework is generically minimally rigid.
Any additional constraints would cause a generic dependency. In Section 4,
we present Algorithm 1, which determines generic rigidity via a combinatorial
characterization; if a generic dependency is present, it further identifies the
minimal set of dependent constraints, or fundamental circuit.
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A B
d

C

a e f

c
b

(a) The primitive cad
graph for the frame-
work in Figure 1. Red
edges represent angular
constraints.

�1

�2

A

C

B

CCCC

B

(b) The special position in
which �1‖�2.

�1

�2

A B

C

(c) The special position in
which the bars are parallel.

Figure 6: A 2D body-and-cad example on 3 bodies; we assume that body C is tied down.

As we will see in Section 5, it is convenient to work with a polynomial
called the pure condition that captures the rank of the rigidity matrix. We
imagine immobilizing body C, which has the effect of removing the last three
columns of the rigidity matrix. The determinant of what remains gives the pure
condition and may be expressed as the bracket polynomial [abc][def ]−[abd][cef ],
where the bracket [abc] denotes the 3× 3 determinant of the matrix whose rows
are a, b and c. This pure condition is not identically zero, which is expected
since the framework is generically minimally rigid. Since special positions arise
when the rank of the rigidity matrix drops, these occur precisely when the pure
condition vanishes. We are particularly interested in identifying subsystems
where a dependency occurs, motivating the study of the factors of the pure
condition.

A special position occurs when a factor of the pure condition vanishes. To
give a geometric interpretation of the vanishing of the factors, we must first
explain how the edge labels are obtained. We adopt the projective geometry
setting of [15], so that the framework is realized (as a set of bodies) in the
affine patch of P2 that has coordinates [1 : x : y]. This apparent complication
is justified by the fact that infinitesimal Euclidean motions are then naturally
identified with points in (P2)∗. Since the infinitesimal constraints implied by
the edge labels are, essentially, blocked motions, we interpret them as points in
(P2)∗ as well, allowing us to study their geometry as a point configuration. (See
[15] and also [16] for a detailed treatment and the specific construction.)

We can see from the matrix that the bracket [abc] evaluates to zero, simplify-
ing the pure condition to [abd][cef ]. A special position exists when either factor
of [abd][cef ] vanishes. Note that the brackets [abd] and [cef ] represent reducible
polynomials in the coordinates of a, . . . , f. In fact, [abd] = b1(a2d3 − a3d2), and
[cef ] = c1(e2f3−e3f2). Thus, the pure condition is composed of four irreducible
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factors b1, c1, a2d3 − a3d2, and e2f3 − e3f2, whose vanishing characterize the
special positions of this framework.

The next conceptual step is to relate the vanishing of the irreducible factors
of the brackets derived above to our projective geometry setup. First note that
since b = [b1 : 0 : 0] is a point in (P2)∗, b1 cannot be zero. Therefore, if
[abd] = b1(a2d3 − a3d2) = 0 then (a2, a3) = λ(d2, d3) for some nonzero λ.

The point a ∈ (P2)∗ determines a line in P2; we can think of a as a vector in
R3 that is normal to a plane that projectivizes to a line in P2. The intersection
of these two lines in P2 (respectively, planes in R3), is given by a system of
equations represented by the matrix(

a1 a2 a3
d1 d2 d3

)

Assuming that a �= d, if a2d3 − a3d2 = 0 this is equivalent to a system of
equations of the form (

1 0 0
0 d2 d3

)
.

In other words, the intersection of the lines in P2 corresponding to a and d is a
point of the form [0 : −d3 : d2], which is a point on the line at infinity. Two lines
meet at a point on the line at infinity if and only if they are parallel. Hence,
we can conclude that [abd] vanishes when the lines �1 and �2 which are denoted
by �1 and �2 in Figure 6(b)are parallel. The analysis for the vanishing of the
irreducible factors of [cef ] is analogous; there is a special position when the lines
determined by the bars e and f are parallel, as in Figure 6(c).

As this case study shows, finding the factors of the pure condition can pro-
vide information about the subframeworks of a framework in a special position
that contain a dependency. The algorithm that we will present in Section 5
(Algorithm 4) finds a canonical set of graph minors, which we refer to as factor
graphs, associated with the factors of the pure condition; for this example, it pro-
duces factor graphs associated with precisely the irreducible factors described
above, as depicted in Figure 9.

4. Detecting generic dependencies with [a, b]-sparsity

We review the notion of [a, b]-sparsity, used to characterize body-and-cad
rigidity, and present the [a, b]-pebble game algorithm, which characterizes
[a, b]-sparsity and consequently addresses generic body-and-cad rigidity. If the
addition of an edge results in a dependency in a generic realization of the system,
the pebble game will find its fundamental circuit (minimal set of constraints
involved in the dependency).

4.1. The combinatorics of minimally rigid graphs

A result from [7] gives a combinatorial characterization of generic mini-
mal rigidity for 2D body-and-cad frameworks (with [1, 2]-frames) and, omit-
ting point-point coincidence constraints, for 3D body-and-cad frameworks (with
[3, 3]-frames):
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Theorem 1. An [a, b]-frame with bi-colored graph G = (V,E = R � B) is
generically minimally rigid if and only if ∃B′ ⊆ B such that:

• (V,R ∪B′) is the edge-disjoint union of a trees, and

• (V,B \B′) is the edge-disjoint union of b trees

Theorem 1 can also be stated in terms of hereditary sparsity, which we now
recall. A multigraph G = (V,E) is (k, �)-sparse if every subset of n′ vertices
spans at most kn′−� edges; if in addition, G has exactly kn−� edges, it is called
(k, �)-tight. For brevity, (k, �)-tight graphs will be called (k, �)-graphs. A subset
of vertices of G that induces a (k, �)-graph is a (k, �)-block. When � ∈ [0, 2k),
(k, �)-graphs are the bases of the (k, �)-matroid [9].

Definition 4.1. Let G = (V,E = B � R) be a bi-colored graph, a, b be positive
integers, and k = a+ b. Then G is [a, b]-sparse9 if ∃B′ ⊆ B such that:

• (V,R ∪B′) is (a, a)-sparse, and

• (V,B \B′) is (b, b)-sparse

Additionally, if G has exactly kn−k total edges, then G is [a, b]-tight and referred
to as an [a, b]-graph.

A subset of vertices of an [a, b]-sparse graph that induces an [a, b]-graph is
an [a, b]-block.

That this class is matroidal follows from the Matroid Union Theorem [17,
Prop. 7.6.14]. Therefore, for an [a, b]-sparse graph G = (V,E) and an edge e
not in E, we will say that e is independent of G if G+ e is also [a, b]-sparse and
dependent otherwise.

A straightforward application of the Nash-Williams and Tutte Theorem
[18, 19] implies that generic minimal rigidity of body-and-cad frameworks is
characterized by [1, 2]-sparsity in the plane and, omitting point-point coinci-
dence constraints, [3, 3]-sparsity in 3D [7].

4.2. Pebble games for [a, b]-sparsity

Algorithm 1 describes our [a, b]-pebble game for solving the Decision, Ex-
traction, Components and Optimization algorithmic problems described
in [9] for [a, b]-sparse graphs as well as detecting the fundamental circuit of a
dependent edge. This algorithm belongs to a family of pebble game algorithms
[20, 9] that are based on a set of local moves applied to the edges of a directed
graph, where the edges and vertices are covered by pebbles representing de-
grees of freedom. The specific preconditions for each type of move, which are
related to the sparsity parameters, determine the sparsity family recognized by
the game.

9As we will rely on both concepts of sparsity, we draw the reader’s attention to the use
of parentheses to denote the parametrized (k, �)-sparsity of uncolored graphs (appearing for
classical bar-and-joint and body-and-bar rigidity) and the use of square brackets to denote the
parametrized [a, b]-sparsity counts of bi-colored graphs (introduced for body-and-cad rigidity).
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Algorithm 1 The [a, b]-pebble game algorithm.

Input: A bi-colored graph G = (V,E = R�B), with red R and black B edges.
Output: [a, b]-sparsity property tight, sparse, dependent and contains
spanning tight, or dependent.
Setup: Initialize an empty directed graph H on vertex set V . On each vertex,
place a aqua pebbles and b tan pebbles.
Allowed moves:

Add red edge ij [Precondition: ≥ a+ 1 aqua pebbles on i and j.]
– Add the new edge, cover it with an aqua pebble from i (there is one by the
precondition).
– Orient ij out of i.
Add black edge ij [Precondition: ≥ a + 1 aqua pebbles on i and j or
≥ b+ 1 tan pebbles on i and j.]
– Add the new edge; cover it with a pebble from i using aqua (if there are
a+ 1 aqua) or tan (if there are b+ 1 tan).
– Orient ij out of i.
Edge reversal [Precondition: vertex j has a pebble on it and an in-edge
ij covered by the same color.]
– Reverse the edge by orienting it as ji out of j, covering with the pebble
from j and returning the (same color) pebble originally covering ij to i.
Aqua exchange edge reversal [Precondition: vertex j has an aqua peb-
ble on it and a black in-edge ij covered by a tan pebble; i and j do not
belong to the same (a, a)-component of aqua pebble covered edges.]
– Reverse the edge by orienting it as ji out of j, covering with the aqua
pebble from j and returning the tan pebble originally covering ij to i.
Tan exchange edge reversal [Precondition: vertex j has a tan pebble on
it and a black in-edge ij covered by an aqua pebble; i and j do not belong
to the same (b, b)-component of tan pebble covered edges.]
– Reverse the edge by orienting it as ji out of j, covering with the tan pebble
from j and returning the aqua pebble originally covering ij to i.

Method:

1. For each edge e ∈ E

(a) If e is black: attempt to collect b + 1 tan pebbles on its endpoints
with Alg. 2.

(b) If Alg. 2 returns true: insert e with an add black edge move.
(c) Else, or if e is red: attempt to collect a + 1 aqua pebbles on its

endpoints with Alg. 2.
(d) If Alg. 2 returns true: insert e with an add black/red edge move.
(e) Else: reject it and highlight the edges returned by Alg. 2 as the

fundamental circuit of the edge (if e is black, this is the union of
both calls to Alg. 2).

2. If every edge is added: output tight if there are a + b pebbles left and
sparse otherwise.

3. Else, there were rejected edges: output dependent and contains span-
ning tight if there are a+ b pebbles left and dependent otherwise.
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Algorithm 2 The subroutine for finding pebbles for the [a, b]-pebble game.

Input: An [a, b]-pebble game configuration (a directed bi-colored graph), an
edge e, and a desired additional pebble color ce (aqua or tan).
Output: true if a + 1 aqua (if ce is aqua) or b + 1 tan (if ce is tan) pebbles
can be collected on the endpoints of e or false otherwise, along with the set of
visited edges.
Method:

1. Initialize set F = ∅.
2. Initialize queue Q = ∅. Entries of Q will be of the form (f, c), recording

an edge on which to cover with a pebble of color c.

3. Set e.predecessor = NIL.

4. Enqueue (e, ce) into Q.

5. While Q is not empty

(a) Dequeue (f, c).
(b) If f �= e and f is red, continue to the next iteration of the loop.
(c) Use the basic pebble game rules to try to collect a+ 1 (if c is aqua)

or b+ 1 (if c is tan) pebbles on the endpoints of f ; let F ′ be the set
of edges visited by that search.

(d) If the pebbles were collected

i. Let g = f .
ii. While g.predecessor �= NIL

A. Let d be the color of the pebble covering g, d be the opposite
color, u and v the source and target of g.

B. Collect a pebble of color d on v using the basic pebble game
rules with edge reversal moves.

C. Perform a d exchange edge reversal move to reverse the
edge from v to u, covering it with the d-colored pebble and
releasing a d-colored pebble back onto u.

D. Set g = g.predecessor.

iii. Collect a + 1 (if c is aqua) or b+ 1 (if c is tan) pebbles on the
endpoints of g(= e).

iv. Output true and F ∪ F ′.
(e) Otherwise

i. For each edge g ∈ F ′ that is not in F

A. Set g.predecessor = f ; let c be the opposite of color c.
B. Enqueue (g, c) into Q.

ii. Assign F = F ∪ F ′.
6. Output false and F .
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One way of intuitively understanding the [a, b]-pebble game is to imagine
separate (a, a)- and (b, b)- pebble games played on sets A and T , which partition
the current edge set, respectively. The aqua-colored pebbles track the edges in
A as well as the (a, a)-sparsity of that partition; the tan-colored pebbles do the
same for T with (b, b)-sparsity counts10. The [a, b]-pebble game relies on moves
that permit black edges to move between A and T in a controlled manner, which
corresponds to collecting additional pebbles of certain colors, using a subroutine
described in Algorithm 2. To find a sequence of these moves, Algorithm 2
specializes Knuth’s matroid union algorithm [21] to the [a, b]-sparsity matroid
using pebble games. By enqueuing unvisited edges (in F ′\F ), it uses a breadth-
first approach to find the shortest path (stored with predecessor pointers) to an
edge whose pebble color can be exchanged. To help illustrate the algorithm,
Figure 7 shows some steps of the pebble game.

4.3. Correctness

We show correctness of Algorithm 1.

Theorem 2. A bi-colored graph is [a, b]-sparse if and only if it can be con-
structed with the [a, b]-pebble game.

We are going to prove that Algorithm 1 correctly characterizes [a, b]-sparse
graphs and that it can be used to find circuits. As mentioned above, we rely
on Knuth’s algorithm for matroid union [21] (see [22, Sec. 42.3] for a modern
treatment). Before giving the details, we remark that Knuth’s algorithm is a
meta-algorithm that relies on calls to independence oracles for the two matroids
underlying the union. Here, these two matroids are the (a, a)- and (b, b)-sparsity
matroids, with appropriately chosen ground sets. Thus, we could simply apply
Knuth’s scheme using the (a, a)- and (b, b)-pebble games as the oracles, instead
of developing the [a, b]-pebble game and showing it simulates Knuth’s search
procedure. However, the [a, b]-pebble game presented here saves a factor of
O(n) over the more näıve approach, as we will see in the complexity analysis.
Nonetheless, Lemma 4.2, below, follows from Theorem 3 and the proof of Lemma
4.3, so the direct argument below is meant to be informative.

In what follows, we describe a pebble game configuration as (H,A, T ), where
H is a bi-colored directed graph on vertex set V , with a pebble covering every
edge and some free pebbles on vertices; A is the set of edges covered by aqua
pebbles and T is the set of edges covered by tan pebbles. We will also abuse
notation slightly and use the same symbols H, A, and T to describe their
underlying undirected graphs. Finally, we will use the notation S + e to denote
S ∪ {e} and S − e to denote S \ {e}.
Lemma 4.2. The underlying graph of any pebble game configuration is [a, b]-
sparse with A as an (a, a)-sparse graph and T as a (b, b)-sparse graph.

10We chose the colors aqua and tan to be associated with A and T ; in the rigidity setting,
the aqua-covered A partition can be thought of as tracking the angular degrees of freedom of
the system, while the tan-colored T partition tracks the translational degrees of freedom.

15



A B

C

e 

x y 
z 

g 
f 

(a) The input is a
primitive cad graph
with 5 black (solid)
edges and 1 red
(dashed) edge.

(b) The setup stage
places a = 1 aqua (cir-
cular) pebble and b =
2 tan (square) pebbles
on each vertex.

(c) Since there were at
least b+1 = 3 tan peb-
bles on its endpoints,
the black edge e is
inserted with an add
black edge move.

(d) Another add
black edge move
inserts the edge f .
While the direction
is arbitrarily chosen,
a pebble from the
source is used to cover
the edge.

(e) Since there were
a + 1 = 2 aqua peb-
bles on its endpoints,
the red edge g is in-
serted with an add
red edge move.

(f) A few moves
later, an aqua edge
exchange reversal
move is possible:
B has an aqua
pebble and a tan
pebble covered black
in-edge z, whose
endpoints are not in a
(1,1)-component.

(g) The edge z is
subsequently reversed,
covered by the aqua
pebble from B, releas-
ing a tan pebble onto
C.

(h) Finally, all edges
are successfully in-
serted with exactly
a + b = 3 pebbles
remaining; the output
is tight.

Figure 7: The [a, b]-pebble game (Algorithm 1) played on a primitive cad graph for a generi-
cally minimally rigid framework determines that it is [1, 2]-tight.

Proof. We show something slightly stronger, which is that the underlying graph
H constructed by applying any sequence (as opposed to only the ones found by
the algorithm) of the pebble game moves is always [a, b]-sparse.

The key invariant is that, after any sequence of moves, A and T both induce
pebble game configurations for the basic (uncolored) pebble game from [9].
As an immediate consequence, we obtain that A remains (a, a)-sparse and B
remains (b, b)-sparse. This certifies that H is [a, b]-sparse. The invariant clearly
holds at initialization, so we proceed by induction on the number of moves.

For the inductive step, we first consider all the moves except for the ex-
change edge reversal moves. We observe that, assuming the required pre-
conditions, these operate entirely on either A or T as a configuration, so the
inductive step for them follows directly from [9].

To complete the induction, consider the aqua edge exchange reversal
move, since the tan one has an analogous proof. The precondition, that the
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edge ij ∈ T is not in an (a, a)-component of A, implies that A + ij is (a, a)-
sparse. From this, the pebble game invariants of [9] imply that there are a
aqua pebbles (distinct from the one on j) reachable from i via paths using only
edges in A. By induction, A could have been built by the basic (a, a)-pebble
game; then ij could be added to A by basic pebble game searches. Notice that
returning the tan-colored pebble to j maintains T as a basic (b, b)-pebble game
configuration.

The other direction is captured by the following lemma.

Lemma 4.3. If an edge is independent of the underlying graph of a pebble game
configuration, then the pebble game will successfully insert it.

Before giving the proof, we briefly review Knuth’s algorithm and establish
some terminology, specialized to our setup. The algorithm operates on a di-
rected, bipartite graph associated with a pebble game configuration (H,A, T )
and an edge e, which is not in H. This graph, denoted ΓH+e, has vertex set
given by the edges of H, i.e., A � T, along with two terminal vertices α and τ ,
and an additional vertex for the edge e. First, we describe the edges originating
and terminating at a vertex x /∈ {e, α, τ}.

There is a directed edge from vertex x to y, written x→ y if⎧⎨
⎩

(A− y) + x is (a, a)-sparse if x ∈ T & y ∈ A
(T − y) + x is (b, b)-sparse if y ∈ T & x ∈ A ∩B, i.e.,

x is a black edge in the aqua partition

Additionally, there is an edge x → α if x ∈ T and A + x is (a, a)-sparse, and
there is an edge from x→ τ if x ∈ A ∩B and T + x is (b, b)-sparse. The edges
originating at e are defined similarly. This case distinction is simply to make it
clear that no edges in ΓH+e have e as their target.

A path x0 → x1 → · · · → xπ has a shortcut in a graph if there exists a
j > i+ 1 such that xi → xj is an edge. In particular, if x0 → x1 → · · · → xπ is
a shortest path in a graph, it does not have a shortcut.

Given a path from e to a terminal vertex, recoloring along the path means
putting xi in the part of the partition containing xi+1, with α always in A and
τ always in T .

The main result of [21], again specialized for our setup, is:

Theorem 3. Let (H,A, T ) be a pebble game configuration and e an edge not
in the underlying graph. Then there is a directed path in ΓH+e from e to α or
τ if and only if H + e is independent. Moreover, given a path e = x0 → x1 →
. . . → xπ ∈ {α, τ} in ΓH+e that does not have a shortcut, a partition of H + e
certifying [a, b]-sparsity can be found by recoloring along this path.

The proof of Lemma 4.3 amounts to showing that Algorithm 2 is simulating
Knuth’s algorithm.

Proof of Lemma 4.3. Assume that e is independent of the underlying graph of
a pebble game configuration H. We need to show that Algorithm 2 will succeed
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in collecting enough pebbles on the endpoints of e. This is done by comparing
the pebble search procedure in Algorithm 2 to Knuth’s algorithm.

First consider, in the main loop of Algorithm 2, the conditional block predi-
cated upon when a+1 (if c is aqua) or b+1 (if c is tan) pebbles can be collected
on the endpoints of f . Note that a aqua or b tan pebbles can always be collected
on any vertex by [9]. The additional pebble can be collected if and only if the
edge f can be moved to the opposite part of the partition without violating
sparsity. This is equivalent to there being an edge f → {α, τ} in ΓH+e.

Otherwise, the pebble search fails. In this case, [9] implies that F ′ + f is
the fundamental circuit of f in the c-colored part of the partition; i.e., g ∈ F ′ if
and only if there is an edge f → g in ΓH+e. Therefore, F ′ is exactly the set of
neighbors of f in ΓH+e.

By enqueuing those edges in F ′ not already in F , Algorithm 2 is, in fact,
searching ΓH+e in a breadth-first fashion. By Theorem 3, the assumption that
H + e is [a, b]-sparse implies that there is a path from e to a terminal vertex in
ΓH+e. Therefore, Algorithm 2 will be able to collect a+1 aqua or b+1 pebbles
on the endpoints of some edge f , implying that there is an edge from f to a
terminal in ΓH+1. Let p be the path in ΓH+e defined by following predecessor
pointers from f . Since Algorithm 2 implements breadth-first search on ΓH+e, p
is shortcut free.

Theorem 3 then implies that recoloring along p preserves the (a, a)- and
(b, b)-sparsity of A and T at every step. The main results of [9] then imply
that it will always be possible to meet the preconditions of the exchange edge
reversal moves to implement the recoloring by using only basic pebble searches
on A or T . Thus, the pebble game moves implementing the recoloring along p
will succeed, and the [a, b]-pebble game will insert e.

4.4. Circuits

The pebble game also detects [a, b]-circuits, an approach that is perhaps less
well-known, but appears before in [9, Section 6] and has been used in [23]. Note
that the presence of red edges creates the possibility of many types of circuits.
Some may be circuits as uncolored (a + b, a + b) graphs, others may be (a, a)-
circuits, and there are yet other types. The examples in Figure 8 demonstrate
a property of circuits that does not arise in the (k, �)-sparsity matroids. While
every (k, �)-circuit is (k, �)-spanning, or “rigid,” an [a, b]-circuit may actually be
“flexible.” Dropping an edge of a (k, �)-circuit always results in a tight graph,
but dropping an edge of an [a, b]-circuit can result in a sparse (but not tight)
graph.

Whenever we fail to insert an edge, Algorithm 2 finds its fundamental circuit.

Lemma 4.4. Let F be the set of edges returned by Algorithm 2. The funda-
mental circuit of e in the configuration graph H is F + e.

Proof. We must show that F +e is dependent and that, for any y ∈ F , F +e−y
is independent. Observe that F + e corresponds to the set of vertices reachable
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(a) The fundamental [1, 2]-circuit for rejected
edge g detected by the pebble game is the
set of edges {e, g, y}. The set {e, y} forms an
angularly rigid block.

x z f 
h 

e 

g y 

(b) The fundamental [1, 2]-circuit for rejected
edge y detected by the pebble game is the set
of edges {e, g, x, y, z}. The set {x, z} forms a
contextually rigid block due to the presence
of the angular block {e, g}.

Figure 8: Unlike (k, �)-circuits, removing any edge from a [1, 2]-circuit may not produce a
[1, 2]-graph.

from e in the Knuth graph ΓH+e. By the definition of F , every directed path
in ΓH+e that starts at e is contained in ΓF+e. Therefore, there is no path from
e to a terminal in ΓF+e, and Theorem 3 implies that F + e is not [a, b]-sparse.

Now, let y ∈ F . By construction of F , y is on a short-cut free directed path
starting at e. Therefore, there is an x ∈ F + e on this path with x → y an
edge of ΓH+e. By definition, removing y results in an edge from x to a terminal,
providing a path from e to a terminal. In other words, F + e− y is [a, b]-sparse
for all y ∈ F , which completes the proof of correctness.

4.5. Complexity analysis

The running time of Algorithm 1 for a graph with n vertices and m edges
is O(mn2), which is O(n4). First we observe that collecting the initial a + b
pebbles in Algorithm 1 requires O(n) for each edge (a total of O(mn)) and that
the rest of the steps may be charged to O(m) invocations of Algorithm 2.

The running time of Algorithm 2, which is additionally used to detect the
fundamental circuit of a dependent edge, is O(n2). This is because each of the
O(n) edges in the configuration is enqueued at most once in the main loop, and
each edge that is enqueued triggers a (k, k)-pebble game search requiring O(n)
steps by [9], after first copying a configuration of size O(n).

By way of comparison, a direct application of Knuth’s algorithm leads to a
more expensive running time. In this approach, one might build the bipartite
graph explicitly and use the basic pebble game to test each possible edge. The
graph ΓH+e has O(n2) edges, and each check would require an O(n2)-time
run of the (k, k)-pebble game; this would result in a total of running time of
O(mn4) = O(n5) (any call to the pebble game would have O(n) edges as the
input graph is sparse).
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4.6. Finding components

Within an [a, b]-sparse graph, an induced [a, b]-component is a vertex-maximal
[a, b]-block. It is straightforward to adapt Algorithm 1 to maintain and detect
induced [a, b]-components, as in the (k, �)-pebble game algorithm with compo-
nents described in [9]. The running time would remain O(n4).

Note that any edge with vertices contained in an induced [a, b]-component
is dependent and will be rejected by this adapted pebble game in O(1) time.
However, an edge may be dependent without being contained in an induced
[a, b]-component, as the circuits in Figure 8 demonstrate. Therefore, unlike the
(k, �)-sparsity case, we do not save a factor in the running time by maintaining
induced [a, b]-components.

5. Analyzing non-generic dependencies with factor graphs

As demonstrated in Section 3, a generically minimally rigid framework may
be in a special position that admits internal motions and contains dependencies.
In this section, we develop algorithms that will decompose such a framework
into its factor graphs, permitting analysis of which subframeworks contain the
dependencies. We begin by reviewing basic information about the pure con-
dition of an [a, b]-graph. We then present a simple algorithm that uses the
pebble game to find the factor graphs of the pure condition of an (uncolored)
(k, k)-graph, which correspond to the irreducible factors of its pure condition.
Finally, we provide some technical background required for analyzing the more
complicated structure of the pure condition of an [a, b]-graph and conclude with
factor graph algorithms in this setting.

5.1. Structure of the pure condition

In this section, we review the definition of the polynomial called the pure
condition that is associated to a body-and-cad framework. If G is a minimally
rigid graph and p is generic, the kernel of M(G(p)) contains exactly the space
of trivial infinitesimal motions of G(p), corresponding to rigid-body motions of
the entire framework as a single unit. To remove these, we choose some i with
1 ≤ i ≤ n, and construct the standard tie-down at body i by appending to
M(G(p)) a k × kn matrix whose only nonzero entries are given by the identity
matrix in the k columns associated to body i11. We denote the rigidity matrix
of G(p) with a tie-down by MT (G(p)).

Definition 5.1. The pure condition PG of a tied down [a, b]-graph G is the
determinant of MT (G(x)).

The pure condition depends, a priori, on the choice of tie-down of G. We will
show that as in the body-bar setting of [15], this dependence can be removed.

11The notion of tie-downs can be substantially generalized to generic tie-downs of any [a, b]-
sparse graph. For our purposes, this would only complicate the notation, so we restrict our
attention to standard tie-downs.
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Theorem 4. The pure condition of a tied down [a, b]-graph G is non-zero for
any choice12 of the tie down and has the form PG = TG ·CG, where TG depends
on the tie down and CG is independent of the tie down.

The proof is relatively standard and similar to what can be found in [15, 24];
for completeness we provide it in the Appendix. This theorem implies that we
only need to consider CG, the “critical factor” of the pure condition; for the
remainder of the paper, we will abuse notation and refer to CG as the pure
condition of G.

5.2. Factors of the pure condition and factor graphs

We start with the simpler setting arising in body-and-bar, where rigidity is
characterized via (b, b)-sparsity counts, before moving to the more complicated
setting of body-and-cad.

5.2.1. Body-and-bar factors

Note that a [0, b]-graph is a (b, b)-graph, and in this case White and Whiteley
[15] showed that there is a one-to-one correspondence between factors of CG and
what we will call factor graphs of G. A graph H is a factor graph of a (k, k)-
graph G if H is a minor13, and CG = hf, where the variables that appear in h
are the edge labels of H. Denote by G/H the minor obtained by deleting all
the edges in H and identifying its vertices. All the factor graphs H in [15] have
the same form: H it itself a (b, b)-graph, and the factor associated with H is
the pure condition of H(x). A corollary of White and Whiteley’s result is that,
in fact, every factor of CG arises this way.

The intuition for studying these factor graphs to analyze dependencies aris-
ing from special positions is as follows. Suppose that G is a (b, b)-graph and has
a subgraph H that is a (b, b)-block. Then M(H(x)) is a submatrix of M(G(x));
thus, a special position of H(x) is also a special position of G(x), no matter
what edge labels we put on the edges of G that are not between two vertices of
H. Similarly, there are special positions of G(x) that remain so after changing
the edge labels of H to anything at all. These come from special positions of
(G/H)(x). In general, special positions are characterized by which factors of
the pure condition vanish, so they are associated with specific subgraphs.

Using this foundation, Algorithm 3 finds the factor graphs of a (k, k)-graph
recursively.

5.2.2. Body-and-cad factors

The body-and-cad setting is more complicated than the body-and-bar setting
of [15]. An [a, b]-graph may have factors that correspond to [a, b]-blocks, factors
that correspond to (a, a)- or (b, b)-blocks, and other factors that do not corre-
spond to any induced block. This requires some additional technicalities, which

12The standard tie-down pins k coordinates of one body, but we can also choose “generic”
tie-downs that pin k coordinates chosen from different bodies.

13Graph minors are obtained by deleting edges and vertices and contracting edges.
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Algorithm 3 The k-factor graphs algorithm.

Input: A (k, k)-graph G = (V,E).
Output: The factor graphs of the irreducible factors of CG.
Method:

1. Initialize P = ∅ and H = G.

2. Play the (k, k + 1)-pebble game on G to find a maximal (k, k + 1)-sparse
graph G′.

3. For every edge e that is rejected (there is at least one):

(a) Use the (k, k + 1)-pebble game to detect the fundamental (k, k + 1)-
circuit Ge of e in G′.

(b) Set P = P +Ge; set H = H/Ge.

4. If H is not a single vertex:

(a) Recursively use the k-factor graphs algorithm on H to obtain
factor graphs P ′.

(b) Set P = P ∪ P ′.
5. Output P.

we now introduce, before describing our algorithm for finding factor graphs in
[a, b]-graphs.

Definition 5.2. Let G be an [a, b]-graph with pure condition CG = fg. We say
that the edge support of the factor f is the set Ef of edges e in G such that
some variable of x(e) is in f .

We can show that the supports of distinct factors define edge-disjoint sub-
graphs of G, ultimately leading to a decomposition of G.

Theorem 5. Let CG = fg. Then the edge supports of f and g are disjoint
and partition E(G). Moreover, every monomial of a factor contains exactly one
coordinate from each edge in its support.

The proof is standard and presented in the Appendix for completeness.
Theorem 5 implies that the factor graphs mentioned above are a well-defined

concept, which we repeat, since they are central in what follows.

Definition 5.3. A bi-colored graph H is a factor graph of G if H is a minor of
G and CG = hf , with the factor h supported on H. If h is an irreducible factor
of CG, then H is an irreducible factor graph.

If H only contains red edges, we abuse notation and interpret it as an (a, a)-
graph labeled by the first a coordinates of the edge vectors. If H only contains
black edges and is a (b, b)-graph whose vertices are contained in a red (a, a)-
graph, then we interpret it as a (b, b)-graph labeled by the last b coordinates of
the edge vectors. With this interpretation, we can make the following definition.

Definition 5.4. The factor graph H is proper, if h = CH (for some tie down
of H). Otherwise, it is improper.
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To see the difference between proper and improper, consider the [1, 1]-graph
graph in Figure 10. It has three factor graphs: each diagonal of the outer
square is a factor graph, and so is the outer square itself. The two diagonals
are both proper; since a red edge is, trivially, a (1, 1)-graph, their corresponding
factors are pure conditions. On the other hand, the factor corresponding to the
outer square is not a pure condition, which can been seen by noting that this
factor graph is neither a (1, 1)-graph nor a [1, 1]-graph; its rigidity matrix is
not square after a standard tie-down is applied. Thus, the outer square is an
improper factor graph.

5.3. Detecting factor graphs

Algorithm 4 adapts the k-factor graphs algorithm to account for the different
types of factor graphs that can appear in [a, b]-graphs. It relies on a subrou-
tine, Algorithm 5, that detects the additional types of factors, both proper and
improper.

Algorithm 4 The [a, b]-factor graphs algorithm.

Input: an [a, b]-graph G = (V,E = R�B), with a set of red edges R and a set
of black edges B.
Output: Proper (irreducible) and improper factor graphs of G that together
provide a factorization of G.
Method:

1. Initialize P = ∅; I = ∅; H = G; set k = a+ b.

2. Play the (k, k + 1)-pebble game on G to find a maximal (k, k + 1)-sparse
graph G′.

3. For every edge e that is rejected (there is at least one):

(a) Use the (k, k + 1)-pebble game to detect the fundamental (k, k + 1)-
circuit Ge of e in G′.

(b) Use the [a, b]-red-factor graphs algorithm on Ge to obtain sets of
factor graphs Pe and Ie.

(c) Set P = P∪Pe and I = I∪Ie; set H = H/Ge.

4. If H is not a single vertex:

(a) Recursively use the [a, b]-factor graphs algorithm on H to obtain
sets of factor graphs P ′ and I ′.

(b) Set P = P∪P ′ and I = I∪I ′.
5. Output P and I.

We provide an overview of how the [a, b]-factor graphs algorithm performs
on a [1, 2]-graph with only proper factors in Figure 9 and on a [1, 1]-graph with
one improper factor in Figure 10. A more comprehensive trace of the algorithm
is given in on a [1, 1]-graph in Figure 11.

5.3.1. Correctness

The proof of correctness relies on some structural results about the pure
condition that we establish first. This result is an extension of the similar
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Algorithm 5 The [a, b]-red-factor graphs algorithm.

Input: An [a, b]-bi-colored graph G = (V,E = R � B), with a set of red edges
R and a set of black edges B, that contains no proper (a+ b, a+ b)-components.
Output: Proper (irreducible) and improper factor graphs of G that together
provide a factorization of G.
Method:

1. Play the (a, a)-pebble game on (V,R) and detect red (a, a)-components.

2. If no (a, a)-components of (V,R) were found, output {G}.
3. Otherwise, let H1, . . . , Ht be the red (a, a)-components.

(a) For each graph (V (Hi), E(V (Hi)) ∩ B), play the (b, b)-pebble game
to detect (b, b)-components.

(b) If no (b, b)-components are found, use the a-factor graphs al-
gorithm on each Hi to obtain a set of proper factor graphs P
that are the a-factor graphs of the Hi. Then return P and I =
{(V,E \ {E(V (Hi)) : i ∈ [t]})}.

(c) Otherwise, there is a (b, b)-component J in the vertex span of some
component Hi. Set H = Hi.

i. Use the a-factor graphs algorithm on H to obtain a set of
factor graphs PH .

ii. Use the b-factor graphs algorithm on J to obtain a set of
factor graphs PJ .

iii. Obtain a pebble game configuration of G by fixing a vertex in
v ∈ V (J) and using the [a, b]-pebble game to collect k pebbles on
v. Delete every edge of H with its tail in V (J). Contract V (J)
into a single vertex to get a graph G′.

iv. Use the [a, b]-factor graphs algorithm on G′ to get a set of
factor graphs P ′ and I ′.

v. Find the factor graph FH in P ′ that contains an edge of H.
vi. Return PH ∪ PJ ∪ (P ′ \ {FH}) and I ′.
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Figure 9: Algorithm 4 finds the proper factor graphs of the [1, 2]-graph underlying Figure
1: {{e, f}, {a, d}, {b}, {c}}; there are no improper factor graphs. The pure condition is
±[ef ](2,3)[ad](2,3)[b](1)[c](1). A bracket subscripted by ordered tuple T denotes the deter-
minant of the |T | × |T | matrix with coordinates specified by T .

statement from [15] that underlies the k-factor-graphs algorithm discussed
above to the setting of [a, b]-graphs, and it has a similar geometric meaning.

Theorem 6. Let G have a proper subgraph H that is an [a, b]-block. Then H
and G/H are both proper factor graphs and CG = CH · CG/H .

For clarity of presentation, we leave the proof for the Appendix. Theorem 6
implies the correctness of Algorithm 3.

Claim 5.5. Every graph returned by Algorithm 3 is an irreducible and proper
factor graph.

Proof. Properness comes from Theorem 6. Irreducibility of the pure condition
of a (k, k)-graph is characterized by White and Whiteley [15, pg. 27]: the pure
condition of a graph is irreducible if and only if the graph contains no proper
block. The graph contains no proper block if and only if, for every proper
subgraph with n′ vertices and m′ edges, m′ < kn′ − k (i.e., strict inequality
holds on proper subgraphs). Since we are considering a (k, k)-graph with all
proper subgraphs (k, k + 1) sparse, this holds precisely when the graph is a
(k, k + 1)-circuit.

The next few theorems deal with the new cases arising in body-and-cad.
Again, for clarity, we leave their proofs for the Appendix.

25



detects Ga

as (2,3)-circuit 

a

[1,1]-factor graphs 
algorithm

1-factor graphs 
algorithm

{e}

1-factor graphs 
algorithm

{f}

B

C

d

A a
fe

c

b

D

detects two red 
(1,1)-components 

with no black 
(1,1)-components

B
f

D

CeA

D
Bf

[1,1]-red factor 
graphs algorithm

A
Ce

{a,b,c,d}

B

C
d
A a

c
b

D

Figure 10: Algorithm 4 on a [1, 1]-graph finds proper factor graphs {{e}, {f}} and an improper
factor graph {{a, b, c, d}}. The pure condition is [e](1)[f ](1)(a2b1c1d1−a1b2c1d1−a1b1c2d1+
a1b1c1d2) = e1f1(a2b1c1d1 − a1b2c1d1 − a1b1c2d1 + a1b1c1d2). A bracket subscripted by
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Theorem 7. Let G be an [a, b]-graph with a subgraph H that contains only red
edges and is an (a, a)-block. Then H is a proper factor graph of G.

Figures 9, 10 and 11 depict examples with red (a, a)-blocks appearing as
proper factor graphs. The geometric interpretation of Theorem 7 is that as a
sub-framework H is not rigid, but angularly rigid : only translational degrees of
freedom are permitted between the vertices spanned by H. In light of this, we
define the following.

Definition 5.6. Let G be [a, b]-sparse. If H is a subgraph that contains only
red edges and is an (a, a)-block, we say that it is an angular block. If G is an
[a, b]-graph, then an angular block is an angular factor graph.

A key difference between the situation in Theorem 6 and that of Theorem
7 is that we cannot simply contract H and obtain another proper factor graph.
Indeed, as the example in Figure 10 shows, G \H may be an improper factor
graph.

The final type of proper factor graph arises as a subset of an angular block.
Suppose that G has an angular block H, and that J � H is a (b, b)-block
on t vertices (necessarily) containing only black edges. Angular rigidity of the
bodies spanned by H implies that there are only b(t − 1) translational degrees
of freedom remaining among them. Since J is a (b, b)-block containing only
blind constraints, there are, in fact, no remaining internal degrees of freedom
in J . We call J contextually rigid, since it is rigid in the context of G, but not
as an induced subgraph. It is possible to continue finding factor graphs after
discovering a contextually rigid block, but the construction is more delicate, in
that it requires modifying H after contracting J .
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Step 3c of Algorithm 5 handles detection of contextually rigid components.
Theorem 8 ensures its correctness by making the discussion above precise We
need an additional combinatorial definition for the statement.

Definition 5.7. Let G be an [a, b]-graph. An [a, b]-tree decomposition

T = (A1, . . . , Aa, T1, . . . , Tb)

of G is a partition of the edges into k spanning trees such that all the red edges
are in the sets Ai.

It follows from the definitions in Section 4.1 that there is an [a, b]-tree de-
composition of a bi-colored graph if and only if it is an [a, b]-graph.

Theorem 8. Let G be an [a, b]-graph with an all red (a, a)-block H as a subgraph
and an all black (b, b)-block J with V (J) ⊂ V (H). Tie down a vertex in J , fix an
[a, b]-tree decomposition T of G, and orient all edges towards this root. Define
G′ by removing all of the edges of H whose tails are in J and then contracting
J. Then,

1. H and J are proper factor graphs.
2. CG = CH · CJ · f , where f is supported on a subgraph F whose edges are

the edges of G that are not in H or J.
3. G′ is an [a, b]-graph with CG′ = hf, where h is supported on the red (a, a)-

block H ′ = H/J .

We now show correctness of Algorithm 5.

Claim 5.8. Every graph returned by Algorithm 5 is a factor graph, and the
proper factor graphs are irreducible.

Proof. The calls to the a-factor graphs algorithm and b-factor graphs algorithm
produce irreducible proper factor graphs by the correctness of Algorithm 3. In
Step 3(c)iii, we obtain a pebble game configuration certifying (a, a)-sparsity of
the aqua partition and (b, b)-sparsity of the tan partition. Via sparsity, we also
know that there exists an [a, b]-tree decomposition consistent with this [a, b]-
pebble game configuration if we direct all edges towards the chosen vertex v.
Therefore, by Theorem 8 we know that G′ is an [a, b]-graph.

Also by Theorem 8, H ′ = H/J is a (red) (a, a)-block. Thus, after contract-
ing and recursively calling Algorithm 4, there is exactly one factor graph H ′

containing an edge from H, so Step 3(c)v is well-defined. Finally, removing the
factor graph FH = H ′ from the set of returned factor graphs completes the
algorithm’s correctness.

This, along with Theorem 6, allows us to conclude correctness of our main
Algorithm 4:

Claim 5.9. Every graph returned by Algorithm 4 is a factor graph, and the
proper factor graphs are irreducible.

We do not know if the improper factor graphs are irreducible, since we do
not have a nice representation for them.

Question 9. Are all the factor graphs found by Algorithm 4 are irreducible?
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6. Conclusions

The approach presented in this paper is part of a larger research path to pro-
vide computational tools that will give users information about dependencies
present in CAD structures in terms of the original geometric constraint system.
A prototype of Algorithm 1 has been implemented, with a long-term goal to
see the pebble game and factor algorithms incorporated into commercial CAD
software packages. By analyzing the pure condition, we can detect special po-
sitions of a generically minimally rigid body-and-cad structure. However, since
CG vanishes when G(p) is infinitesimally flexible, special positions that we find
may not be truly flexible. These positions may still be of interest to a CAD
user, as an infinitesimally flexible framework carries an internal stress, indica-
tive of structural weaknesses. Moreover, we may be able to combine conditions
implying a special position to create degenerate embeddings with true motions.
We conclude with a brief discussion of open questions that arise as we move
toward further development of our approach.

Algorithm 4 returns factor graphs of the pure condition of an [a, b]-graph,
but it remains open as to whether these factors are irreducible or not. When
b = 0, the results of White and Whiteley [15] show that irreducible factors
of CG correspond to circuits in G; this correspondence implies that Algorithm
3 produces irreducible factors for body-and-bar graphs. A better understand-
ing of circuits would allow us to similarly conclude of the factors identified by
Algorithm 4 are always irreducible.

We were able to carry out an analysis in the case study of Section 3 where the
pure condition was just a product of brackets, and its vanishing was implied by
either making two bars parallel or two lines parallel. More generally, a geometric
interpretation of the vanishing of a more complicated non-monomial bracket
polynomial may be possible via the process of Cayley factorization, which takes
as input a polynomial written in terms of brackets of vectors and outputs an
expression in terms of meets and joins in the Grasmann-Cayley algebra of those
points if such an expression exists. There is a Cayley factorization algorithm
due to White [25, 26], and it would be interesting to see if it could be modified
(and sped up) if the input bracket polynomial is known to be a pure condition.

Even when a Cayley factorization does exist, it may be nontrivial to extract
geometric information about the original framework from it. One issue that
adds complexity in general is that a single cad constraint may impose multiple
linear constraints, so conditions may need to be expressed in terms of sets of
vectors. Furthermore, in 3D, the vectors in the brackets do not live in a space
dual to our realization space (as they do in 2D), complicating translation of the
vanishing of the pure condition into the setting of our original constraints.

Finally, the results in this work rely on the combinatorial characterization of
[7], which apply to 3D body-and-cad structures without point-point coincidence
constraints. While a combinatorial characterization that incorporates these con-
straints remains unknown, 3D body-and-cad frameworks with point-point co-
incidences share similar properties with presumed barriers to a combinatorial
characterization of 3D bar-and-joint frameworks.
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Appendix A. Proofs for Section 5

Appendix A.1. Proof of Theorem 4

The proof follows from a combinatorial formula for the pure condition in
terms of tree decompositions that we now derive. To make the connection be-
tween tree decompositions and CG we define the tree decomposition monomial
{T } to be

{T } :=
∏

e∈Ai, i∈[a]

x(e)i
∏

e∈Tj , j∈[b]

x(e)a+j

The tree monomials are precisely the monomials appearing in PG.

Theorem 10. If G is a tied down [a, b]-graph

PG =
∑

tree decomps.
T

±{T } in R[x]. (A.1)

The signs can be determined using the definition of the determinant of a matrix.
The precise formula for the signs is technical and not needed in what follows, so
we do not describe it here.

Proof. We sketch a proof that follows the proof of Theorem 2.18 in [15]. First
we reorder the columns of MT (G(x)) by the coordinates of p(e) so that we have
the n first coordinates, followed by the n second coordinates, etc. In doing this
we can see that if we ignore the last k rows corresponding to the tie down, each
successive collection of n columns is just an incidence matrix for the directed
multigraph G whose rows are the edges of G, and whose columns correspond to
the vertices.

We expand the determinant of MT (G(x)) along these successive groups of n
columns. To do this, in each set of n columns, we need to choose n rows. Since
this set of n columns is an incidence matrix, if this subdeterminant is nonzero,
then these rows must correspond to a spanning tree plus a row corresponding
to the tie down. Moreover, this subdeterminant is actually a monomial as
it is possible to expand it row by row, choosing the tie down as the first row,
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choosing an edge incident to the tied-down vertex as the next row, and choosing
successive rows by taking an edge that was adjacent to an edge already chosen.
Proceeding in this way, each row that we choose has only one nonzero entry.

The resulting n× n determinant is multiplied by k others, all chosen in the
same way, to obtain a monomial. Since we cannot permit any row to appear
twice in such a product, this product of k n× n determinants corresponds to a
decomposition of G into k edge-disjoint spanning trees.

Moreover, we argue that such a product is nonzero if and only if the k trees
form an [a, b]-tree decomposition. To see this, note that within the last b groups
of n columns, the rows corresponding to red edges have only zeroes as entries.
So, all of the red edges are in the a trees corresponding to the first a coordinates.

Proof of Theorem 4. It follows from Theorem 10 that, since the tree decompo-
sitions are independent of the tie-down, PG is determined up to sign. We can
therefore define the critical factor14 CG to be PG with respect to the tie-down
that pins vertex 1, to establish a convention.

Appendix A.2. Proof of Theorem 5

Proof. From Equation (A.1) we can see that every monomial of CG contains
exactly one coordinate from each edge. If the coordinates of x(e) were split
between two distinct factors, then their product would have terms divisible by
more than one coordinate of x(e), which would be a contradiction.

Appendix A.3. Proof of Theorem 6

The proof requires the following standard lemma.

Lemma Appendix A.1. Let G be a (k, k)-graph, and let H be a proper block.
Then G/H is also a (k, k)-graph.

Proof. Fix a tree decomposition T1, . . . , Tk of G, and let n′ be the number of
vertices of H. Since H has m′ = kn′ − k edges, all of which are covered by
one of the trees, |Ti ∩ H| = n′ − 1 for every i. Thus, contracting H involves
contracting a subtree of each of the Ti. Since contracting a connected subtree of
any tree T produces a smaller tree T ′, contracting H produces a set of k trees
that cover the edges of G/H. By the Tutte-Nash-Williams Theorem G/H is
also a (k, k)-graph.

Proof of Theorem 6. Since H is an [a, b]-graph, it has a pure condition CH .
Lemma Appendix A.1 then implies that G/H is also an [a, b]-graph, so CG/H is
defined as well. If both CH and CG/H divide CG, then CG = CG · CG/H , since
the supports of H and G/H are disjoint and partition the edges of G.

14The name comes from the setting of general tie-downs, where ±1 is replaced with the
determinant of a k × k matrix.
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To see that CH and CG/H divide CG, we will use Equation (A.1), and a small
elaboration of the proof of Lemma Appendix A.1. Pick tree decompositons TH
and TG/H of H and G/H. Suppose that the union T of TH

1 and T
G/H
1 contains

a cycle in G. Since TH
1 is a tree, this cycle is not contained entirely in H. This

implies that T/TH
1 = T

G/H
1 is not acyclic, which is a contradiction.

Because TH and TG/H were arbitrary, a tree decompisiton of G is determined
by picking one of H and G/H independently. The desired result then follows
from Equation (A.1).

Appendix A.4. Proof of Theorem 7

Proof. Because H is a completely red (a, a)-block, any tree decomposition de-
composition of G induces a decomposition of H into a edge-disjoint spanning
trees. The trees covering H can be chosen independently of the trees covering
the remaining edges, so the theorem follows from Equation (A.1).

Appendix A.5. Proof of Theorem 8

Proof. That H is a factor graph of G follows from Theorem 7. To see that J
also is, observe that, since V (J) ⊂ V (H), all the edges of J are covered by trees
Tj (and not Ai). Thus, the decomposition of J into b trees is independent of the
rest of any tree decomposition. Hence, CJ (the pure condition of a (b, b)-graph)
divides CG, using the same arguments as above.

To show that G′ is an [a, b]-graph, we will show that T restricts to an [a, b]-
tree decomposition of G′. In each tree there was a unique directed path from
each vertex in G to the root in J . Since our construction only deletes edges
directed out of J , there is still a unique directed path in each tree from each
vertex remaining in G′ to the root. If an undirected cycle were created in this
process, it is easy to see that there would have also been an undirected cycle
in the original tree. Therefore, the restriction of T to T ′ in G′ is an [a, b]-tree
decomposition.

Finally, we argue that H ′ = H/J is a red (a, a)-block in G′. This will imply
thatH ′ is a factor graph of G′, yielding the last assertion of the theorem. Above,
we argued that the a red trees of T in H restrict to a red trees in T ′ in H ′. By
Nash-Williams-Tutte, H ′ is a (a, a)-block (of all red edges). By Theorem 7, H ′

is a proper factor graph of G′ and CG′ = hf with h supported on H ′.
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